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This paper presents an abstraction-based technique to solve the problem of distributed controller design enforcing per-
sistency specifications for interconnected systems. For each subsystem, controller synthesis is based on local distributed
sensor information from other subsystems. An effective method is presented for quantification of such partial information in
an abstraction in terms of level sets of Lyapunov-like ranking functions. The results are illustrated on a laboratory hydraulic
system.

Keywords: symbolic controller synthesis, distributed controller, interconnected system.

1. Introduction

Symbolic models are abstract descriptions of continuous
systems where each symbol corresponds to an aggregate
of continuous states (Tabuada, 2009). Such abstractions
are computed based on some behavioral relationships,
e.g., approximate bi-simulation or its alternating version
(Pola et al., 2008; 2010; Tabuada, 2009; Reissing,
2011; Tazaki and Imura, 2012; Zamani et al., 2012;
2014; Borri et al., 2012; Majumdar and Zamani, 2012;
Dallal and Tabuada, 2015; Girard et al., 2016). Over
the last two decades, the use of symbolic models
for control design has spurred on substantial research
efforts, among many others; see, e.g., the works of
Nilsson (2017), Weber et al. (2017), Gruber et al.
(2017) or Nilsson and Ozay (2020) and the references
therein. They are also other symbolic contexts, e.g.,
symbolic computing, with applications in probabilistic
and stochastic analysis (Kamiński, 2015). The main
motivation has been handling complex heterogeneous
systems that should satisfy complex specifications (Belta
et al., 2017). Software tools are now available for
the computation of abstractions, for example, PESSOA
(Mazo et al., 2010), CoSyMa (Mouelhi et al., 2013),
TuLiP (Wongpiromsarn et al., 2011), or SCOTS (Rungger
and Zamani, 2016).
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Despite considerable progress in symbolic control
techniques, the curse of dimensionality still yields
restrictions: Indeed, the number of symbolic states
(respectively inputs) increases exponentially with respect
to the state-space (respectively input-space) dimension.
Distributed control approaches have been proposed in the
literature to improve the scalability (Zhai et al., 2013; Ge
et al., 2017; Borri et al., 2019; Jabri et al., 2020), as
well as compositional methods for symbolic controller
synthesis (Mayer and Dimarogonas, 2017; Saoud et al.,
2018; 2020; Coënt et al., 2016; Meyer et al., 2018; Pola
et al., 2018; Kim et al., 2015; Nilsson and Ozay, 2020).

In this paper, we address the problem of distributed
symbolic control for interconnected systems. The
developments in the present paper are in the spirit of the
work reported by Dallal and Tabuada (2015) to controller
synthesis. As in that paper, this work considers the
problem of enforcing a persistency specification of the
form “reach a set of states P and remain there for all future
time”, which is denoted in linear temporal logic (LTL)
by ♦�P , meaning “eventually always” (see also Girard
et al., 2016; Nilsson, 2017; Weber et al., 2017; Gruber
et al., 2017; Nilsson and Ozay, 2020; Belta et al., 2017).
Unlike the approaches of the papers above, except Dallal
and Tabuada (2015), the notion of ranking functions is
used in this paper, which represents local distributed
information for controller synthesis. The persistency
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specification and ranking functions are very close in spirit
to asymptotic stability and Lyapunov functions in classical
control theory, and hence it gives an option to build
a bridge between classical control theory and symbolic
control methods.

Dallal and Tabuada (2015) presented a compositional
approach has been presented for the design of controllers
that enforce reach-and-stay specifications. The method
is inspired by small gain results from control theory
(Jiang et al., 1994; Dashkovskiy et al., 2010) and
assume-guarantee contracts for dynamical systems
(Saoud et al., 2019) based on prior works from formal
methods; see the work of Henzinger et al. (2002) and
the references therein. In this paper, we extend the
basic results reported by Dallal and Tabuada (2015) for
2-component systems to n-dimensional interconnected
nondeterministic systems, which was partially presented
by Apaza-Perez et al. (2019). Unlike Dallal and Tabuada
(2015) or Apaza-Perez et al. (2019), we propose sufficient
conditions for explicitly constructing ranking functions
and a distributed controller enforcing the satisfaction of a
persistency specification by the abstracted interconnected
system. Local distributed sensor information from other
sub-systems is used for controller synthesis for each
sub-system. Such partial information is characterized in
terms of Lyapunov-like ranking functions. We provide
also an algorithmic implementation of the whole process
which will be applied to a numerical example of a
distributed control of a three-tank system.

