
Int. J. Appl. Math. Comput. Sci., 2020, Vol. 30, No. 4, 745–759
DOI: 10.34768/amcs-2020-0055

IMPROVING CHARACTERISTICS OF LUT–BASED MEALY FSMS

ALEXANDER BARKALOV a, LARYSA TITARENKO a , KAMIL MIELCAREK a,*

aInstitute of Metrology, Electronics and Computer Science
University of Zielona Góra

ul. Szafrana 2, 65-516 Zielona Góra, Poland
e-mail: {A.Barkalov,L.Titarenko,K.Mielcarek}@imei.uz.zgora.pl

Practically, any digital system includes sequential blocks represented using a model of finite state machine (FSM). It is very
important to improve such FSM characteristics as the number of logic elements used, operating frequency and consumed
energy. The paper proposes a novel technology-dependent design method targeting a decrease in the number of look-up
table (LUT) elements and their levels in logic circuits of FPGA-based Mealy FSMs. It produces FSM circuits having three
levels of logic blocks. Also, it produces circuits with regular systems of interconnections between the levels of logic. The
method is based on dividing the set of internal states into two subsets. Each subset corresponds to a unique part of an
FSM circuit. Only a single LUT is required for implementing each function generated by the first part of the circuit. The
second part is represented by a multi-level circuit. The proposed method belongs to the group of two-fold state assignment
methods. Each internal state is encoded as an element of the set of states and as an element of some of its subsets. A
binary state assignment is used for states corresponding to the first part of the FSM circuit. The one-hot assignment is
used for states corresponding to the second part. An example of FSM synthesis with the proposed method is shown. The
experiments with standard benchmarks are conducted to analyze the efficiency of the proposed method. The results of
experiments show that the proposed approach leads to diminishing the number of LUTs in the circuits of rather complex
Mealy FSMs having more than 15 internal states. The positive property of this method is a reduction in energy consumption
(without any overhead cost) and an increase in operating frequency compared with other investigated methods.

Keywords: FPGA, LUT, Mealy FSM, structural decomposition, two-fold state assignment, energy consumption.

1. Introduction

Various sequential blocks are widely used in modern
digital systems (Gajski et al., 2009; Micheli, 1994). Very
often, sequential blocks are represented using models of
finite state machines (FSMs) (Baranov, 2008; Micheli,
1994). For example, FSMs are used for implementing:
(i) hardware-software interfaces of embedded systems
(Gajski et al., 2009), (ii) complex functions such as
hyper-tangent and exponentiation functions (Brown and
Card, 2001; Li et al., 2014), (iii) activation functions
in deep neural networks (Li et al., 2017; Xie et al.,
2017), (iv) some blocks for integral stochastic computing
(Ardakani et al., 2017), (v) different stages of cascaded
digital processing systems (Rafla and Gauba, 2010;
Glaser et al., 2011; Das and Priya, 2018). Also, they
are used for the synthesis of control units of digital
systems (Czerwiński and Kania, 2013; Sklyarov et al.,

*Corresponding author

2014; Baranov, 1994; Kubica et al., 2019; Opara et al.,
2019; Kubica and Kania, 2017; Opara and Kania, 2010;
Nowicka et al., 1999; Barkalov and Barkalov Jr., 2005).
An analysis of the literature (Sutter et al., 2002; Cong and
Yan, 2000; Sklyarov, 2000; Garcia-Vargas et al., 2007;
Tiwari and Tomko, 2004) shows that Mealy FSMs are
used very often in logic design. Based on this analysis,
we choose this model in our current research.

Nowadays, the field programmable gate arrays
(FPGAs) are widely used for implementing FSM logic
circuits (Maxfield, 2004; Grout, 2008). The majority
of FPGAs are based on look-up table (LUT) elements
connected with programmable flip-flops (Altera, 2020;
Xilinx, 2015).

To compare outcomes of different FSM-based design
methods, basically, three metrics are used. These are
(i) the chip area occupied by an FSM circuit, (ii) the
performance and (iii) the consumed energy (Barkalov et
al., 2020b; Czerwiński and Kania, 2013). In the case

mailto:{A.Barkalov, L.Titarenko, K.Mielcarek}@imei.uz.zgora.pl

746 A. Barkalov et al.

of LUT-based FSMs, the chip area is proportional to the
number of LUTs in the circuit. We use the number of
LUTs to compare different solutions.

As a rule, the number of inputs SL of a LUT is
rather small (SL ≤ 6) (Altera, 2020; Xilinx, 2015). It
leads to the necessity of functional decomposition for
Boolean functions representing the FSM logic circuit
(Scholl, 2001; Kam et al., 2010; Nowicka et al., 1999).
It results in an increase of the number in layers of LUTs
in the circuit and in complication for interconnections.
In turn, it results in increasing the propagation time and
power consumption (Sutter et al., 2002; Wu et al., 2000).

The functional decomposition (Rawski et al., 2005;
Michalski and Kokosiński, 2016) leads to multi-level
FSM circuits with irregular connections, when the same
variables appear at different levels of a circuit. This
complicates the process of routing and may lead to an
increase in the overall length of interconnections. In fact,
this leads to an increase in power consumption (Sklyarov
et al., 2014). To make the interconnections more regular,
it is possible to use methods of structural decomposition
(Barkalov et al., 2020b).

In this article, we propose a design method for
hardware reduction in FPGA-based Mealy FSMs. The
method is based on the joint use of two-fold state
assignment (Barkalov et al., 2020b) and one-hot state
assignment (Kubatova and Becvar, 2002; Kołopieńczyk
et al., 2017). The main contribution of the article is
a novel approach extending the scope of Mealy FSM
synthesis methods based on two-fold state assignment
(Barkalov et al., 2018; 2020b). Our experiments with
standard benchmarks (LGSynth93, 1993) show that this
approach allows improving all three main characteristics
of LUT-based Mealy FSMs compared with FSM circuits
obtained using other known design methods.

2. Background of Mealy FSMs

A Mealy FSM is defined as the sextuple S =
(X,Y,A, δ, λ, a1) (Baranov, 2008; Micheli, 1994), where
X = {x1, . . . , xL} is a finite set of inputs, Y =
{y1, . . . , yN} is a finite set of outputs, A = {a1, . . . , aM}
is a finite set of states, δ : A × X → A is the transition
function, λ : A ×X → Y is the output function, a1 ∈ A
is the “reset” state.

A Mealy FSM can be represented using different
approaches. They include state transition graphs, state
transition tables (Baranov, 1994; Micheli, 1994), binary
decision diagrams (Opara et al., 2019; Kubica and
Kania, 2017), and-inversion graphs (Testa et al., 2019;
Mishchenko and Brayton, 2006; 2007) used in ABC
systems (Brayton and Mishchenko, 2010). To explain our
approach, we choose state transition tables (STT). This
form of representation is the closest to the KISS2 format
(Barkalov et al., 2015) used in our investigations.

An STT includes the following columns (Baranov,
1994): am is the current state; as is the state of transition
(a next state); Xh is a conjunction of inputs (or their
compliments) determining a transition from am to as; h
is a transition number (h ∈ {1, . . . , H}). For example,
the STT (Table 1) represents some Mealy FSM S1.

Using Table 1, the following parameters of S1 can
be found: the number of inputs L = 10, the number
of outputs N = 11, the number of states M = 10, the
number of transitions H = 23.

When the set of states is constructed, the step of state
assignment should be executed (Micheli, 1994). During
this step, each state am ∈ A is represented by its code
K(am) having R bits. The variables Tr ∈ T are used
for state assignment, where T is a set of state variables.
The method of one-hot state assignment is very popular in
the FPGA-based design of FSMs (Kubatova and Becvar,
2002). But very often, a binary state assignment is more
preferable, in which

R = �log2 M�. (1)

A special register (RG) is used to keep the
state codes. It includes R flip-flops with mutual
synchronization pulse Clock and mutual clearing pulse
Start. As a rule, D flip-flops are used for implementing
RGs (Baranov, 2008; Czerwiński and Kania, 2013). To
change the content of the RG, input memory functions
Dr ∈ Φ are used, where Φ = {D1, . . . , DR}.

Table 1. Structure table of the Mealy FSM corresponding to
GSA Γ1.

am as Xh Yh h

a1 a2 1 y1y2 1

a2

a3 x1x2 y1 2
a3 x1x̄2 y2y3 3
a3 x̄1x3 y3y4 4
a3 x̄1x̄3 y5 5

a3

a4 x3 y6y7 6
a4 x̄3x4 y3y5 7
a3 x̄3x̄4 y5 8

a4 a5 1 y2y3 9

a5
a6 x7 y3y6 10
a3 x̄7 y5 11

a6
a7 x5 y1y7 12
a7 x̄5 y8 13

a7
a8 x6 y7y8 14
a7 x̄6 y8 15

a8 a9 1 y7 16
a9 a10 1 y1 17

a10

a3 x3x7x8x9x10 y3y4 18
a1 x2x7x8x9x̄10 y7y9 19
a5 x3x7x8x̄9 y10y11 20
a8 x3x7x̄8 y2y3 21
a9 x3x̄7 y11 22
a1 x̄3 – 23

Improving characteristics of LUT-based Mealy FSMs 747

LUTerΦ
Clock
Start LUTerY

T

X

Y

Fig. 1. Structural diagram of Mealy FSM U1.

