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We discuss a quantum circuit construction designed for classification. The circuit is built of regularly placed elementary
quantum gates, which implies the simplicity of the presented solution. The realization of the classification task is possible
after the procedure of supervised learning which constitutes parameter optimization of Pauli gates. The process of learning
can be performed by a physical quantum machine but also by simulation of quantum computation on a classical computer.
The parameters of Pauli gates are selected by calculating changes in the gradient for different sets of these parameters. The
proposed solution was successfully tested in binary classification and estimation of basic non-linear function values, e.g.,
the sine, the cosine, and the tangent. In both the cases, the circuit construction uses one or more identical unitary operations,
and contains only two qubits and three quantum gates. This simplicity is a great advantage because it enables the practical
implementation on quantum machines easily accessible in the nearest future.
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1. Introduction

Machine learning as a field of the computer science is very
popular. The idea of artificial intelligence is exhilarating
since the 1940s when the first model of an artificial neuron
(the so-called McCulloch–Pitts neuron) was presented.
Artificial neural networks and other tools of machine
learning still evolve, and play a more and more important
role in data processing. Today, the whole world is on the
verge of a quantum revolution where data are going to be
encoded as quantum states and processed with the use of
laws of quantum mechanics (Nielsen and Chuang, 2010;
Kołaczek et al., 2019) and machine learning methods
are also developed for quantum computational systems.
Researchers deal with the different kinds of quantum
machine learning (Biamonte et al., 2017; Schuld et al.,
2014; 2015), e.g., quantum neural networks (Narayanan
and Menneer, 2000; Zoufal et al., 2019), quantum kNN

∗Corresponding author

methods (Wiebe et al., 2015), quantum self-organized
maps (Weigang, 1998), or the quantum k-means method
(Veenman and Reinders, 2005).

In this work, we would like to propose a new
solution from the group of quantum machine learning
methods: a classifying quantum circuit (the article is
an extended version of an earlier conference paper by
Wiśniewska and Sawerwain (2020)). The circuit differs
from the existing approaches because input data are in
a form of quantum states (classical observations as input
data were suggested by Pérez-Salinas et al. (2020)), and
only two kinds of quantum gates are used (much more
complicated circuits were proposed by Mitarai et al.
(2018)). These gates realize operations of rotations and
introduce entanglement. The angles of rotations are
calculated with optimization methods (Li et al., 2017).

The article is organized as follows. In Section 2 basic
definitions referring to quantum computing are presented.
They cover a fundamental part of quantum mechanics
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needed to present the content connected with the quantum
approach to machine learning. A broad introduction to
quantum computing can be found in the monograph by
MacMahon (2007).

Section 3 contains information concerning
the conversion of classical data to quantum states,
construction of the circuit, and the learning algorithm. In
Section 4, we present results of numerical experiments
for classification tasks realized as simulation of quantum
computation. Section 5 includes a summary and
conclusions.

2. Brief introduction to quantum
information processing

We utilize standard denotation, e.g., N for natural
numbers. For convenience and clarity, all the symbols
used are gathered in Table 1.

An equivalent of the classical bit in quantum
computing is the so-called qubit. According to the laws
of quantum mechanics, a description of a qubit is a
description of a quantum state. While quantum states may
be expressed as elements of a Hilbert space, i.e., vectors
whose entries are complex numbers C, a single qubit’s
state may be presented as a vector

|ψ〉 =
[
α0

α1

]
, (1)

under the normalization condition |α0|2 + |α1|2 = 1,
where α0, α1 ∈ C, and |ψ〉 denotes a column vector in
the so-called Dirac notation.

A qubit may be broaden to a qudit, i.e., to a general
quantum information unit. Let d stand for the freedom
level of a qudit. The state of a single qudit is a normalized
d-element vector of complex numbers.

In classical computing, the bits are usually denoted
as one or zero. Of course, two arbitrary separate states are
sufficient to realize a calculation with the use of Boolean
algebra. Naturally, the logic invented by George Boole
can be extended to multivalued logic (Augusto, 2017). A
similar approach is utilized in quantum computing, where
we employ the so-called computational basis. A basis
for a d-level qudit contains d orthonormal d-dimensional
vectors. A basis which is the most used in the area of
quantum computational methods is termed the standard
basis. The vectors of this basis are constructed in the
following way: d− 1 elements are zeros and one element
equals one (this element occupies a different position in
each basis vector). For example, if we deal with qutrits
(qudits with d = 3), then

|0〉 =
⎡
⎣ 1

0
0

⎤
⎦ , |1〉 =

⎡
⎣ 0

1
0

⎤
⎦ , |2〉 =

⎡
⎣ 0

0
1

⎤
⎦ . (2)

Table 1. Symbols and notation used in the paper.

