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The global (absolute) stability of nonlinear systems with fractional positive and not necessarily asymptotically stable linear
parts and feedbacks is addressed. The characteristics u = f(e) of the nonlinear parts satisfy the condition k1e ≤ f(e) ≤
k2e for some positive k1 and k2. It is shown that the fractional nonlinear systems are globally asymptotically stable if the
Nyquist plots of the fractional positive linear parts are located on the right-hand side of the circles (−1/k1,−1/k2).
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1. Introduction

In positive systems inputs, state variables and outputs
take only nonnegative values for any nonnegative inputs
and nonnegative initial conditions (Farina and Rinaldi,
2000; Kaczorek, 2002). Examples of positive systems
are industrial processes involving chemical reactors, heat
exchangers and distillation columns, storage systems,
compartmental systems, water and atmospheric pollutions
models. A variety of models having positive behavior can
be found in engineering, management science, economics,
social sciences, biology and medicine, etc. Positive
linear systems are defined on cones and not on linear
spaces. Therefore, the theory of positive systems is more
complicated and less advanced. An overview of state of
the art in positive systems theory is given in the works of
Berman and Plemmons (1994), Farina and Rinaldi (2000),
Kaczorek (2011b) or Kaczorek and Borawski (2017).

Positive linear systems with different fractional
orders were addressed by Kaczorek (2010; 2011a)
and Sajewski (2017b). The stability of standard and
positive systems was investigated by Kaczorek (2019a;
2015b; 2017) and Kudrewicz (1964), and that of
fractional systems by Busłowicz and Kaczorek (2009),
Farina and Rinaldi (2000), Kaczorek (2015a; 2016;
2019b; 2015b; 2017), Kaczorek and Borawski (2017)
or Mitkowski (2008). The stability and stabilization

problems of positive fractional descriptor system were
investigated by Ruszewski (2019) and Sajewski (2017a;
2017b). Descriptor positive systems were analyzed by
Borawski (2017) and Kaczorek (2012). Linear positive
electrical circuits with state feedbacks were addressed
by Borawski (2017) as well as Kaczorek and Rogowski
(2015). The global stability of nonlinear systems
with negative feedbacks and positive, not necessarilily
asymptotically stable linear parts was investigated by
Kaczorek (2019b).

In this paper the global stability of nonlinear
feedback systems with fractional positive linear parts will
be addressed. The paper is organized as follows. In
Section 2 the positive fractional linear systems and their
transfer matrices are considered. The main result of the
paper is given in Section 3 where sufficient conditions
for the global stability of the fractional positive nonlinear
feedback systems are established. Concluding remarks are
given in Section 4.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of real n × m matrices; Rn×m

+ ,
the set of real n × m matrices with nonnegative entries
and R

n
+ = R

n×1
+ ; Mn, the set of n × n Metzler matrices

(real matrices with nonnegative off-diagonal entries); In,
the n× n identity matrix.
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2. Positive fractional linear systems and
their transfer matrices

In this paper the following Caputo definition of the
fractional derivative of α order will be used (Kaczorek,
2011b; Kaczorek and Rogowski, 2015; Ostalczyk, 2016;
Podlubny, 1999):

0D
α
t f(t) =

dαf(t)

dtα

=
1

Γ(1− α)

∫ t

0

ḟ(τ)

(t− τ)α
dτ, (1)

where 0 < α < 1,

ḟ(τ) =
df(τ)

dτ

and

Γ(z) =

∫ ∞

0

tx−1e−t dt, Re(x) > 0

is the Euler gamma function.
Consider the fractional continuous-time linear

system

dαx(t)

dtα
= Ax(t) +Bu(t), (2a)

y(t) = Cx(t) +Du(t), (2b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state,

input and output vectors, respectively, and A ∈ R
n×n,

B ∈ R
n×m, C ∈ R

p×n, D ∈ R
p×m.

Definition 1. (Kaczorek, 2011b; Kaczorek and Rogowski,
2015) The fractional system (2) is called (internally) pos-
itive if x(t) ∈ R

n
+ and y(t) ∈ R

p
+, t ≥ 0 for any initial

conditions x(0) ∈ R
n
+ and all inputs u(t) ∈ R

m
+ , t ≥ 0.

Theorem 1. (Kaczorek, 2011b; Kaczorek and Rogowski,
2015) The fractional system (2) is positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ .

(3)
The transfer matrix of the system (2) is given by

T (sα) = C[Ins
α −A]−1B +D. (4)

The matrix A is called Hurwitz if the matrix is asymptoti-
cally stable.

Theorem 2. If the matrix A ∈ Mn is Hurwitz and B ∈
R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ in the fractional linear

positive system (2), then all the coefficients of the transfer
matrix (4) are positive.

Proof. First we shall show by induction with respect to n
that the matrix

[Ins
α −A]−1 ∈ R

n×n(s) (5)

has positive coefficients.
The hypothesis is true for n = 1 since

[sα + a]−1 =
1

sα + a
(6)

and for n = 2

[I2s
α −A2]

−1

=

[
sα + a11 −a12
−a21 sα + a22

]−1

=
1

s2α + a1sα + a0

[
sα + a22 a12

a21 sα + a11

]
,

(7)

where a1 = a11 + a22 ≥ 0, a0 = a11a22 −
a12a21 ≥ 0. It is well-known (Kaczorek, 2016)
that the positive continuous-time linear system (2) is
asymptotically stable if and only if all coefficients of its
characteristic polynomial are positive.

Assuming that the hypothesis is valid for n − 1 (the
matrix [In−1s

α − An−1]
−1) we shall show that it is also

true for n (the matrix [Ins
α − An]

−1). It is easy to check
that the inverse matrix of the matrix

[Ins
α −An]

=

[
In−1s

α −An−1 un

vn sα + ann

]
,

(8)

where

un = −

⎡
⎢⎣

a1n
...

an−1,n

⎤
⎥⎦ ,

vn = −[ an1 · · · an,n−1 ]

has the form of Eqn. (9), in which

an = (sα + ann)− vn[In−1s
α −An−1]

−1un. (10)

By assumption, the matrix [In−1s
α − An−1]

−1 has
all positive coefficients and the rational function (10) has
positive coefficients. Taking into account that un and vn
have nonnegative entries, we conclude that

− [In−1s
α −An−1]

−1un

an

and

−vn[In−1s
α −An−1]

−1

an
are respectively column and row rational vectors with
positive coefficients. By the same arguments, the matrix

[In−1s
α −An−1]

−1unvn[In−1s
α −An−1]

−1

an
(11)

has also all rational entries in sα with positive coefficients
and the matrix (5) has positive coefficients. Therefore, if
B ∈ R

n×m
+ , C ∈ R

p×n
+ , D ∈ R

p×m
+ then all coefficients

of the transfer matrix (4) are positive. �
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[Ins
α −An]

−1

=

⎡
⎢⎢⎢⎣

[In−1s
α −An−1]

−1 +
[In−1s

α −An−1]
−1unvn[In−1s

α −An−1]
−1

an
− [In−1s

α −An−1]
−1un

an

−vn[In−1s
α −An−1]

−1

an

1

an

⎤
⎥⎥⎥⎦ . (9)

Example 1. Consider the fractional positive linear
system (2) with the matrices

A =

[ −2 1
1 −2

]
, B =

[
1
1

]
,

C = [ 2 1 ], D = [2]. (12)

The matrix A is Hurwitz. Using (4) and (12), we obtain

T (sα) = C[I2s
α −A]−1B +D

= [ 2 1 ]

[
sα + 2 −1
−1 sα + 2

]−1 [
1
1

]
+ [2]

=
2s2α + 11sα + 15

s2α + 4sα + 3
.

(13)

The transfer function (13) has positive coefficients. �

3. Asymptotic stability

Consider the fractional nonlinear feedback system shown
in Fig. 1 consisting of the fractional linear part described
by the equations

dαx

dtα
= Ax+ bu, (14a)

y = cx, (14b)

where x = x(t) ∈ R
n, u = u(t) ∈ R, y = y(t) ∈ R, A ∈

R
n×n, b ∈ R

n, c ∈ R
1×n, and of the nonlinear element

with the characteristic u = f(e) (Fig. 2) satisfying the
conditions

f(0) = 0 and 0 ≤ f(e)

e
≤ k, k < +∞. (15)

It is assumed that the fractional linear part (14) is positive,
i.e.,

A ∈ Mn, b ∈ R
n
+, c ∈ R

1×n
+ , (16)

but not necessarily asymptotically stable.
In many cases, if the linear part is unstable, then by

a suitable choice of the gain k1 we may obtain (Fig. 3) an
asymptotically stable positive linear part with the transfer
function

T1(s
α) =

T (sα)

1 + k1T (sα)
(17)

Fig. 1. Fractional nonlinear feedback system.