To design a logic circuit of a Mealy FSM, a structure
table (ST) should be constructed (Baranov, 1994). It is
an expansion of an STT by the columns with codes of
current and next states (K(am) and K(as), respectively).
Also, an ST includes a column Φh with symbols Dr ∈ Φ
corresponding to 1’s in the code K(as) from the h-th row
of ST (h ∈ {1, . . . , H}).

This table forms a basis for deriving functions

Φ = Φ(T,X), (2)

Y = Y (T,X). (3)

The functions (2) and (3) are used for implementing the
FSM logic circuit.

3. State-of-the-art

The trivial structural diagram of Mealy FSM U1 is shown
in Fig. 1. Here the symbol LUTer determines a circuit
implemented with LUTs.

In FSM U1, the LUTerΦ implements the system (2),
and the LUTerY the system (3). If a function Dr is
generated as the output of some LUT, then this output is
connected with a flip-flop. These flip-flops form a state
register RG distributed among the logic elements. This
explains the presence of pulses Clock and Start as inputs
of LUTerΦ.

The process of FSM design has always been
associated with the necessity of solving optimization
problems (Micheli, 1994). As a rule, when designing
FPGA-based FSMs, four basic optimization problems
arise (Barkalov et al., 2015; Khatri and Gulati, 2011).
They are (i) a decrease in the chip area occupied by
an FSM circuit (hardware reduction), (ii) the reduction
in the signal propagation time (an increase in the clock
frequency); (iii) reduction in power consumption, and (iv)
an improvement of testability. In this article, we consider
the first of these problems.

The main disadvantage of U1 is the following: each
function Dr ∈ Φ and yn ∈ Y could depend on up to L +
R arguments. The analysis of the library of LGSynth93
(LGSynth93, 1993) shows that for some benchmark FSMs
we have L+R ≥ 20. At the same time, for modern LUTs

SL ≤ 6 (Altera, 2020; Xilinx, 2015). Thus, the following
condition very often takes place:

L+R � SL. (4)

If (4) is satisfied for some FSM, then the problem of
hardware reduction arises.

There are four main approaches to solving this
problem, namely:

(a) optimal state assignment (Baranov, 2008; Micheli,
1994; Kam et al., 2010),

(b) functional decomposition of Boolean functions
representing an FSM circuit (Scholl, 2001; Nowicka
et al., 1999; Rawski et al., 2005; Machado and
Cortadella, 2020),

(c) the replacement of LUTs by embedded memory
blocks (EMB) (Sklyarov et al., 2014; Sutter et
al, 2002; Cong and Yan, 2000; Sklyarov, 2000;
Garcia-Vargas and Senhadji-Navarro, 2015; Tiwari
and Tomko, 2004; Barkalov et al., 2015; 2020a;
Rawski et al., 2011; Kołopieńczyki et al., 2017),

(d) structural decomposition of an FSM circuit
(Sklyarov et al., 2014; Barkalov and
Titarenko, 2009; Kołopieńczyk et al., 2017; Barkalov
et al., 2020b).

We shall understand the optimal state assignment
as a process of obtaining state codes allowing to reduce
the number of arguments in functions (2) and (3).
These functions are represented as sum-of-products (SOP)
(Micheli, 1994). Each product term Fh is represented as

Fh = AmXh, (h ∈ {1, . . . , H}). (5)

In (5), the symbol Am stands for the conjunction of state
variables corresponding to the state code K(am) from the
h-th row of ST.

The number of bits in K(am) can range from
�log2 M� to M . If R = M , it is a one-hot state
assignment (Sutter et al., 2002). When the one-hot
method is used, only a single state variable forms a
conjunction Am(m ∈ {1, . . . ,M}). It allows decreasing
the number of arguments in terms (5). This leads to
circuits with fewer LUTs and layers of logic than in the
case of binary encoding. This approach is used in the ABC
system by Berkeley (Brayton and Mishchenko, 2010;
ABC System, 2020). The results of Sutter et al. (2002)
show that one-hot is “attractive for large FSMs, but a
better implementation of small machines can be obtained
using binary encoding.” The results of investigations
reported by Sklyarov (2000) show that binary encoding
gives better results if L > 10.

One of the most popular state assignment algorithms
is JEDI, which is distributed with the system SIS

748 A. Barkalov et al.

(Sentowich et al., 1992). It targets a multi-level logic
implementation. It maximizes either the size of common
cubes in logic functions (the input dominant algorithm)
or the number of common cubes in a logic function (the
output dominant algorithm).

Modern industrial packages use a lot of different
state assignment strategies. For example, the following
methods are used in the design tool XST of Xilinx (Xilinx,
2020a): the automatic state assignment, one-hot, compact,
Gray codes, Johnson codes, speed encoding. Also, all
these methods are implemented in the CAD tool Vivado
of Xilinx (Vivado, 2020).

Therefore, there are a lot of state assignment
methods. It is really difficult to say which is the best for a
particular FSM.

Functional decomposition is very popular in the
FSM design (Scholl, 2001; Rawski et al., 2005; Rawski
et al., 2011; Machado and Cortadella, 2020). If the
number of arguments for some function exceeds SL, then
the original function is broken down into smaller and
smaller components. There are three basic approaches in
this area: serial, parallel and balanced decompositions.
In each step of the serial decomposition, the numbers
of circuit levels and input-output delays are increasing.
In the parallel decomposition, these characteristics are
minimized. The balanced decomposition allows finding
a solution which maximizes advantages and minimizes
disadvantages of two previous strategies (Michalski and
Kokosiński, 2016). These approaches are used, for
example, in the systems DEMAIN (Rawski et al., 1997)
or PKmin (PKmin, 2020). Obviously, there are program
tools for functional decomposition in any CAD targeting
FPGA-based design.

Modern FPGAs have a lot of embedded memory
blocks (Altera, 2020; Xilinx, 2015). Using EMBs
allows for an improvement of main characteristics of
FSM circuits (Sklyarov, 2000). Because of this, there
are many design methods targeting EMB-based FSMs
(Sklyarov et al., 2014; Baranov, 1994; Cong and Yan,
2000; Sklyarov, 2000; Garcia-Vargas et al., 2007; Tiwari
and Tomko, 2004; Rawski et al., 2011; Kołopieńczyk
et al., 2017; Barkalov et al., 2020a; Borowik, 2018).

The EMBs have a property of configurability. This
means that parameters such as the number of cells
and their outputs could be changed by a designer
(Grout, 2008). Typical configurations of EMBs are
the following: 32K×1, 16K×2, 8K×4, 4K×8, 2K×16,
1K×32, 512×64, 256×128 (bits) (Altera, 2020; Xilinx,
2015). Thus, modern EMBs are very flexible and can be
tuned to meet a particular FSM.

A survey of different approaches to EMB-based
design can be found in the work of Garcia-Vargas and
Senhadji-Navarro (2015). Let us point out that these
methods could be used only if there are “free” EMBs,
which are not used for implementation of other parts of

a digital system.
In the case of structural decomposition, an FSM

circuit is represented by several blocks (Barkalov et
al., 2020b). Each block implements additional functions
different from (2) and (3). The methods of structural
decomposition are characterized by the following:
systems of additional functions are implemented as
separate blocks of FSM circuits. Each block has its own
inputs and outputs different from the inputs and outputs
of other blocks. This allows obtaining FSM circuits with
more regular interconnections than for their counterparts
based on functional decomposition.

Let us point out that the methods of structural
decomposition are not widely used in FPGA-based
design. But we think that this approach has a good
potential. They can be used together with methods of
functional decomposition and resynthesis (Testa et al.,
2019; Mishchenko and Brayton, 2006; 2011). These three
groups of methods complement each other. Using them
together can improve the characteristics of FSM circuits.

In this article we propose a design method targeting
LUT-based Mealy FSMs. The method is based on
a structural decomposition of the FSM circuit. It is
a technology-dependent method because it takes into
account the number of LUT’s inputs SL.

The proposed method is an evolution of ideas from
(Barkalov et al., 2020b; 2018). We divide an initial FSM
in two parts. The two-fold state assignment (Barkalov
et al., 2020b) is used in the first part. The one-hot state
assignment and functional decomposition are used in the
second part. This leads to a Mealy FSM U2 discussed in
the next section.

4. Main idea of the proposed method

Let a Mealy FSM S be presented by its STT. Encode states
am ∈ A by binary codes K(am) having R = �log2 M�
bits. Transform the STT into an ST of Mealy FSM S.

Let X(am) ⊆ X be a set of inputs determining
transitions from a state am ∈ A. Represent the set A
as A0 ∪ AR where A0 ∩ AR = ∅. If |X(am)| is less than
SL, then am ∈ AR; otherwise, am ∈ A0

Encode states am ∈ A0 by one-hot codes C0(am)
having R0 = |A0| bits. Use variables βr ∈ B =
{β1, . . . , βR0} to encode these states.

Construct a partition ΠA = {A1, . . . , AI} of the set
AR such that the following condition takes place:

Ri + Li ≤ SL (i ∈ {1, . . . , I}). (6)

In (6), the symbol Ri stands for the number of state
variables necessary to encode the states am ∈ Ai, the
symbol Li is the number of inputs xe ∈ X i determining
transitions from the states am ∈ Ai.