This paper is structured as follows. Some
preliminary definitions are first given in Section 2.
Section 3 is devoted to the problem statement. In
Section 4, a procedure based on Lyapunov-like (or
ranking) functions for building a reduced discrete
abstraction of the original interconnected system is
proposed. In Section 5, a procedure is proposed to
compute those ranking functions and ensure that the
persistency specification is satisfied. A step-by-step
algorithm is provided. Section 6 presents a numerical
example and some concluding remarks are given in
Section 7.

2. Symbolic models and equivalence notions

2.1. Notation. The cardinality of a set A is denoted
by |A|. The relative complement of the set A in the set
B is denoted by B \ A. Given a relation R ⊆ A × B
and A0 ⊆ A, we define R(A0) = {b ∈ B | ∃ a ∈
A0, (a, b) ∈ R}. f : A → B denotes an ordinary
map, and f−1(b) := {a ∈ A : f(a) = b} for b ∈
B. The symbols R, R>0, Z, N0 denote the set of real
numbers, positive real numbers, integers, natural numbers
including the zero, respectively. [a; b] ⊂ Z denotes a
discrete interval with a and b as lower and upper bound,
respectively. Given numbers i, n ∈ N with i ≤ n, the

following sets are defined where the element positions
are given in ascending order with respect to their values:
I = [1;n] ⊂ N, Ĩi = I \ {i}. Given two sets A and B,
the product A×B denotes the Cartesian product, and for
a collection of sets {Aj}j∈Ĩi , indexed by the set Ĩi, the
product

∏
j∈Ĩi Aj denotes the Cartesian product keeping

the order in Ĩi, i.e.,
∏

j∈Ĩi Aj := A1 × · · · × Ai−1 ×
Ai+1×· · ·×An. Given a vector x = (x1, . . . , xn) ∈ R

n,
xi denotes the i-th component of x, and x̃i is defined as
x̃i = (x1, . . . , xi−1, xi+1, . . . , xn).

2.2. Transition systems. In this paper we will use the
class of alternating transition systems as abstract models
of control systems (Tabuada, 2009).

Definition 1. A transition system S is the quadruple
(XS , US, FS , Y,H), where XS is a set of states, US is a
set of control inputs, FS ⊆ XS ×US ×XS is a transition
relation, Y is a set of outputs, and H : XS → Y is an
output map. When Y = XS and the output map H is the
identity function, then the transition system is reduced to
the triple S = (XS , US , FS).

FS has the interpretation that a transition can occur
from state x to state x′ upon control input u if and only
if (x, u, x′) ∈ FS . A transition (x, u, x′) ∈ FS is also
denoted by x

u−→ x′. Postu(x) = {x′ ∈ XS : (x, u, x′) ∈
FS} denotes the set of successors of x upon control u.

Definition 2. Given two transition systems Sa =
(Xa, Ua, Fa) and Sb = (Xb, Ub, Fb), a relation R ⊆
Xa × Xb is an alternating simulation relation from Sa

to Sb if the following conditions are satisfied:

• ∀xb ∈ Xb, ∃xa ∈ Xb, (xa, xb) ∈ R,

• (xa, xb) ∈ R, ∀ua ∈ Ua, ∃ub ∈ Ub, ∀x′
b ∈

Postub
(xb), ∃x′

a ∈ Postua(xa), (x′
a, x

′
b) ∈ R.

An alternating simulation relation allows the
designer to work with the abstract system Sa instead
of the concrete system Sb. For example, in the case
of a reach-and-stay specification, if there is a suitable
controller in Sa then there is one in Sb. For this, we
need to assume that every state in Sb has a successor:
Postub

(xb) is not empty for all xb. Note also that
the abstraction should not be too coarse: the states to
reach-and-stay, as given by a specification, should be
separated from other states in the abstraction. Under this
condition, a controller for the abstract system Sa can be
refined to a controller on the concrete system Sb; see
Tabuada (2009).