Fig. 2. Characteristic of the nonlinear element.

and a nonlinear element with the characteristic f1(e) =
f(e)− k1e satisfying the condition (Fig. 4)

f1(0), k1 ≤ f1(e)

e
≤ k2 = k − k1, (18)

e.g., the characteristic is located between the straight lines
k1e and k2e.

Definition 2. The fractional nonlinear system is
called globally (or absolutely) asymptotically stable if
limt→∞x(t) = 0 for any x(0) ∈ R

n
+.

Definition 3. The circle in the plane (P (ω), Q(ω)) with
center at point (

−k1 + k2
2k1k2

, 0

)

and radius
k2 − k1
2k1k2

will be called the (−1/k1,−1/k2) circle.
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Fig. 3. Nonlinear feedback system with a gain.

Fig. 4. Characteristic of the nonlinear element with the gain k1.

Theorem 3. The fractional nonlinear feedback sys-
tem (Fig. 3) consisting of a positive linear asymptoti-
cally stable part with the transfer function T1(s) and
of a nonlinear element with the characteristic satisfying
the condition (18) is globally asymptotically stable if the
Nyquist plot of T1(jω) = P (ω) + jQ(ω) of the lin-
ear part is located on the right-hand side of the circle
(−1/k1,−1/k2), (e.g., the plot T1(jω) does not cross the
asymptote P (ω) = −1/k2).

Proof. It is based on the application of the Lyapunov
method to the fractional positive nonlinear system
(Kaczorek, 2015b; 2017; Lyapunov, 1963; Leipholz,
1970). As the Lyapunov function we choose the time
function

V (t) = λTEα(A1t
α)b > 0, t ∈ [0,+∞), (19a)

where λT = [ λ1 · · · λn ]T is a strictly positive
vector, i.e., λk > 0, k = 1, . . . , n, A1 is the state matrix
of the linear part with T1(s) and

Eα(A1t
α) =

∞∑
k=0

Ak
1t

ka

Γ(ka+ 1)
(19b)

is the Mittag-Leffler function.
The function V (t) > 0 for t ∈ [0,+∞) since A1 ∈

Mn is asymptotically stable and b ∈ R
n
+.

From (19) we have

dαV (t)

dtα
= λTA1Eα(A1t

α)b < 0 (20)

for t ∈ [0,+∞) since λTA1 < 0 for the Hurwitz matrix
A1 ∈ Mn and

cEα(A1t
α)b ≥ ceA1tb > 0 (21)

for t ∈ [0,+∞), 0 < α < 1.
Therefore, by the Lyapunov theorem the fractional

positive nonlinear system is asymptotically stable if the
conditions (19a) and (20) are satisfied.

Note that

T1(s) = cL[eA1t]b = c[Ins−A1]
−1b, (22)

where L is the Laplace transform operator. From (19) and
(22) we have

ReT1(jω) +
1

k
> 0 (23)

for ω ≥ 0 and k = k2 − k1 > 0. Taking into account that

ReT1(jω) +
1

k2 − k1
= Re

[
T (jω)

1 + k1T (jω)
+

1

k2 − k1

]

=
1

k2 − k1
Re

[
1 + k2T (jω)

1 + k1T (jω)

]

(24)

and that the border of asymptotic stability is the jω axis,
we obtain

jω =
1 + k2[P (ω) + jQ(ω)]

1 + k1[P (ω) + jQ(ω)]
(25a)

or

jω{1 + k1[P (ω) + jQ(ω)]}
= 1 + k2[P (ω) + jQ(ω)] (25b)

From (25b) we have

−ωk1Q(ω) = 1 + k2P (ω), (26a)

ω[1 + k1P (ω)] = k2Q(ω) (26b)

and after elimination of ω we obtain

[1 + k1P (ω)][1 + k2P (ω)] + k1k2Q
2(ω) = 0 (27a)

or

1

k1k2
+

k1 + k2
k1k2

P (ω) + P 2(ω) +Q2(ω) = 0. (27b)

Note that (27b) can be rewritten in the form of the
equation

[
P (ω) +

k1 + k2
2k1k2

]2
+Q2(ω) =

(
k2 − k1
2k1k2

)2

(28)

which describes the circle (−1/k1,−1/k2) (see Fig. 5).
This completes the proof. �
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This theorem can be considered an extension of the
fractional nonlinear systems with positive linear parts of
the Kudrewicz theorem (Kudrewicz, 1964) for nonlinear
systems with standard linear parts.