Improving characteristics of LUT-based Mealy FSMs 749

Encode the states am ∈ Ai by binary codes CR(am)
having Ri bits:

Ri =
⌈
log2

(
|Ai|+ 1

)⌉
(i ∈ {1, . . . , I}). (7)

Use the state variables τr ∈ τ = {τ1, . . . , τRA} to encode
the states am ∈ Ai. The following relation takes place:
RA = R1 +R2 + · · ·+RI .

The set A0 determines a subtable ST0 of the initial
ST. Each class Ai ∈ ΠA determines a subtable STi of the
initial ST. Using tables ST0–STI , we can find sets X i ⊆
X (inputs written in the column X i

h), Y i ⊆ Y (outputs
written in the column Y i

h) and Φi ⊆ Φ (input memory
functions written in the column Φi

h).
Each state am ∈ A has two state codes. The code

K(am) identifies the state am as an element of the set A.
The code C0(am) identifies the state am as an element of
the set A0, the code CR(am) as an element of the set AR.

Each subtable STi corresponds to a block LUTeri.
From (6) it follows that it is sufficient to have only a single
LUT having SL inputs for implementing any function
Dr ∈ Φi and yn ∈ Y i(i ∈ {1, . . . , I}).

Based on this preliminary information, we propose
the structural diagram of Mealy FSM U2 (Fig. 2).

The block LUTeri implements functions

Y i = Y i(T i, X i) (i ∈ {1, . . . , I}), (8)

Φi = Φi(T i, X i) (i ∈ {1, . . . , I}). (9)

The block LUTer0 implements functions

Y 0 = Y 0(B,X0), (10)

Φ0 = Φ0(B,X0). (11)

In (8) and (9), the symbol τ i stands for the subset
of T whose variables are used to create codes CR(am),
where am ∈ Ai.

The block LUTerOR generates outputs yn ∈ Y and
state variables Tr ∈ T . This block includes the distributed
register RG keeping state codes K(am). As a result,
pulses Start and Clock enter the LUTerOR.

LUTerOR
Clock
Start

X
1

X
0

Y
1

Y
0

Φ
1

Φ
0

Φ
I

X
I

Y
I

LUTerC

T

�

�
1

�
I

Y

B

LUTer1LUTer0 LUTerI

Fig. 2. Structural diagram of Mealy FSM U2.

The block LUTerC transforms state codes K(am)
into state codes C0(am) and CR(am). As a result,
variables τr ∈ T and βr ∈ B are generated. This means
that the LUTerC implements the functions:

Tr = Tr(T) (r ∈ {1, . . . , RA}), (12)

βr = βr(T) (r ∈ {1, . . . , R0}). (13)

At each time instant, only a single LUTeri is “active.”
It means that there are ones on some outputs of this block.
There are only zeros on outputs of other blocks. These
blocks are “idle.” Use the codes Cr(am) with all zeros to
show that a block is idle. This explains the presence of 1
in (7)

The analysis of FSM U2 (Fig. 2) shows that its circuit
has the following specifics. Firstly, it has exactly three
levels of logic blocks. Secondly, each level of blocks has
its own unique input and output variables. The variables
xe ∈ X , τr ∈ T and βr ∈ B enter only blocks of the
first level. Their outputs enter only the block LUTerOR.
The same is true for the pulses Start and Clock. The
variables Tr ∈ T (outputs of LUTerOR) enter only the
third level of the FSM circuit. In addition, state variables
τr ∈ T i enter only the block LUTeri (i = 1, I). Thus, the
proposed approach leads to LUT-based FSM circuits with
regular systems of interconnections.

The condition (6) is violated for states am ∈ A0.
Therefore, the circuit of block LUTer0 includes more
than a single level of logic. To implement the circuit of
LUTer0, it is necessary to apply methods of functional
decomposition.

Let the symbol Ui(Sj) mean that: (i) an FSM Sj is
represented by an STT and (ii) the model Ui is used to
synthesize an FSM circuit. In this article, we propose
a design method for Mealy FSM U2(Sj). The method
includes the following steps:

1. Finding the set A from the initial STT. Partitioning
the set A into sets A0 and AR using the value of SL

and sets X(am) ⊆ X .

2. Encoding of states am ∈ A by codes K(am).

3. Constructing the structure table of Mealy FSM Sj .
This step is executed using the rules from (Baranov,
1994).

4. Constructing the partition ΠA for the set AR.

5. Executing the state encoding for states am ∈ Ai (i ∈
{1, . . . , I}).

6. Constructing subtables STi for states am ∈ Ai (i ∈
{1, . . . , I}). The subtables are extracted from the
structure table of the Mealy FSM.

7. Deriving systems (8) and (9) from subtables STi

representing blocks LUTer1–LUTerI.

750 A. Barkalov et al.

8. Design of the block LUTer0:

(a) Executing the state encoding for states am ∈
A0.

(b) Constructing a subtable ST0 using states am ∈
A0 and the structure table of Mealy FSM.

(c) Deriving systems (10) and (11) from the
subtable ST0.

(d) Implementing the circuit of LUTer0.

9. Constructing the systems representing LUTerOR.

10. Constructing the table of LUTerC and deriving the
systems (12) and (13).

11. Implementing the FSM circuit with particular LUTs.

We discuss this method in detail in Sections 5 and 6.
We use LUTs with SL = 5. In Section 5 we show how to
use this method for the synthesis of Mealy FSM U2(S1).
In Section 6 we discuss how to construct the partition ΠA

with a minimum number of classes.

5. Example of synthesis

As can be seen from the STT (Table 1), the set A includes
M = 10 elements. Transitions from states a1, . . . , a9 ∈
A depend on up to 3 inputs. Transitions from the state
a10 ∈ A depend on 5 inputs. Because SL = 5, the set AR

includes all states except the state a10. It gives the sets
AR = {a1, . . . , a9} and A0 = {a10}.

Using (1) gives R = 4, T = {T1, . . . , T4} and Φ =
{D1, . . . , D4}. Encode the states am ∈ A in the trivial
way: K(a1) = 0000, K(a2) = 0001, . . . ,K(a10) =
1001. Now, we can construct the structure table of FSM
S1 (Table 2). To this end, we use Table 1 and the rules
from (Baranov, 1994).

Step 4 is the most important stage of the proposed
design method. It determines the hardware amount in the
resulting circuit. We discuss this step in the next section.
In this section, we just use a partition ΠA = {A1, A2, A3}
with classes A1 = {a1, a2, a4}, A2 = {a3, a5, a8} and
A3 = {a6, a7, a9}.

Using Table 2, the following sets could be
found: X1 = {x1, x2, x3}, Y 1 = {y1, . . . , y5},
Φ1 = {D2, D3, D4}, X2 = {x3, x4, x7}, Y 2 =
{y3, y5, y6, y7}, Φ2 = {D1, . . . , D4}, X3 = {x5, x6},
Y 3 = {y1, y7, y8}, Φ3 = {D2, D3, D4}.

Using (7), we can find R1 = R2 = R3 = 2.
This yields R0 = 6 and T = {τ1, . . . , τ6}. Let T 1 =
{τ1, τ2}, T 2 = {τ3, τ4} and T 3 = {τ5, τ6}. For each
class Ai ∈ ΠA, the condition (6) takes place.

Obviously, there is no influence of the outcome
of state encoding on the hardware amount in blocks
LUTer1–LUTer3. Therefore, we can encode the states in
the following way: CR(a1) = CR(a3) = CR(a6) = 01,

CR(a2) = CR(a5) = CR(a7) = 10 and CR(a4) =
CR(a8) = CR(a9) = 11.

To construct subtables STi(i ∈ {1, 2, 3}), we should
(i) take the corresponding rows of ST and (ii) replace
codes K(am) by codes CR(am). For example, the
LUTer1 is represented by Table 3. To construct Table 3,
we use rows 1–5 and 9 of the structure table (Table 2).
The superscript 1 in Table 3 means that the corresponding
functions are generated by LUTer1. The subtables ST2

and ST3 are constructed in the same manner.
Using Table 3, the equations for functions y1n ∈ Y 1

and D1
r ∈ Φ1 can be found. In these equations, the

conjunctions Am in (5) depend on variables τr ∈ T 1.
For example, the following equations can be derived from
Table 3: y13 = τ1τ̄2x1x̄2 ∨ τ1τ2; D1

3 = τ1τ̄2. Acting in
the same manner, it is possible to find all functions (8) and
(9).

The presence of Step 8 is the main difference
between the proposed approach and our previous methods
(Barkalov et al., 2018; Barkalov et al., 2020b). Let us
discuss this step for a given example.

We have A0 = {a10}. This gives R0 = 1 and the
set B = {β1}. Using Table 2, we can get sets X0 =
{x3, x7, . . . , x10}, Y 0 = {y2, y3, y4, y7, y9, y10, y11} and
Φ0 = Φ. The state encoding is trivial in the discussed
case: C0(a10) = 1.