Notation Description

N, R, C integer, real, and complex numbers
U the set of unitary operators

〈M〉
the expectation of operator M
on quantum state |ψ〉: 〈M〉 =
〈ψ|M |ψ〉

i, j,m, k, l, r

indexes, i.e., integer values used
to enumerate operators, probes,
attributes; always used locally in
the context of a given notion or
equation

G, Γk

the generalized set of Pauli
operators of dimensionality d
(including traditional X,Y, Z
operators for d = 2), together with
an identity operator, is denoted by
G, and Γk refers the k-th operator
constructed from the SU(d) group
which is more general than the
generalized set of Pauli operators

RΓk

rotation operator, where Γk
represents one of the generalized
Pauli operators

Θk,j , βk,j , ηr,r examples of SU(d) operators
ξld the l-th root of unity of degree d

CNOT the controlled negation gate

Ui
one of unitary operators used to
build the classification circuit

ζ the total number of U operators

θ, θi
all θ parameters and one or set of
parameters for a given operator Ui

Hc, Dc
the height and depth (number of
layers) of the classifying circuit

|ψ〉 quantum state of one qubit or qudit

|ψd〉, |ψc〉
a general description of qubits or
qudits containing: data sample
(also called an observation), class
label

|ψxi

d 〉, |ψxi
c 〉

quantum states which describe a
given data sample xi (|ψxi

d 〉), and
a class label related to sample xi
(|ψxi

c 〉)
X a data set
xi the i-th value of from the data set
L loss function

d
the number of attributes for a given
observation, and also the freedom
level of a qudit

All basis vectors satisfy the normalization condition, and
are orthogonal one to another.

Aparat from the normalized vectors, the principle
of superposition is often utilized to express the quantum
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state. This notion describes the state in relation to the
chosen computational basis. For example, the state of a
d-level qudit in the standard basis is

|ψ〉 = α0|0〉+ α1|1〉+ · · ·+ αd−1|d− 1〉, (3)

where
∑d−1
i=0 |αi|2 = 1, and αi ∈ C. Coefficients αi are

called the probability amplitudes or just the amplitudes.
A single qubit or a qudit are not very useful for

any calculation. Let n be the number of units in the
so-called quantum register. The state of a register may
be expressed as a tensor product of vectors describing
consecutive qudits. Of course, the same rule concerns the
states written as a superposition. The state of two qubits
is

|Ψ〉 = |ψ〉 ⊗ |φ〉
= (α0|0〉+ α1|1〉)⊗ (β0|0〉+ β1|1〉)
= α0β0|00〉+ α0β1|01〉+ α1β0|10〉
+ α1β1|11〉,

(4)

where products αiβj are amplitudes of the state and
satisfy the normalization condition.

Remark 1. (Quantum entangled states) It should be
emphasized that some quantum states cannot be presented
directly as a tensor products of other states. Such states
are called entangled states.

Apart from vectors and superposition, quantum states
may be denoted as density matrices. The discussion in this
work is based on pure states where the density matrix ρ is
calculated as the outer product of state vectors,

ρ = |Ψ〉〈Ψ|, (5)

where 〈Ψ| is the Hermitian adjoint of |Ψ〉 which
represents an arbitrary pure quantum state (also termed
the vector state). The quantum states described by
density matrices are used in the description of the learning
algorithm in Section 3.3.

If we want to perform computation on an input
quantum state, we have to transform it. This operation
may have a unitary or a non-unitary character. The unitary
transformations are reversible. We can denote the action
performed on a quantum state |ψin〉 (in order to obtain
|ψout〉) with the use of a unitary operator U as

U |ψin〉 = |ψout〉, (6)

and the operator is unitary if U † = U−1 (where † stands
for the Hermitian adjoint operation, and −1 signifies the
inversion operation). Operator U may be expressed as a
matrix. If we deal with an n-qudit state, the size of the
matrix is dn × dn (so the vector |ψout〉 may be computed
by the multiplication of matrix U by the vector |ψin〉).

Quantum gates are unitary operators. In this work,
we utilize the negation gate, the gate realizing qubit’s

rotation through π radians around the z-axis, and the
Hadamard gate for qubits, and their generalizations for
qudits.