Example 2. Consider the fractional nonlinear system
with the unstable linear part with

T (sα) =
L(sα)

M(sα)
=

sα + 5.5

s2α + 1.8sα − 0.1
(29)

and the nonlinear element with the characteristic u = f(e)
shown in Fig. 6.

To obtain the nonlinear system with an
asymptotically stable linear part we choose k1 = 0.2 and
obtain

T1(s
α) =

T (sα)

1 + k1T (sα)

=
L(sα)

M(sα) + k1L(sα)

=
sα + 5.5

s2α + 1.8sα − 0.1 + 0.2(sα + 5.5)

=
sα + 5.5

s2α + 2sα + 1
.

(30)

Note that the characteristic of the nonlinear element u =
f(e) (Fig. 6) satisfies the condition

0.2 <
f(e)

e
< 2. (31)

In this case, for (30) we have

T1((jω)
α) =

(jω)α + 5.5

(jω)2α + 2(jω)α + 1

= P (ω) + jQ(ω),

(32)

where P (ω) and Q(ω) are given by (33).
The circle (−5,−0.5) and the Nyquist plots for α =

0.5 and α = 0.8 are shown in Fig. 7. By Theorem 3 the
fractional nonlinear system is globally stable.

4. Concluding remarks

The global stability of nonlinear systems with fractional
unstable positive linear parts has been analyzed. The
characteristics u = f(e) of the nonlinear element
satisfy the assumption (15) and the fractional linear
parts described by the equations (14) are not necessarily
asymptotically stable. The gain k1 of the positive linear
part has been chosen so that the transfer function (17)
is asymptotically stable and the characteristic u = f(e)
satisfies the condition (18).

It has been shown that the fractional nonlinear
systems are globally asymptotically stable if the Nyquist
plots of the linear parts are located on the right-hand

Fig. 5. Nyquist plot with the circle (−1/k1,−1/k2).

Fig. 6. Characteristic of the nonlinear element of Example 2.

Fig. 7. Circle (−5,−0.5) and the Nyquist plots for α = 0.5
and α = 0.8.

side of the circles (−1/k1,−1/k2). This theorem is
an extension of the Kudrewicz theorem (Kaczorek and
Borawski, 2017) for nonlinear systems with standard
linear parts.

The discussion has been illustrated by numerical
examples. It can be extended to the fractional nonlinear
systems with positive descriptor linear parts.
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P (ω) =
5.5 + 2ω2α + 5.5ω2α cos(πα) + ω3α sin(πα) sin

(
π
2α

)
+
(
12ωα + ω3α cos(πα)

)
cos

(
π
2α

)
1 + ω4α + 4ω2α + 2ω2α cos(πα) + 4ω3α sin(πα) sin

(
π
2α

)
+ (4ωα + 4ω3α cos(πα)) cos

(
π
2α

) ,

Q(ω) =
−5.5ω2α sin(πα)− ω3α sin(πα) cos

(
π
2α

)− (
10ωα − ω3α cos(πα)

)
sin

(
π
2α

)
1 + ω4α + 4ω2α + 2ω2α cos(πα) + 4ω3α sin(πα) sin

(
π
2α

)
+ (4ωα + 4ω3α cos(πα)) cos

(
π
2α

) . (33)
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Poland, pp. 564–569, DOI: 10.1109/MMAR.2017.8046890.

Kaczorek T. and Rogowski K. (2015). Fractional Linear Systems
and Electrical Circuits, Springer, Cham.

Kudrewicz J. (1964). Stability of nonlinear systems with
feedback, Avtomatika i Telemechanika 25(8): 821–837, (in
Russian).

Lyapunov A.M. (1963). The General Problem of Motion Stabil-
ity, Gostechizdat, Moscow, (in Russian).

Leipholz H. (1970). Stability Theory, Academic Press, New
York, NY.

Mitkowski W. (2008). Dynamical properties of Metzler systems,
Bulletin of the Polish Academy of Sciences: Technical Sci-
ences 56(4): 309–312.

Ostalczyk P. (2016). Discrete Fractional Calculus, World
Scientific, River Edge, NJ.

Podlubny I. (1999). Fractional Differential Equations,
Academic Press, San Diego, CA.

Ruszewski A. (2019). Stability conditions for fractional
discrete-time state-space systems with delays, 24th Inter-
national Conference on Methods and Models in Automa-
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