To construct the subtable ST0, we should use rows
11-23 of the ST (Table 2). Replacing K(a10) = 1001

Table 2. Structure table of Mealy FSM S1.

am K(am) as K(as) Xh Yh Φh h

a1 0000 a2 0001 1 y1y2 D4 1

a2 0001

a3 0010 x1x2 y1 D3 2
a3 0010 x1x̄2 y2y3 D3 3
a3 0010 x̄1x3 y3y4 D3 4
a3 0010 x̄1x̄3 y5 D3 5

a3 0010
a4 0011 x3 y6y7 D3D4 6
a4 0011 x̄3x4 y3y5 D3D4 7
a3 0010 x̄3x̄4 y5 D3 8

a4 0011 a5 0100 1 y2y3 D2 9

a5 0100
a6 0101 x7 y3y6 D2D4 10
a3 0010 x̄7 y5 D3 11

a6 0101
a7 0110 x5 y1y7 D2D3 12
a7 0110 x̄5 y8 D2D3 13

a7 0110
a8 0111 x6 y7y8 D2D3D4 14
a7 0110 x̄6 y8 D2D3 15

a8 0111 a9 1000 1 y7 D1 16
a9 1000 a10 1001 1 y1 D1D4 17

a10 1001

a3 0010 x3x7x8x9x10 y3y4 D3 18
a1 0000 x3x7x8x9x̄10 y7y9 – 19
a5 0100 x3x7x8x̄9 y10y11 D2 20
a8 0111 x3x7x̄8 y2y3 D2D3D4 21
a9 1000 x3x̄7 y11 D1 22
a1 0000 x̄3 – – 23

Improving characteristics of LUT-based Mealy FSMs 751

y
0

2

β1 x3 x7 x8

LUT1

β1

β1

x3

x3

x7 x8

x7

x9

x8

LUT2

LUT2

y
0

3

β1 x3 x7 x8 x9

LUT4

x10

y
0

4

LUT5

β1 x3 x7 x8 x9

LUT6

y
0

7 y
0

9

x10

LUT7

y
0

10

β1 x3 x7 x8 x9

LUT8

y
0

11

β1 x3 x7 x8 x9

LUT9

D
0

1

β1 x3 x7

LUT10

D
0

2

β1 x3 x7 x8 x9

LUT11

β1 x3 x7 x8 x9

LUT12

β1 x3 x7 x8

LUT13

D
0

3

x10

LUT14

D
0

4

β1 x3 x7 x8

LUT15

Fig. 3. Logic circuit of LUTer0.

by C0(a10) = 1 gives ST0 (Table 4). We hope that the
connection between Tables 2 and 4 is transparent.

Using Table 4, we can derive the following system of
Boolean functions:

y02 = β1x3x7x̄8,

y03 = β1x3x7x8x9x10 ∨ β1x3x7x̄8,

y04 = β1x3x7x8x9x10,

y07 = β1x3x7x8x9x̄10 = y09 ,

y010 = β1x3x7x8x̄9,

y011 = β1x3x7x8x̄9 ∨ β1x3x̄7,

D0
1 = β1x3x̄7,

D0
2 = β1x3x7x8x̄9 ∨ β1x3x7x̄8,

D0
3 = β1x3x7x8x9x10 ∨ β1x3x7x̄8,

D0
4 = β1x3x7x̄8.

(14)

We have SL = 5 for our example. There are 6
arguments in terms corresponding to rows 1 and 2 of
Table 4. Thus, it is necessary more than a single LUT
to implement circuits for functions from columns Y 0 and
Φ0 written in rows 1 and 2. This means that two levels of
logic are necessary in circuits for functions y03 , y

0
4 , y

0
7, y

0
9

and D0
3. Only a single LUT is sufficient to implement

each of functions y02 , y
0
10, y

0
11, D

0
1, D

0
2 and D0

4.

To implement multi-level circuits, the methods of
functional decomposition should be used. This results in

the following transformed equations of the system (14):

y03 = (β1x3x7x8x9)x10 ∨ β1x3x7x̄8,

y04 = (β1x3x7x8x9)x10,

y07 = y09 = (β1x3x7x8x9)x̄10,

D0
3 = (β1x3x7x8x9)x10 ∨ (β1x3x7x8).

(15)

The circuit of LUTer0 is shown in Fig. 3. It includes
15 LUTs with SL = 5. The circuit is based on (14) and
(15).

As can be seen from Fig. 2, functions generated by
LUTer0 are used as arguments of functions generated by
LUTerOR. But functions y9–y11 are generated only by
LUTer0. This means that the circuit of LUTerOR does not
contain LUTs with outputs y9–y11. Only outputs y1–y8
are generated by LUTerOR.

To find equations representing LUTerOR, it is
necessary to analyse sets Y i and Φi. For example, we
have the relation y1 /∈ Y 0 ∪ Y 2, so that y1 = y11 ∨ y31 .
Next, D1 /∈ Φ1 ∪ Φ3. Consequently, D1 = D0

1 ∨D2
1 .

Acting in the same way, it is possible to find
equations for all functions generated by LUTerOR. If
a function Dr is generated by some LUTeri, then
pulses Clock and Start should be connected with the
corresponding LUT of LUTeri.

The table of LUTerC has M rows. It includes
columns am, K(am), C0(am), CR(am), Bm, τm, m. The
meaning of these columns is clear from Table 5.

Using Table 5, we can find equations (12) and (13).
For example, we can find that β1 = T1T4, and τ1 =
T̄1T̄2T4. To get these equations, we use some rules of
minimizing Boolean functions (Micheli, 1994).

To implement an FSM circuit, it is necessary to use
standard CAD tools (Altera, 2020; Xilinx, 2015). They

Table 3. Table ST1 of Mealy FSM U2(S1).

am CR(am) as K(as) X1
h Y 1

h Φ1
h h

a1 01 a2 0001 1 y1
1y

1
2 D1

4 1

a2 10

a3 0010 x1x2 y1
1 D1

3 2
a3 0010 x1x̄2 y1

2y
1
3 D1

3 3
a3 0010 x̄1x3 y1

3y
1
4 D1

3 4
a3 0010 x̄1x̄3 y1

5 D1
3 5

a4 11 a5 0100 1 y1
2y

1
3 D1

2 6

Table 4. Table ST0 of Mealy FSM U2(S1).

am C0(am) as K(as) X0
h Y 0

h Φ0
h h

a10 1

a3 0010 x3x7x8x9x10 y0
3y

0
4 D0

3 1
a1 0000 x3x7x8x9x̄10 y0

7y
0
9 – 2

a5 0100 x3x7x8x̄9 y0
10y

0
11 D0

2 3
a8 0111 x3x7x̄8 y0

2y
0
3 D0

2D
0
3D

0
4 4

a9 1000 x3x̄7 y0
11 D0

1 5
a1 0000 x̄3 – – 6

752 A. Barkalov et al.

Table 5. Table of LUTerC for Mealy FSM U2(S1)

am K(am) C0(am) CR(am) Bm τm m

a1 0000 0 01 00 00 – τ2 1
a2 0001 0 10 00 00 – τ1 2
a3 0010 0 00 01 00 – τ4 3
a4 0011 0 11 00 00 – τ1τ2 4
a5 0100 0 00 10 00 – τ3 5
a6 0101 0 00 00 01 – τ6 6
a7 0110 0 00 00 10 – τ5 7
a8 0111 0 00 11 00 – τ3τ4 8
a9 1000 0 00 00 11 – τ5τ6 9
a10 1001 1 00 00 00 β1 – 10

form bit-streams for each LUT. Also, they execute the
technology mapping of FSM circuit. We do not discuss
this step for our example.

6. Constructing partition for a set of states

We should find a partition ΠA of the set AR with a
minimum number of blocks I and such that restriction
(6) takes place for each block Ai ∈ ΠA. To solve this
problem, we propose a simple sequential algorithm for
finding a partition ΠA.

Each state am ∈ A is characterized by two sets.
The set X(am) includes input variables determining
transitions from state am ∈ A. The set Y (am) includes
outputs generated during transitions from state am ∈ A.
If am ∈ Ai, then X(am) ⊆ X i and Y (am) ⊆ Y i.

We use two evaluations to find the partition. The
first of them determines how many new input variables
will be added to the set X i due to including the state
am into the class Ai ∈ ΠA. The second of them
determines the number of outputs common for both sets
Y (am) and Y i. Let us denote these evaluations by the
symbols N(am, X i) and N(am, Y i), respectively. They
are calculated as follows:

N(am, X i) = |X(am) \X i|, (16)

N(am, Y i) = |Y (am) ∩ Y i|. (17)

In (16), the symbol “\” means the subtraction of sets.
Each block Ai ∈ ΠA is generated in two stages.

At the first stage, we take the state am ∈ A∗ as a basic
element (BE) of Ai. Here A∗ is a set of states which were
not distributed after forming the block Ai−1 ∈ ΠA. The
BE should satisfy to the following relation:

|X(am)| = max |X(aj)|, aj ∈ A∗ \ {am}. (18)

If condition (18) takes place for states am and as, we will
choose the state am if m > s.

The second stage is a multistep one. At each step,
the next state is successively added to the block Ai in
accordance with the rules given below. The process of

forming block Ai is terminated when all states are already
distributed among the blocks or when it is not possible to
include any state in Ai without violation of (6).