The state of a single qubit can be visualized on the
three-dimensional (x, y, z) Bloch sphere where the angle
between orthonormal vectors is π. The Pauli operators
realize basic π-radian rotations around the x-axis, y-axis
and z-axis, respectively,

X =

[
0 1
1 0

]
,

Y =

[
0 −�

� 0

]
,

Z =

[
1 0
0 −1

]
.

(7)

Let us denote by Γ = {I,X, Y, Z} the set of Pauli
operators together with the identity operator I (identity
matrix).

The gate X is termed the negation gate. In
a two-qubit system, we can introduce the controlled
negation gate:

CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ . (8)

The qubit gates can be also directly generalized to
their qudit versions. Denote by |l〉 one of d vectors from
the standard basis. The single qudit negation gate X
performs the operation

X |l〉 = |(l + 1) mod d〉. (9)

The rotation gate Z changes the qudit’s phase:

Z|l〉 = exp((2π�l)/d)|l〉 = ξld|k〉, (10)

where ξld = exp((2π�l)/d) are the roots of unity.
The operators X and Z are elements of the so-called
generalized Pauli group where they are denoted as Gj,l

(an additional index j = 0, . . . , d− 1):

Gj,l = ZjX l = ξjld X
lZj, (11)

where Xd = Zd = I , and Id×d represents the identity
operator. However, it should be mentioned that the
generalized operators from the Pauli group can be fully
reconstructed with the SU(d) operators which are given
in the following paragraph.

The construction of the classifying circuit, presented
in this work, needs gates realizing rotations by any angle
ϑ ∈ R. Therefore, we can introduce a set of gatesRΓk

(ϑ)
which realizes rotations by angle ϑ on the planes pointed
out by an appropriate set of operators from the SU(d)
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group, and this allows us to replace the generalized Pauli
groupG with the SU(d) operators.

The procedure of constructing SU(d) operators is
universally defined for qudits, so it generates gates for
pointed freedom level d. We begin with defining the set of
projectors P k,j for each k and j such that 1 ≤ k < j ≤ d,
and υ, μ fulfill the relation 1 ≤ υ, μ ≤ d:

P k,j = |k〉〈j| = [pυ,μ]d×d, pυ,μ = δυ,jδμ,k, (12)

where P k,j means that a value of one is in the k-th row
and the j-th column, pυ,μ are entries ofP k,j . The symbols
δυ,j δμ,k are the Kronecker deltas, and the result of their
product is placed in the k-th row and j-th column of
matrix P . The set of d(d − 1) generators, derived from
the group SU(d), is

Θk,j = P k,j + P j,k, βk,j = −i(P k,j − P j,k) (13)

for each pair of indexes k and j, where Θk,j are
counterparts of the Pauli X operator, and βk,j are
equivalents of the Pauli Y operator. Finally, the last set
of d− 1 generators is

ηr,r =

√
2

r(r + 1)

[( r∑
j=1

P j,j
)
− rP r+1,r+1

]
, (14)

where 1 ≤ r ≤ (d − 1), and ηr,r correspond to the Pauli
Z operator.

Other details about the construction of SU(d)
operators are given by Bertlmann and Krammer (2008).

The qudit-rotating gates RΓk
(ϑ) can be defined with

the use of operators Θk,j , βk,j , and ηr,r as consecutive
Γk (where k = 1, . . . , d2 − 1). Particular rotations can be
realized as the operator

RΓk
(ϑ) = exp

(
�Γkϑ

d

)
, (15)

where ϑ ∈ R. These rotation gates are also unitary, which
is easy to verify throughRΓk

(ϑ)R†
Γk
(ϑ) = I .

To induce an entanglement in a two-qubit system, we
need only one Hadamard gate and one CNOT gate. The
CNOT for qudits may be defined as

CX|x〉|y〉 = |x〉|(−x − y) mod d〉. (16)

Let us now briefly discuss non-unitary operations.
In this work, we utilize a non-reversible operation which
is quantum measurement. In detail, this transformation
is the von Neumann projective measurement. Projective
measurements always refer to a given computational basis
because these operations tend to project a whole quantum
state or just some specified qudits to one of basis vectors.

Let us mark the initial one-qudit state as
|ψin〉, and a basis as a orthonormal set of vectors

{|u0〉, |u1〉, . . . , |ud−1〉}. Performing the von Neumann
measurement, which is used in the discussed classification
circuit, requires the definition of the observable

M =

d−1∑
i=0

λiPi, (17)

where λi are the eigenvalues associated with projectors
Pi, and consecutive Pi = |ui〉〈ui|. The values λi are
the measurement results. The probability of receiving
particular λi is p(λi) = 〈ψin|Pi|ψin〉. The state of the
qudit after the measurement is described by

|ψout〉 = Pi|ψin〉√〈ψin|Pi|ψin〉
=

Pi|ψin〉√
p(λi)

. (18)

Because the character of quantum computations is
probabilistic, each experiment must be performed many
times, and finished with a measurement. The final result of
computation is obtained as a probability distribution from
all received outcomes. We use the expected value 〈M〉
which describes an average value of measurement results
performed by observableM on state |ψ〉:

〈M〉 = 〈ψ|M |ψ〉. (19)

Additionally, to evaluate if the classification was
carried out correctly, we need a measure which estimates
the similarity of two quantum states. In this work, we refer
to the fidelity measure (MacMahon, 2007). The fidelity
measure for pure quantum states is calculates as

F (ρ, δ) = Tr
(√√

ρδ
√
ρ
)
= |〈φ|ψ〉|, (20)

where ρ and δ are density matrices: ρ = |ψ〉〈ψ|, δ =
|φ〉〈φ|, and 0 ≤ F (ρ, δ) ≤ 1. The higher fidelity, the
more similar states |ψ〉 and |φ〉.

3. Quantum computations for data
classification

In this section, we propose a classifying quantum circuit
based on a supervised learning approach. The aim of this
section is to present introductory information concerning
a unitary operation responsible for classification. Next,
some details about the probability distribution and the loss
function are given. The preparation of classical data to be
suitable for a quantum circuit is described in Section 3.1.

We assume that there is a function f which classifies
N elements of a data set X = {xi}. A set R = {ri},
where ri = f(xi), contains information specifying which
classes particular samples/observations xi belong to.

The above-mentioned quantum circuit may be
understood as a unitary operator which transforms a
vector quantum state during the classification. This
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operation and its equivalent notation (with the use of a
density matrix) may be presented as

|ψc〉 = U(θ)|ψd〉, ρc = U(θ)ρdU
†(θ), (21)

where ρc = |ψc〉〈ψc| and ρd = |ψd〉〈ψd|.
The state |ψd〉 (or ρd) serves to encode the sample

of classical information xi. Marking |ψxi

d 〉 describes the
correct quantum state which refers to the observation xi
(the procedure of converting classical data to quantum
states is presented in Section 3.1). Here |ψc〉 includes the
information regarding the class, and especially the state
|ψxi
c 〉 contains a label for the observation xi. The unitary

operation U , depending on the parameter set θ, acts as a
classification function f .

Remark 2. (Probability distribution of the final state mea-
surement) It should be emphasized that after the operation
U a measurement of the resulting quantum state must
be performed. Estimation of the probability distribution
for |ψc〉 requires many repetitions of the whole process.
Precisely, to reach accuracy ε, an experiment has to be
performedO(N/ε2) times.

If the classifying circuit generates a state |ψc〉, which
assigns an observation to a class correctly, then it is
possible to introduce the distance between the value f(xi)
and the expectation for the sample xi:

dist =
∣∣∣
∣∣∣f(xi)− Λ

(
〈M〉xi

ψc

)∣∣∣
∣∣∣ , (22)

where 〈M〉xi

ψc
is the expected value connected to the

measurement of the final state |ψc〉, xi being an
observation from the data setX . HereΛ may be used as an
element of additional classical processing (see Remark 3).

Small values of dist specify correct classification.
For a given set of observations, we seek a form of U(θ)
minimizing the value of the loss function

L =
∑
i

∣∣∣
∣∣∣f(xi)− Λ

(
〈M〉xi

ψc

)∣∣∣
∣∣∣2, (23)

where parameters θ are decision variables in the
optimization problem, and Λ again is an additional
function which can be used to connect the obtained
expected value with the class label of the sample xi.

Remark 3. (Role of the Λ function) It should be
emphasized that the values of f(xi) and 〈M〉xi

ψc
are real

numbers. The role of the function Λ is supplementary
conversion of expectation to a real number representing
a class label of a sample xi, i.e., it can rescale the
expectation to another range compatible with the values
of the f(·) function. However, in our case, we do not use
the function Λ in our experiments, because the probability
values after the measurement of state 〈M〉xi

ψc
are sufficient

to make a correct classification (otherwise, the use of a
function Λ should be considered).

3.1. Converting classical data to quantum states.
Quantum computation needs specific data preparation.
The observations have to be correct quantum states. In
Section 4, we present the results of classification but,
beforehand, it is meaningful to show the methods of
classical data conversion to quantum states for examples
described in Section 4.