There are the following rules for including the next
successive state in Ai. Let A∗ include all unallocated
states am ∈ A. Choose all states am ∈ A∗ whose
inclusion into Ai does not violate the restriction (6). Place
them in a set P (Ai). Select a state am ∈ P (Ai) with the
minimum value of evaluation (16). It is the first rule.

If there are more than one such state, then choose a
state having maximum value of evaluation (17). If more
than one state has such a property, then one of them is
included into Ai. Next, all elements are eliminated from
P (Ai). It is the second rule.

Let us discuss an example of forming the partition
ΠA for a Mealy FSM represented by an STT (Table 1).
The process is shown in Table 6. We assume that SL =
5. Hence, the following pairs 〈Li, Ri〉 are possible:
〈0, 5〉, 〈1, 4〉, 〈2, 3〉, 〈3, 2〉, 〈4, 1〉.

Let us explain the columns of Table 6. The column
am contains states of the FSM. There are numbers of input
variables in column |X(am)|. The columns BEi (i =
1, 2, 3) contain basic elements for Step i. The symbol “I”
stands for N(am, X i), the symbol “II” for N(am, Y i).
The sign ⊕ means that the state in the corresponding
row is included in the set Ai. The sign “–” means that
am /∈ A∗, where am is the state from the corresponding
row. There are states am ∈ Ai in the row Ai. They are
shown in the order of selecting.

As can be seen from Table 6, the process of selection
includes 9 steps. As a result, we obtain the following
partition ΠA = {A1, A2, A3} with I = 3 blocks: A1 =
{a1, a2, a4}, A2 = {a3, a5, a8}, A3 = {a6, a8, a9}. As
can be seen, this partition is the same as that used in
Section 5.

Using the first rule allows decreasing the number of
the same variables xe ∈ X in different blocks Ai ∈ ΠA.
In turn, this leads to a decrease in the number of LUTs
compared with the situation when the inputs xe ∈ X are
duplicated in different blocks Ai ∈ ΠA. This also leads to
further regularization of the system of interconnections.

Using the second rule allows decreasing the number
of the same variables yn ∈ Y in different blocks Ai ∈
ΠA. It could lead to a decrease in the number of LUTs
compared with the situation when the outputs yn ∈ Y
are duplicated in different blocks Ai ∈ ΠA. This also
reduces the number of interconnections between blocks
LUTeri (i = 1, I) and the block LUTerOR. Obviously,
the fewer such interblock connections, the more likely is
that there is only a single level of LUTs in the circuit of
LUTerOR.

Improving characteristics of LUT-based Mealy FSMs 753

Table 6. Forming of partition ΠA.

amX(am) BE1
I/II

BE2
I/II

BE3
I/II

1 2 1 2 1 2

a1 0 0/2⊕ – – – – –
a2 3 ⊕ – – – – – –
a3 2 1/2 1/2 ⊕ – – – –
a4 0 0/2 0/2⊕ – – – –
a5 1 1/2 1/2 1/3 ⊕ – – –
a6 1 1/1 1/1 1/1 1/1 ⊕ – –
a7 1 1/0 1/0 1/1 1/1 1/2⊕ –
a8 0 0/0 0/0 0/1 0/1⊕ – –
a9 0 0/1 0/1 0/0 0/0 0/0 0/0⊕

Ai a2 a1 a4 a3 a5 a8 a6 a8 a9

7. Experimental results

To investigate the efficiency of the proposed method, we
use standard benchmarks from the LGSynth93 library
(LGSynth93, 1993). It includes 48 benchmarks appearing
in the practice of FSM design. These benchmarks are
Mealy FSMs presented in the KISS2 format.

To work with these benchmarks, we used the CAD
tool named K2F. It translates the KISS2 file into a VHDL
model of an FSM. To synthesize and simulate the FSM,
we use the Active-HDL environment. To get the FSM
circuit, we use Xilinx CAD tool Vivado 2019.1 (Vivado,
2020). The investigation path used in our system is shown
in Fig. 4.

The target platform was the FPGA device Xilinx
Virtex-7 (XC7VX690tffg1761-2, Virtex-7 VC709
Evaluation platform). It includes LUTs having SL = 6.

We compared our approach with four other methods:
(i) Auto of Vivado 2019.1, (ii) One-hot of Vivado 2019.1,
(iii) JEDI, (iv) DEMAIN. In all these cases, the model
of U1 (Fig. 1) is used. The results of experiments are
shown in Table 7 (for the number of LUTs), Table 8 (for
the operating frequency), and Table 9 (for the consumed
energy).

All tables are organized in the same order. Their
rows are marked with the names of benchmarks, the
columns with design methods. The rows “Total” include
results of summation for the corresponding values. We
have included the summarized characteristics of U2 as
100%. The rows “Percentage” show the percentage
of the summarized characteristics with respect to the
benchmarks synthesized as U2.

As can be seen from Table 7, the proposed method
allows minimizing the number of LUTs in U2-based
circuits in comparison with other investigated methods.
There is the following savings: (i) 34.7% regarding
Auto, (ii) 58.2% regarding to the One-hot, (iii) 12.8%
regarding the JEDI-based FSMs and (iv) 20.4% regarding
DEMAIN.

The following conclusion can be made. Our
approach gives better results for FSMs having more

than 15 states. If M < 15, then JEDI-based FSMs
require fewer LUTs. DEMAIN sometimes produces
better circuits than JEDI (for rather simple FSMs).

In all investigated cases, our approach produces FSM
circuits having exactly three levels of logic. This is
because

R ≤ SL = 6 (19)

for all benchmarks from LGSynth93 (LGSynth93, 1993).
Our approach allows obtaining FSM circuits with

more regular interconnections than for other investigated
methods. Accordingly, U2-based FSMs yield better
results for both the operating frequency (Table 8) and the
power consumption (Table 9).

As can be seen from Table 8, our approach gives
the following gain in the operating frequency: (i) 12%
in comparison with both Auto and DEMAIN, (ii) 11%
in comparison with One-hot, (iii) 5% in comparison
with JEDI-based FSMs. Table 8 demonstrates that the
following gains in the consumed energy: (i) 45.7% in
comparison with Auto, (ii) 52.7% in comparison with
One-hot, (iii) 12.4% in comparison with JEDI and (iv)
16.8% in comparison with DEMAIN.

Let us point out that reducing power consumption,
in our case, is not associated with additional overhead
costs. The known methods in this area are connected
to: (i) the representation of the initial FSM as a network
of interacting automata (Chow et al., 1996; Liu et al.,
2005), or (ii) the special state assignment (Benini and
De Micheli, 1995; Benini et al., 2001; Agrawal et al.,
2019), or (iii) the clock gating (Nag et al., 2018) or (iv)

FPGA

VivadoACTIVE HDL

VHDL structures
generation

VHDL structures
generation

transformation
and data encoding

transformation
and data encoding

KISS2 file analysisKISS2 file analysis

KISS2
(text representation)

KISS2
(text representation)

synthesis
& symulation

synthesis
& implementation

K2F

Fig. 4. Typical investigation path based on the K2F tool.

754 A. Barkalov et al.

the power gating (Pradhan et al., 2011; Choudhury and
Pradhan, 2012; Benini et al., 2000). We do not discuss
these methods in detail. Note only that they are associated
with the use of additional circuits and the introduction of
a delay in the clock cycle. Our method is free from these
drawbacks.

As can be seen from Tables 8 and 9, our approach
gives better results for FSM, with M > 15. For simpler
FSMs, better results are produced either by JEDI or
DEMAIN. Of course, all these conditions are valid only
for the benchmarks (LGSynth93, 1993) and the device
XC7VX690tffy1761-2. It is almost impossible to make
similar conclusions for the general case. However, it
follows from our experiments that our approach gives
good results for the cases when (i) the condition (19) takes
place and (ii) the number of FSM states exceeds 15.

This conclusion is supported by comparison of
our approach with some other methods when the
Virtex 5 family of Xilinx is used. In this case, we
used the benchmarks (LGSynth93, 1993), the device
XC5VLX30FF324 and the Xilinx ISE 14.1 package
(Xilinx, 2020b) instead of Vivado. We compared our
approach with U1-based FSMs implemented using: (i)
Auto of ISE, (ii) One-hot of ISE, (iii) JEDI and (iv)
DEMAIN.

As it is for Vivado-based research, our approach
allows minimizing the number of LUTs in FSM circuits in
comparison with other investigated methods. We got the
following savings: (i) 23% in comparison with Auto, (ii)
29% in comparison with One-hot, (iii) 9% in comparison
with JEDI and (iv) 14% in comparison with DEMAIN.
Again our approach gives better results for FSMs having
M > 15. The same is true for the operating frequency.

Next, we compared FSMs U2 and PY Mealy FSMs
based on two-fold state assignment and encoding of
collections of outputs (Barkalov et al., 2018).

The comparison was performed using the CAD tool
Vivado 2019.1, standard benchmarks (LGSynth93, 1993)
and the FPGA device XC7VX690tffy1761-2 by Xilinx
(Virtex 7). The results of comparison showed that both
approaches lead to FSM circuits with better characteristics
than for Auto, One-hot, JEDI and DEMAIN. At the same
time, the PY-based FSMs had better characteristics for
numbers of LUTs and consumed energy. However, the
U2-based Mealy FSMs had better performance.