The first step in the conversion is a procedure of
data normalization (Li and Li, 2015), used in classical
machine learning and data mining. Assume that a learning
set X containsN observations with d attributes/variables.
The normalization needs calculating the range of accepted
values for each i-th attribute (i = 0, . . . , (d − 1)),
so extreme values have to be determined, maxiX and
miniX . If xi,m stands for the i-th attribute in the m-th
observation (m = 1, . . . , N ), the normalized value is

x̄i,m =
xi,m −miniX

maxiX −miniX
. (24)

Remark 4. After normalization, we have x̄i,m ∈
[0, 1]. In classical machine learning and data mining, this
solution avoids exaggerated influence of some variables
(e.g., with different magnitude values than other variables)
on the model. The normalization is also helpful during the
process of converting classical data to quantum states.

At this point, each attribute value within one
observation is less than one, but the sum of their squared
moduli, probably, does not equal one. Now, we have to
carry out the second part of the conversion to meet the
quantum normalization condition.

We would like to encode one d-attribute observation
as a state of one d-level qudit. This qudit’s i-th amplitude
value is calculated as

αmi =

√
x̄i,m∑d−1
l=0 x̄l,m

, (25)

where m is the number of the observation. We process
all attributes this way, in each observation, and obtain
an N -element set of quantum states needed for the
experiments with the classifying quantum circuit.

After normalization, we obtain quantum states which
can be transformed by a quantum circuit. However, these
data may be utilized, e.g., as a basis for the construction
of a two-label quantum state:

|ψ〉 = sin(a0 + b0α
m
0 )|0〉+ cos(a1 + b1α

m
1 )|1〉, (26)

where a0 and b0 represent the additional constants
encoding data for the class label zero, and respectively,
a1, b1 for the class label one. These parameters help us to
improve the quality of classification. In the case of qudits



738 J. Wiśniewska et al.

(where dimensions are denoted by d), the quantum state
can be expressed with the use of RΓk

(ϑ) rotation gates:

|ψ〉 =
d−1∏
i=0

RΓk
(ai + biα

m
i )|i〉, (27)

where the Γk’s describe the gates based on the operator
Θk,j , and constants ai, bi play the same role as in the
previous case for qubits.

Remark 5. (Value selection for ai and bi) It should be
emphasized that constants ai and bi are directly set during
learning. In the presented examples, we assume that ai =
0 and bi = 1. Selection of these values in the process
of data preparation introduces preliminary demarcation of
samples.

3.2. Construction of the classifying circuit. Figure 1
depicts a scheme of the classifying circuit. The circuit
contains rotation gates RY (θi) and gates E introducing
an entanglement (we use CNOT gates). The angles θi are
calculated for each rotation gate with the learning methods
described in Section 3.3. It is crucial that the rotations are
performed before the entanglement. Let us mark a set of
rotation gates and one succeeding entanglement gate as a
unitary operation Ui which acts on two qubits (in general
qudits) i0 and i1:

Ui = R
(i0)
Y (θi)R

(i1)
Y (θi+1)CNOT(i0,i1), (28)

where i represents the number of unitary operations U
in the quantum circuit. Notation R(i0)

Y and R(i1)
Y means

that application of the RY operation to the i0-th and i1-th
qubits (it is not necessary for the corresponding qubits to
be adjacent). The whole classifying circuit is built of the
sets ofUi operations, and allUi operations will be denoted
as UΩ.

Additionally, if we want to focus on some subset of
gates, e.g., numbers from 1 to m, it will be expressed as

U1:m =

m∏
k=1

Uk(θk). (29)

Let us denote by L ∈ N the number of qubits in the
circuit. The value of L will be also termed as the height
of a circuit, and L = L + 1 where one qubit state (this
with letter d or c in superscript) is crucial and other L
states play the role of auxiliary states. The initial crucial
state is |ψd〉. It corresponds to |ψxi

d 〉, i.e., it contains a
single observation which is subject to classification. The
final crucial state is denoted as |ψc〉, and relates to |ψxi

c 〉
because it represents the class which were pointed out by
the circuit for a given observation. On the other hand, the
number of operations inUΩ, denoted by ζ, also determines
the depth of a circuit. According to Fig. 1, the depth of the
circuit is marked as D.

Remark 6. The classifying circuit, presented in this
article, utilizes rotation gates RY for data encoded in
qubit states. In one of the experiments (three dimensional
blobs), we use qutrits, and then gates RΓk

are used where
Γk points the βk,j operators, defined by (13). The CNOT
gates, introducing entanglement, are replaced by CX gates
described by (16).

It should be emphasized that we do not restrict
the number of qubits to one in |ψd〉 and |ψc〉. The
presented approach remains correct if, e.g., |ψd〉 is a
three-qubit state and |ψc〉 is a two-qubit state. However,
the laws of quantum mechanics, like non-cloning (Park,
1970; Wootters and Zurek, 1982; Ortigoso, 2018) and
no-deleting (Pati and Braunstein, 2000) theorems impose
the same number of qubits on the circuit’s input and
output, unlike, for example, in classical neural networks.

The circuit is able to perform the classification task
after the process of learning, which is given in Section 3.3.
During training, an observation is written in |ψd〉. Next,
the values of parameters θ are estimated. Finally, the state
|ψc〉 is obtained as a transformation of |ψd〉 by the circuit.
The state |ψc〉 should contain a class label for the analyzed
observation. Naturally, the process of learning has to be
repeated many times to estimate correctly the values θ,
and to obtain the probability distribution for |ψc〉.
Remark 7. (Qudits advantage) Utilizing qudits
simplifies the construction of the classifying circuit for
multidimensional data. Qudits may be directly applied to
represent data, according to the conversion presented in
Section 3.1. Of course, also two qubits may be adopted
to present four-dimensional data, but using ququads (i.e.,
qudits with d = 4) allows us to build the circuit with
the same logical structure for qubits as for qudits (we
simply replace CNOT and RY gates with their qudit
counterparts).

After learning, the usage of the circuit is very
similar. An observation is encoded in |ψd〉 and the initial
quantum state is transformed by the circuit, but in this
case parameters θ are not changed. At the end, the
probability distribution for the final state is prepared to
receive information concerning the class label for the
analyzed observation.

Remark 8. (Structure property of the quantum circuit for
classification) Utilizing rotation and entanglement gates,
and their regular arrangement, as adjacent operations,
simplifies the implementation of the circuit for the
physical solutions like IBM (IBM, 2019), Rigetti (Rigetti,
2019), or Google (Gibney, 2019), where the circuit’s
topology requires direct connections between some
qubits, and some operations have to be adjacent.

3.3. Learning algorithm. The computational steps
required in a process of quantum classifier learning are
described by Algorithm 1.
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|ψd〉

|ψc〉

|0〉

|ψ3〉

|ψ4〉

|ψ1〉

|ψ2〉

|0〉

|0〉

|0〉

Circuit with particular gates (B)

|0〉

|ψL〉

RY (θi)

RY (θi) E RY (θi)

RY (θi)

RY (θi) E RY (θi) E RY (θi)

RY (θi)
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Fig. 1. General structure of the quantum circuit for data classification. The quantum circuit (a) depicts how the operation Ui is
performed on particular qubits/qudits. The circuit (b) presents types of gates utilized in the classifying circuit. The controlled
gates E introduce the entanglement, and here the CNOT gates are used. Gates RY (θi), with optimized parameters θ, are
responsible for rotations around the y-axis (for qubits, but for qudits rotation planes are pointed out by the operators RΓk(ϑi)).
The qubit/qudit |ψd〉 represents the input data, and the qubit/qudit |ψc〉 is the final state pointing out a class of the analyzed
sample. The additional qubits/qudits |ψl〉 (where 1 ≤ j ≤ L, and L ∈ N) play the ancillary role and are not significant for
data classification. The circuits (c), (d) and (e) are examples of circuits which may be constructed as special cases of schemes
(a) and (b). The circuit (e) was used in the numerical experiments in this work (the parameters θi for RY gates are omitted to
increase readability).

Remark 9. After learning, validation is recommended.
The new form of the operator U(θ) should be verified on
a test data set to assess if the selection of parameters θ is
effective, i.e., the value of L was diminished.

The most important step in the procedure of learning
is calculating the angles θi for each rotation gate, in the
context of input data. The classifying circuit realizes a
sequence of unitary operations Ui, and the expectation
for the observable M , utilized in the last measurement,
depends on the parameters θi:

〈M(θ)〉 = Tr
(
MUiρdUi

†
)

for all i. (30)

The operations Ui consist of gates R and CNOT, so

the gradient may be calculated as

∂〈M〉
∂θi

= − �

2
Tr

(
MUi:ζ

[
Γ
(i)
k , U1:i−1ρdU

†
1:i−1

]
Ui:ζ

†
)
, (31)

where Γ
(i)
k denotes that one of the generalized Pauli

operators is applied to the i-th qubit/qudit. The
above relation contains a commutator which cannot be
calculated directly. The operations Ui appear on both the
sides of the equation, and values θi are also unknown.
However, the rotation angles θ may be computed with the
use of arbitrary ρ (Li et al., 2017), the density matrix of
the quantum state,
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Algorithm 1. Learning algorithm.