To investigate the effect of the number of inputs
(SL) on the efficiency of the proposed method, we use
the FPGA chips of Virtex-4 (Xilinx, 2010). To get
the FSM circuits, we use Xilinx CAD tool ISE 14.1
(Xilinx, 2020b). The chip XC4VLX40FF668-12 was used
at this stage. It includes LUTs having SL = 4.

We compared our approach with three other
methods: Auto of ISE 14.1, One-hot of ISE 14.1, PY
Mealy FSM (Barkalov et al., 2018). We used the model
U1 (Fig. 1) to get the results for Auto and One-hot. The

following conclusion can be made on the base of these
investigations.

The method of Barkalov et al. (2018) cannot be
used for the most complex benchmarks of the LGsynth93
library (ex1, keyb, kirkman, planet, planet1, s1488,
s1494, s208, sand, s420, s510, s820, s832). This means
that the condition (6) is violated for these benchmarks.
Our approach produced circuits for all benchmarks.
Therefore, the proposed approach allows using two-fold
state assignment (Barkalov et al., 2020b) for any Mealy
FSM. The proposed method is free from the limitations
inherent to the method (Barkalov et al., 2020b).

As it is for circuits based on LUTs with SL = 6,
our approach allows minimizing the number of LUTs
with SL = 4 in comparison with other investigated
methods. But if SL = 4, then one-hot-based FSMs and
U2-based FSMs have almost the same number of LUTs for
complex benchmarks having more than either 15 states or
10 inputs. The library LGSynth includes 23 benchmarks
with such characteristics.

We think that this phenomenon is related to the
following: the more states and inputs an FSM has, the
more states the class A0 includes. We use the one-hot
state assignment for states am ∈ A0. Therefore, as the
ratio of |A0| to M grows, more states have one-hot codes.

8. Conclusion

The paper presents an original approach targeting
FPGA-based Mealy FSMs. The proposed design method
leads to FSM circuits having exactly three levels of
logic and regular interconnections between these levels.
It is based on the representation of an FSM as two
interconnected parts. The first of these parts is synthesized
based on the states for which |X(am)| < SL. The second
part is synthesized based on states for which |X(am)| ≥
SL. This representation allows overcoming the main
drawback of the methods (Barkalov et al., 2020b), which
cannot be used if there is at least a single state violating
the condition (6). In consequence, the proposed method
can be applied to arbitrary Mealy FSMs.

The experiments clearly show that our approach
leads to a reduction in the number of LUTs in
comparison with circuits obtained by Xilinx Vivado
2019.1, JEDI-based FSMs and DEMAIN. It is also
worth pointing that it allows obtaining higher operating
frequency and consuming less power than for FSMs
designed using the above-mentioned methods. Thus, our
approach allows improving all three main characteristics
of FSM circuits.

In conclusion, it should be noted that our approach
gives good results for rather complex FSMs having more
than 15 internal states. The best results can be achieved if
the number of LUTers for the first level does not exceed
the number of LUT inputs.

Improving characteristics of LUT-based Mealy FSMs 755

Note that the smaller the ratio |A0|/M , the better
the characteristics of U2-based FSMs (compared with the
characteristics of FSM circuits based on other investigated
methods).

There are two directions for our future research. The
first direction is related to the research of the applicability
of our approach to FSMs implemented with FPGAs by
Intel (Altera). Next, we will try to use this approach for
improving characteristics of LUT-based Moore FSMs.

References
ABC System (2020). https://people.eecs.berkeley

.edu/~alanmi/abc/.

Agrawal, R., Borowczak, M. and Vemuri, R. (2019). A state
encoding methodology for side-channel security vs. power
trade-off exploration, 32nd International Conference on
VLSI Design and 18th International Conference on Em-
bedded Systems (VLSID), Delhi, India pp. 70–75.

Altera (2020). Cyclone IV Device Handbook, http://www.a
ltera.com/literature/hb/cyclone-iv/cyc
lone4-handbook.pdf.

Ardakani, A., Leduc-Primeau, F., Onizawa, N., Hanyu, T. and
Gross, W.J. (2017). VLSI implementation of deep neural
network using integral stochastic computing, IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems
25(10): 2688–2699.

Baranov, S. (1994). Logic Synthesis of Control Automata,
Kluwer, Boston, MA.

Baranov, S. (2008). Logic and System Design of Digital Systems,
TUT Press, Tallinn.

Barkalov, A.A. and Barkalov Jr., A.A. (2005). Design of Mealy
finite-state machines with the transformation of object
codes, International Journal of Applied Mathematics and
Computer Science 15(1): 151–158.

Barkalov, A. and Titarenko, L. (2009). Logic Synthesis for FSM-
based Control Units, Springer, Berlin.

Barkalov, A., Titarenko, L., Kołopieńczyk, M., Mielcarek, K.
and Bazydło, G. (2015). Logic Synthesis for FPGA-Based
Finite State Machines, Springer, Cham.

Barkalov, A., Titarenko, L., Mazurkiewicz, M. and Krzywicki,
K. (2020a). Encoding of terms in EMB-based Mealy
FSMs, Applied Sciences 10(8): 21.

Barkalov, A., Titarenko, L., Mielcarek, K. and Chmielewski,
S. (2020b). Logic Synthesis for FPGA-Based Con-
trol Units—Structural Decomposition in Logic Design,
Springer, Berlin.

Barkalov, O., Titarenko, L. and Mielcarek, K. (2018). Hardware
reduction for LUT-based Mealy FSMs, International
Journal of Applied Mathematics and Computer Science
28(3): 595–607, DOI: 10.2478/amcs-2018-0046.

Benini, L., Bogliolo, A. and Micheli, G. (2000). A survey
of design techniques for system-level dynamic power
management, IEEE Transactions on Very Large Scale In-
tegration (VLSI) Systems 8(3): 299–316.

Table 7. Experimental results (the number of LUTs).
Benchmark Auto One-Hot JEDI DEMAIN U2

bbara 17 17 10 9 11
bbsse 33 37 24 26 22
bbtas 5 5 5 5 5

beecount 19 19 14 16 12
cse 40 66 36 38 32

dk14 10 27 10 12 12
dk15 5 16 5 6 6
dk16 15 34 12 14 10
dk17 5 12 5 6 5
dk27 3 5 4 4 6

dk512 10 10 9 10 8
donfile 31 31 22 26 19

ex1 70 74 53 57 42
ex2 9 9 8 9 8
ex3 9 9 9 9 8
ex4 15 13 12 13 10
ex5 9 9 9 9 8
ex6 24 36 22 23 20
ex7 4 5 4 4 4

keyb 43 61 40 42 37
kirkman 42 58 39 41 35

lion 2 5 2 2 2
lion9 6 11 5 5 5

mark1 23 23 20 21 18
mc 4 7 4 5 4

modulo12 7 7 7 7 7
opus 28 28 22 26 23

planet 131 131 88 94 80
planet1 131 131 88 94 80

pma 94 94 86 91 78
s1 65 99 61 64 57

s1488 124 131 108 112 92
s1494 126 132 110 117 94

s1a 49 81 43 54 41
s208 12 31 10 11 9
s27 6 18 6 6 6

s386 26 39 22 25 18
s420 10 31 9 10 8
s510 48 48 32 39 29

s8 9 9 9 9 10
s820 88 82 68 76 58
s832 80 79 62 70 54
sand 132 132 114 121 101

shiftreg 2 6 2 2 4
sse 33 37 30 32 26

styr 93 120 81 88 73
tma 45 39 39 41 33

Total 1792 2104 1480 1601 1330
Percentage 134,7% 158,2% 112,8% 120,4% 100%

https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf

756 A. Barkalov et al.

Table 8. Experimental results (the consumed power, Watts).
Benchmark Auto One-Hot JEDI DEMAIN U2

bbara 0,569 0,569 0,488 0,482 0,499
bbsse 2,22 1,206 1,713 1,824 1,622
bbtas 0,533 0,533 0,533 0,533 0,582

beecount 1,631 1,631 1,021 1,236 0,935
cse 0,958 1,019 0,891 0,911 0,783

dk14 2,959 3,33 2,952 2,998 3,002
dk15 1,403 1,905 1,399 1,402 1,412
dk16 2,967 2,742 2, 512 2,715 2,435
dk17 1,901 1,935 1,891 1,938 1,907
dk27 1,168 0,854 1,158 1,161 1,172

dk512 1,496 1,496 1,345 1,498 1,265
donfile 0,709 0,709 0,603 0,638 0,578

ex1 4,102 2,968 2,342 2,416 1,928
ex2 0,368 0,386 0,342 0,365 0,367
ex3 0,391 0,391 0,391 0,394 0,374
ex4 1,562 1,241 1,187 1,198 1,123
ex5 0,387 0,387 0,385 0,383 0,326
ex6 2,269 3,85 2,242 2,258 2,175
ex7 0,992 1,181 0,994 0,996 0,998

keyb 1,093 1,071 1,075 1,082 0,996
kirkman 1,693 1,844 1,439 1,498 1,327

lion 0,542 0,629 0,547 0,544 0,549
lion9 0,733 0,97 0,728 0,73 0,784

mark1 1,445 1,445 1,227 1,301 1,187
mc 0,447 0,561 0,443 0,492 0,462

modulo12 0,559 0,559 0,563 0,532 0,548
opus 1,344 1,344 1,283 1,334 1,221

planet 4,122 4,122 2,456 3,002 2,328
planet1 4,122 4,122 2,456 3,002 2,238

pma 1,37 1,37 1,253 1,361 1,003
s1 2,685 3,13 2,518 2,612 2,348

s1488 3,982 4,096 3,548 3,629 2,083
s1494 3,079 3,178 2,982 3,011 2,658

s1a 1,322 2,01 1,208 1,602 1,085
s208 1,367 2,82 1,249 1,302 1,257

s27 0,756 1,95 0,765 0,769 0,764
s386 1,251 1,393 1,121 1,187 1,098
s420 1,337 2,82 1,286 1,334 1,292
s510 1,543 1,543 1,091 1,218 1,002

s8 0,736 0,805 0,732 0,734 0,882
s820 2,054 1,801 1,463 1,612 1,143
s832 2,096 2,087 1,828 1,512 1,232
sand 1,149 1,149 0,988 1,017 0,817

shiftreg 0,523 0,603 0,512 0,503 0,712
sse 1,22 1,296 1,089 1,193 1,007

styr 4,044 4,771 3,187 3,612 2,932
tma 1,589 1,314 1,321 1,427 1,118

Total 85,479 89,585 65,935 68,498 58,646
Percentage 145,7% 152,7% 112,4% 116,8% 100%