(I) Converting classical data {xi} to the form of
quantum states (see Sec. 3.1).

(II) Performing transformation U with parameters θ on
|ψd〉 to obtain a state |ψc〉.

(III) Realizing the measurement procedure and checking
the class label of the sample (during the learning
process expectations M are calculated for each
desirable measurement of significant qubit/qubits in
the state |ψc〉, i.e., f(xi) ≡ 〈MU(θ)|ψxi

d 〉〉xi

ψc
.

(IV) Minimizing the loss function L by adjusting
parameters θ.

[Γ
(l)
k , ρ] = �

[
R

(l)
Γk

(π
2

)
ρR

(l)
Γk

(π
2

)†

−R(l)
Γk

(
−π
2

)
ρR

(l)
Γk

(
−π
2

)†]
,

(32)

and operatorsR(l)
Γk

realize the ±π/2 angle rotation around
the X , Y or Z axis with the use of one Pauli operator
Γk on a qubit l (and similarly, in a general case, for
qudits where suitable SU(d) operators should be used,
however, the correct phase changing needs not only
introducing minus or �; for qudits this process requires
d-degree roots of unity). Utilizing this commutator
allows calculating the gradient for angles θ, taking into
consideration expectationM :

∂〈M〉
∂θi

=
1

2
Tr

(
MUi+1:ζUi

(π
2

)
ρiUi

(π
2

)†
U †
i+1:ζ

)

− 1

2
Tr

(
MUi+1:ζUi

(
−π
2

)
ρiUi

(
−π
2

)†
U †
i+1:ζ

)
,

(33)

where ρi = U1:iρdU1:i
†, and Ui with parameters θi

take previous or initial θi values. Therefore, choosing
appropriate versions of rotation gates from the set γ allows
calculating precise values of θi for the expectation 〈M〉±i ,
which is also the observable of the |ψc〉 state:

∂〈M〉
∂θi

=
〈M〉+i − 〈M〉−i

2
. (34)

The utilized method is directly derived from the works of
Li et al. (2017) and Mitarai et al. (2018).

4. Numerical experiments

4.1. Data classification. The correctness of
classification, described in this article, is presented with
the use of Moons, Circles and Blobs data sets (Pedregosa
et al., 2011), which contain pairs observation–class label.
In this work, data from the first two sets were encoded in
qubit states. The Blobs set gives as a prospect to generate
two and three dimensional observations. We perform two
separable experiments for this set. In the first one data
samples have two attributes and are encoded as qubits.
In the second experiment we utilize samples with three
attributes which are encoded as qutrits, i.e., qudits with
d = 3.

In each experiment, 768 samples were used, where
512 played the role of a learning set, and the other 256
were included in the test (validation) set. The classifying
circuit utilized two qubits or qutrits, and contained four
layers of gates. The general scheme of the circuit is
presented in Fig. 1(e).

Figure 2 shows the data sets for binary classification.
These sets were subjected to experiments with circuits of
Figs. 1(c) and (d) (see Fig. 1). Figures 2(a)–(g) present
data after the normalization process, while Figs. 2(d)–(f)
depict the same data but as the probability amplitudes of
quantum states before the process of learning. Finally,
Figs. 2(g)–(i) show results of the classification (after the
learning process).

It can be seen that after learning the circuit was
able to separate quantum states into two different classes.
In the presented cases, the gaps between classes differs.
The sizes of the gap are described by parameters ar and
br, given in (26) and (27), and are obtained during the
learning process.

It must be emphasized that Figs. 2(d)–(f) display the
representation of quantum states from the learning set
before the learning process. These states are the input
of the circuit and represent data after the normalization,
and encoding as the state given in (26), with ai = 0
and bi = 1. After learning, the quantum state may be
calculated using the partial trace, to inspect the changes
before the final measurement. In each case, the states are
separated into two classes. Additionally, we can see that
the states for the Blobs set are properly separated even
before the classification process—this is why only one Ui
operation is sufficient to realize the classification task.

Table 2 shows the values of fidelity for the test sets.
As we can see, the obtained intervals clearly define if the
sample belongs to the set labeled as zero or to the set
labeled as one. The samples with the fidelity measure
greater than 0.75 are labeled as zero. The samples
included in the first class reach maximally the value of
fidelity 0.64. This difference in fidelity can be directly
depicted with the previously presented examples from
Fig. 2.
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Fig. 2. Classification of two-dimensional data from the sets Moons, Circle and Blobs. Panels (a)–(c) represent original classical data,
(d)–(f) depict data after the normalization, and (g)–(i) show the probability amplitudes of |ψc〉 after learning, but before a
measurement operation on this state.

Table 2. Results of the classification for the sets Moons, Circles,
Blobs (for qubits and qutrits) as the intervals of ob-
tained Fidelity measure values. The symbol F0 refers
to the class labeled as zero, and F1 to that labeled as
one.

Set F0 F1

Moons (0.80, 0.95) (0.11, 0.60)
Circles (0.75, 0.91) (0.03, 0.46)
Blobs (0.83, 0.92) (0.16, 0.64)

Blobs qutrits (0.80, 0.93) (0.15, 0.59)

Figure 3 shows the data classification for the Blobs
set with three attributes. In this case, we use qutrits instead
of qubits, but the general structure of the circuit remains
the same. The gates RY and CNOT are replaced by
their qutrit equivalents. There is no need to perform any
other additional operations connected with data encoding,

except the steps presented in Section 3.1. If we would
like to utilize qubits for this set, then the data should be
extra pre-processed or the initial state |ψd〉 should be a
two-qubit state.

4.2. Function approximation. The presented
classification circuits can be also used as universal
approximators. It means that they are able to estimate
values of non-linear functions like the sine, the cosine,
the hyperbolic tangent or, e.g., exp(−x2).

The approximation of non-linear functions can be
realized by the same circuit which was used for the
classification for sets Moons, Circles and Blobs. In the
learning set, we can place input-output pairs (x0, x1)
where x0 contains the values of function domain (x0 =
〈−1, 1〉), and x1 is the value of the analyzed function.
Now, the initial and final states are

|ψd〉 = sin(x0)|0〉+ cos(x0)|1〉,
|ψc〉 = sin(x1)|0〉+ cos(x1)|1〉.
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Fig. 3. Binary classification for the three-attribute data from the Blobs set. Panels (a)–(c) show the data after the normalization process
as projections on planes XY , XZ and Y Z. Panels (d) presents the final states |ψc〉 of the qutrit, where particular amplitudes
are used as coordinates in a 3D space: two classes of objects are noticeable.

In the learning process, we do not change the
loss function but a criterion for the evaluation of the
approximation quality must be added. The quality of
approximation for the function f can be expressed as f̂
for the sample xi:

f̂(xi) = 〈ψxi

d |V |ψxi

d 〉, (35)

where V is a diagonal operator, subjected to optimization
for the data samples from the set X . The quality rate, in
this case, is

Q =

n∑
i=1

(
f(x(i))− f̂(x(i))

)2

, (36)

which is the mean-square error calculated as the
aggregated squared difference between the value of
non-linear function f and the value f̂ approximated by
the quantum circuit.

5. Conclusions

In this article, we have demonstrated that the results of the
previous work of Mitarai et al. (2018), can be applied in a
form of much simpler quantum circuits which are able to
solve a classification task. Additionally, the construction
of the corresponding circuits is regular, simple, and easy

to scale for tasks with more variables. Another advantage
is that the circuits presented in this paper are also universal
approximators of non-linear functions.

The approach presented in this work is characterized
by the methods of parameters selection, and data read-in,
i.e., properly converted data are an input signal for
the circuit, and the parameters selection is based on
adjusting angles θ of rotating gates. Therefore, the data
is transformed by the circuit as the input states, and the
circuit parameters θ after the learning process remain
constant for the given data set, which makes the circuit
reusable (without any changes in parameters θ).

The proposed method of selecting parameter values
θ is based on a gradient change in rotation angles. It
is able to adjust the circuit parameters so efficiently
for binary classification that the task is solved without
any errors (after the learning process, the tests were
performed with another set of samples, so the model’s
overfitting is excluded). Naturally, some data sets contain
samples with coordinates pointing out their location close
to samples from another class, and in these cases the
classification process is harder to realize. It should be
emphasized that the process of learning may be simulated
on a classical computer but also can be performed on a
quantum machine. The simplicity of the proposed circuit
makes this solution suitable for quantum hardware in the
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Fig. 4. Classifying circuit as an approximator of non-linear functions. In all cases, a good quality (the value of parameter Q) of
approximation was reached. The initial line represents the initial values, and approximated values are depicted by the dashed
line. The number of analyzed samples is 20.

nearest future.
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