Benini, L. and De Micheli, G. (1995). State assignment for
low power dissipation, IEEE Journal of Solid-State Cir-
cuits 30(3): 258–268.

Benini, L., De Micheli, G. and Macii, E. (2001). Designing
low-power circuits: Practical recipes, IEEE Circuits and
Systems Magazine 1(1): 6–25.

Borowik, G. (2018). Optimization on the complementation
procedure towards efficient implementation of the index
generation function, International Journal of Applied
Mathematics and Computer Science 28(4): 803–815, DOI:
10.2478/amcs-2018-0061.

Brayton, R. and Mishchenko, A. (2010). ABC: An academic
industrial-strength verification tool, in T. Touili et al. (Eds),
Computer Aided Verification, Springer, Berlin/Heidelberg,
pp. 24–40.

Brown, B.D. and Card, H.C. (2001). Stochastic neural
computation. I: Computational elements, IEEE Transac-
tions on Computers 50(9): 891–905.

Choudhury, P. and Pradhan, S. (2012). Power modeling of power
gated FSM and its low power realization by simultaneous
partitioning and state encoding using genetic algorithm, in
H. Rahaman et al. (Eds), Progress in VLSI Design and Test,
Springer, Berlin/Heidelberg, pp. 19–29.

Chow, S., Ho, Y.-C., Hwang, T. and Liu, C. (1996). Low power
realization of finite state machines—A decomposition
approach, ACM Transactions on Design Automation of
Electronic Systems 1(3): 315–340.

Cong, J. and Yan, K. (2000). Synthesis for FPGAs with
embedded memory blocks, Proceedings of the 2000
ACM/SIGDA Eighth International Symposium on Field
Programmable Gate Arrays, FPGA’00, Monterey, CA,
USA, pp. 75–82.

Czerwiński, R. and Kania, D. (2013). Finite State Machine
Logic Synthesis for Complex Programmable Logic De-
vices, Springer, Berlin.

Das, N. and Priya, P.A. (2018). FPGA implementation of
reconfigurable finite state machine with input multiplexing
architecture using Hungarian method, International Jour-
nal of Reconfigurable Computing 2018: 1–15.

Gajski, D. D., Abdi, S., Gerstlauer, A. and Schirner, G. (2009).
Embedded System Design: Modeling, Synthesis and Verifi-
cation, Springer, Berlin.

Garcia-Vargas, I. and Senhadji-Navarro, R. (2015). Finite state
machines with input multiplexing: A performance study,
IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 34: 867–871.

Garcia-Vargas, I., Senhadji-Navarro, R., Jiménez-Moreno,
G., Civit-Balcells, A. and Guerra-Gutierrez, P. (2007).
ROM-based finite state machine implementation in low
cost FPGAs, IEEE International Symposium on Industrial
Electronics ISIE 2007, Vigo, Spain, pp. 2342–2347.

Glaser, J., Damm, M., Haase, J. and Grimm, C. (2011).
TR-FSM: Transition-based reconfigurable finite state
machine, ACM Transactions on Reconfigurable Technol-
ogy and Systems 4(3): 23:1–23:14.

Improving characteristics of LUT-based Mealy FSMs 757

Grout, I. (2008). Digital Systems Design with FPGAs and
CPLDs, Elsevier, Oxford.

Kam, T., Villa, T., Brayton, R. and Sangiovanni-Vincentelli, A.
(2010). A Synthesis of Finite State Machines: Functional
Optimization, Springer, Boston, MA.

Khatri, S. and Gulati, K. (Eds) (2011). Advanced Techniques in
Logic Synthesis, Optimizations and Applications, Springer,
New York, NY.

Kołopieńczyk, M., Titarenko, L. and Barkalov, A. (2017).
Design of EMB-based Moore FSMs, Journal of Circuits,
Systems, and Computers 26(7): 1–23.

Kubatova, H. and Becvar, M. (2002). FEL-Code: FSM internal
state encoding method, Proceedings of the 5th Interna-
tional Workshop on Boolean Problems, Freiberg, Ger-
many, pp. 109–114.

Kubica, M. and Kania, D. (2017). Area-oriented technology
mapping for LUT-based logic blocks, International Jour-
nal of Applied Mathematics and Computer Science
27(1): 207–222, DOI: 10.1515/amcs-2017-0015.

Kubica, M., Kania, D. and Kulisz, J. (2019). A technology
mapping of FSMs based on a graph of excitations and
outputs, IEEE Access 7: 16123–16131.

LGSynth93 (1993). Benchmark suite, International Workshop
on Logic Synthesis, Tahoe City, CA, USA, https://pe
ople.engr.ncsu.edu/brglez/CBL/benchmar
ks/LGSynth93/LGSynth93.tar.

Li, J., Ren, A., Li, Z., Ding, C., Yuan, B., Qiu, Q. and Wang,
Y. (2017). Towards acceleration of deep convolutional
neural networks using stochastic computing, 22nd Asia
and South Pacific Design Automation Conference, ASP-
DAC, Chiba/Tokyo, Japan, pp. 115–120.

Li, P., Lilja, D.J., Qian, W., Riedel, M.D. and Bazargan, K.
(2014). Logical computation on stochastic bit streams with
linear finite-state machines, IEEE Transactions on Com-
puters 63(6): 1474–1486.

Liu, B., Cai, Y., Zhou, Q., Bian, J. and Hong, X. (2005).
FSM decomposition for power gating design automation in
sequential circuits, 6th International Conference on ASIC,
Shanghai, China, Vol. 2, pp. 944–947.

Machado, L. and Cortadella, J. (2020). Support-reducing
decomposition for FPGA mapping, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
39(1): 213–224.

Maxfield, C. (2004). The Design Warrior’s Guide to FPGAs,
Academic Press, Orlando, FL.

Michalski, T. and Kokosiński, Z. (2016). Functional
decomposition of combinational logic circuits with
PKmin, Technical Transactions: Electrical Engineering
113(2-E): 191–202.

Micheli, G.D. (1994). Synthesis and Optimization of Digital Cir-
cuits, McGraw-Hill, New York, NY.

Mishchenko, A. and Brayton, R. (2006). Scalable logic
synthesis using a simple circuit structure, https://peo
ple.eecs.berkeley.edu/~brayton/publica
tions/2006/iwls06_sls.pdf.

Table 9. Experimental results (the operating frequency, MHz).
Benchmark Auto One-Hot JEDI DEMAIN U2

bbara 193,39 193,39 212,21 198,46 210,37
bbsse 157,06 169,12 182,34 178,91 198,65
bbtas 204,16 204,16 206,12 208,32 200,38

beecount 166,61 166,61 187,32 184,21 201,43
cse 146,43 163,64 178,12 174,19 206,56

dk14 191,64 172,65 193,85 187,32 186,53
dk15 192,53 185,36 194,87 188,54 189,14
dk16 169,72 174,79 197,13 189,83 211,52
dk17 199,28 167 199,39 172,19 199,87
dk27 206,02 201,9 204,18 205,1 196,65

dk512 196,27 196,27 199,75 197,49 208,17
donfile 184,03 184 203,65 194,83 231,63

ex1 150,94 139,76 176,87 186,14 212,93
ex2 198,57 198,57 200,14 199,75 201,34
ex3 194,86 194,86 195,76 193,43 201,12
ex4 180,96 177,71 192,83 178,14 197,76
ex5 180,25 180,25 181,16 181,76 182,01
ex6 169,57 163,8 176,59 174,12 198,65
ex7 200,04 200,84 200,6 200,32 200,69

keyb 156,45 143,47 168,43 157,16 187,48
kirkman 141,38 154 156,68 143,76 174,73

lion 202,43 204 202,35 201,32 200,18
lion9 205,3 185,22 206,38 205,86 207,13

mark1 162,39 162,39 176,18 169,65 189,58
mc 196,66 195,47 196,87 192,53 196,12

modulo12 207 207 207,13 207,37 208,12
opus 166,2 166,2 178,32 168,79 177,84

planet 132,71 132,71 187,14 185,73 193,49
planet1 132,71 132,71 187,14 185,73 193,49

pma 146,18 146,18 169,83 153,57 184,45
s1 146,41 135,85 157,16 149,17 170,19

s1488 138,5 131,94 157,18 153,12 187,95
s1494 149,39 145,75 164,34 159,42 186,22

s1a 153,37 176,4 169,17 158,12 178,84
s208 174,34 176,46 178,76 172,87 196,37

s27 198,73 191,5 199,13 198,43 198,76
s386 168,15 173,46 179,15 169,21 182,63
s420 173,88 176,46 177,25 172,87 181,62
s510 177,65 177,65 198,32 183,18 209,36

s8 180,02 178,95 181,23 180,39 178,32
s820 152 153,16 176,58 166,29 192,14
s832 145,71 153,23 173,78 160,03 192,87
sand 115,97 115,97 126,82 120,63 163,18

shiftreg 262,67 263,57 276,26 276,14 256,69
sse 157,06 169,12 174,63 169,69 189,64

styr 137,61 129,92 145,64 138,83 178,65
tma 163,88 147,8 164,14 168,19 181,22

Total 8126,95 8173,06 8719,07 8103,27 9172,65
Percentage 88% 89% 95% 88% 100%

https://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar
https://people.engr.ncsu.edu/brglez/CBL/benchmarks/LGSynth93/LGSynth93.tar
https://people.eecs.berkeley.edu/~brayton/publications/2006/iwls06_sls.pdf
https://people.eecs.berkeley.edu/~brayton/publications/2006/iwls06_sls.pdf
https://people.eecs.berkeley.edu/~brayton/publications/2006/iwls06_sls.pdf

758 A. Barkalov et al.

Mishchenko, A. and Brayton, R. (2007). SAT-based logic
optimization and resynthesis, https://people.eecs
.berkeley.edu/~alanmi/publications/200
7/tech07_imfs.pdf.

Mishchenko, A., Brayton, R., Jiang, J.-H.R. and Jang, S.
(2011). Scalable don’t-care-based logic optimization and
resynthesis, ACM Transactions on Reconfigurable Tech-
nology and Systems 4(4): 23.

Nag, A., Das, S. and Pradhan, S. (2018). Low power FSM
synthesis based on automated power and clock gating
technique, Journal of Circuits, Systems and Computers
28(5), Article ID 1920003.

Nowicka, M., Łuba, T. and Rawski, M. (1999). FPGA-based
decomposition of Boolean functions: Algorithms and
implementation, 6th International Conference on Ad-
vanced Computer Systems, Szczecin, Poland, pp. 502–509.

Opara, A. and Kania, D. (2010). Decomposition-based
logic synthesis for PAL-based CPLDs, International
Journal of Applied Mathematics and Computer Science
20(2): 367–384, DOI: 10.2478/v10006-010-0027-1.

Opara, A., Kubica, M. and Kania, D. (2019). Methods
of improving time efficiency of decomposition dedicated
at FPGA structures and using BDD in the process of
cyber-physical synthesis, IEEE Access 7: 20619–20631.

PKmin (2020). http://www.pk.edu.pl/~zk/PKmin/P
Kmin_pomoc-help.zip.

Pradhan, S., Kumar, M. and Chattopadhyay, S. (2011). Low
power finite state machine synthesis using power-gating,
Integration 44(3): 175–184.

Rafla, N.I. and Gauba, I. (2010). A reconfigurable
pattern matching hardware implementation using on-chip
RAM-based FSM, 53rd IEEE International Midwest
Symposium on Circuits and Systems, Boise, ID, USA,
pp. 49–52.

Rawski, M., Jozwiak, L., Nowicka M. and Luba T. (1997).
Non-disjoint decomposition of Boolean functions and its
application in FPGA-oriented technology mapping, Pro-
ceedings of the 23rd EUROMICRO Conference: New
Frontiers of Information Technology, Budapest, Hungary,
pp. 24–30.

Rawski, M., Selvaraj, H. and Łuba, T. (2005). An
application of functional decomposition in ROM-based
FSM implementation in FPGA devices, Journal of System
Architecture 51(6–7): 423–434.

Rawski, M., Tomaszewicz, P., Borowski, G. and Łuba, T.
(2011). Logic synthesis method of digital circuits designed
for implementation with embedded memory blocks on
FPGAs, in M. Adamski et al. (Eds), Design of Digi-
tal Systems and Devices (LNEE 79), Springer, Berlin,
pp. 121–144.

Scholl, C. (2001). Functional Decomposition with Application
to FPGA Synthesis, Kluwer, Boston, MA.

Sentowich, E., Singh, K., Lavango, L., Moon, C., Murgai,
R., Saldanha, A., Savoj, H., Stephan, P., Bryton, R. and
Sangiovanni-Vincentelli, A. (1992). SIS: A system for
sequential circuit synthesis, Technical report, University of
California, Berkely, CA.

Sklyarov, V. (2000). Synthesis and implementation of
RAM-based finite state machines in FPGAs, Field-
Programmable Logic and Applications: The Roadmap to
Reconfigurable Computing, Villach, Austria, pp. 718–728.

Sklyarov, V., Skliarova, I., Barkalov, A. and Titarenko, L.
(2014). Synthesis and Optimization of FPGA-Based Sys-
tems, Springer, Berlin.

Sutter, G., Todorovich, E., López-Buedo, S. and Boemo, E.
(2002). Low-power FSMs in FPGA: Encoding alternatives,
Integrated Circuit Design. Power and Timing Modeling,
Optimization and Simulation, Seville, Spain, pp. 363–370.

Testa, E., Amaru, L., Soeken, M., Mishchenko, A., Vuillod,
P., Luo, J., Casares, C., Gaillardon, P. and Micheli, G.D.
(2019). Scalable Boolean methods in a modern synthesis
flow, Design, Automation Test in Europe Conference Ex-
hibition (DATE), Florence, Italy, pp. 1643–1648.

Tiwari, A. and Tomko, K. (2004). Saving power by mapping
finite-state machines into embedded memory blocks in
FPGAs, Proceedings of the Conference on Design, Au-
tomation and Test in Europe, Vol. 2, pp. 916–921.

Vivado (2020). https://www.xilinx.com/products/
design-tools/vivado.html.

Wu, X., Pedram, M. and Wang, L. (2000). Multi-code state
assignment for low-power design, IEEE Proceedings on
Circuits, Devices and Systems 147(5): 271–275.

Xie, Y., Liao, S., Yuan, B., Wang, Y. and Wang, Z. (2017).
Fully-parallel area-efficient deep neural network design
using stochastic computing, IEEE Transactions on Circuits
and Systems II: Express Briefs 64(12): 1382–1386.

Xilinx (2010). Virtex-4 Family Overview, http://www.xil
inx.com/support/documentation/data_she
ets/ds112.pdf.

Xilinx (2015). Virtex-5 Family Overview, http://www.xil
inx.com/support/documentation/data_she
ets/ds100.pdf.

Xilinx (2020a). http://www.xilinx.com.

Xilinx (2020b). ISE Foundation, https://www.xilinx.c
om/products/design-tools/ise-design-su
ite.html.

Alexander A. Barkalov worked in Donetsk Na-
tional Technical University (DNTU) from 1976
till 1996 as a tutor. He cooperated actively with
the Kiev Institute of Cybernetics (IC) named after
Victor Glushkov. He obtained his PhD in com-
puter science in 1995 from the IC. From 1996 till
2003 he worked as a professor of DNTU. Since
2003 he has been working as a professor in the
Department of Computer, Electrical and Control
Engineering of the University of Zielona Góra.

https://people.eecs.berkeley.edu/~alanmi/publications/2007/tech07_imfs.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2007/tech07_imfs.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2007/tech07_imfs.pdf
http://www.pk.edu.pl/~zk/PKmin/PKmin_pomoc-help.zip
http://www.pk.edu.pl/~zk/PKmin/PKmin_pomoc-help.zip
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html
https://www.xilinx.com/products/design-tools/ise-design-suite.html

Improving characteristics of LUT-based Mealy FSMs 759

Larysa Titarenko obtained her PhD de-
gree (telecommunications) in 2005 from the
Kharkov National University of Radioelectronics
(KNURE). Till 2003 she worked as a professor of
the KNURE. Since 2005 she has been working as
a professor in the Department of Computer, Elec-
trical and Control Engineering of the University
of Zielona Góra.

Kamil Mielcarek received his MSc degree in
computer engineering from the Technical Uni-
versity of Zielona Góra, Poland, in 1995 and his
PhD degree in computer science from the Uni-
versity of Zielona Góra, Poland, in 2010. Since
2001 he has been a lecturer there. His current
interests include methods of synthesis and opti-
mization of control units in field-programmable
logic devices, hardware description languages,
perfect graphs and Petri nets, algorithmic theory

and safety of UNIX and network systems.

Received: 21 February 2020
Revised: 20 May 2020
Re-revised: 21 July 2020
Accepted: 4 August 2020

	Introduction
	Background of Mealy FSMs
	State-of-the-art
	Main idea of the proposed method
	Example of synthesis
	Constructing partition for a set of states
	Experimental results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