Note that the feedback refinement relation as
in the work of Reissig et al. (2017) is a special
case of alternating simulation relations, where the
designed controllers require quantized (or symbolic)
state information only and can be interfaced with the
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initial system via a static quantizer. Contrarily to the
approximate alternating simulation which is a one-sided
relationship, approximate (alternating) bisimulation is
a symmetric notion that bridges established notions in
computer science and control theory (Girard and Pappas,
2011; Saoud, 2019).

3. Problem statement

Suppose that we are given an engineered system in the
physical world (concrete system) characterized by a set of
continuous-time differential equations:

ξ̇(t) = g(ξ(t), υ(t)) + w(t), (1)

with state variable ξ ∈ X ⊂ R
n, control input υ ∈ U ⊂

R
m, disturbance w ∈ [[Wmin,Wmax]] which denotes a

hyper-interval [Wmin,1,Wmax,1]×· · ·×[Wmin,n,Wmax,n]
with Wmin = [Wmin,1, . . . ,Wmin,n]

T ,Wmax =
[Wmax,1, . . . ,Wmax,n]

T ∈ R
n and ∀i ∈ I,Wmin,i ≤

Wmax,i.

Assume that a discrete finite state model can be
abstracted from the time-sampled version of the concrete
system (1), and the abstraction is constructed by fixing a
parameter τ for the sample time and vectors of parameters
η, μ for the state and input spaces, using a feedback
refinement relation between the concrete system and
the abstract system (Reissig et al., 2017). Notice that
increasing τ , η and μ results in a smaller symbolic model
(in terms of the cardinality of the state space and the
number of elementary transitions between the symbolic
states), but this could reduce the possibility of designing
the desired control. The discrete non-deterministic system
(2) is considered:

∀ i = 1, . . . , n : x+
i ∈ fi(xi, x1, x2, . . . , xn, ui) (2)

with xi ∈ Xi, ui ∈ Ui for some finite sets Xi, Ui, i ∈ I.
The above structure results from the interconnection of n
subsystems. The system (2) is non-deterministic in the
sense that if an input is applied in a state, several next
states are possible. The trajectories of the system (2) are
denoted by ∀i ∈ I, xi(k, x0, ui) with initial condition
xi(0, x0, ui) = x0, discrete time k ∈ N0, and control
ci : Xi ×

∏
j∈Ĩi Xj → Ui where the domain of the

controller is defined as dom(c) = {x ∈ X | c(x) 	= ∅}.
Consider specifications of the form “reach P ” or

“reach P and stay there”, where P =
∏

i∈I Pi for some
sets Pi ⊆ Xi, using linear temporal logic notations these
are written as ♦P and ♦�P , respectively. It is a priori
desired to find controllers ci : Xi ×

∏
j∈Ĩi Xj → Ui for

each i ∈ I, such that the system described by (2), under
the state feedback controls ui = ci(xi, x̃i), satisfies

♦P : ∀x0 ∈ dom(c), ∃ ki ∈ N0, xi(ki, x0, ui) ∈ Pi,

♦�P : ∀x0 ∈ dom(c), ∃ ki ∈ N0, ∀k ≥ ki,

xi(k, x0, ui) ∈ Pi.

The objective is to design a controller ci for the
subsystem i in a domain Xi ×

∏
j∈Ĩi Dj of smaller

cardinality than Xi ×
∏

j∈Ĩi Xj by using reduced knowl-
edge about other subsystems. Our approach is based
on ranking functions that characterize partial information
about the sensed states of other subsystems. The
alternating simulation relation will be used to infer the
existence of a controller for (2) from the existence of a
controller for a reduced discrete abstraction.

4. Construction of reduced discrete
abstractions

The transition system modeling the system (2) is denoted
S = (XS , US, FS) where XS =

∏
i∈I Xi, US =∏

i∈I Ui, and FS is given by

FS =

{
(x, u, x′) ∈ XS × US ×XS :
∀ i ∈ I, x′

i ∈ fi(xi, x̃i, ui)

}

. (3)

The construction of a reduced discrete abstraction T
based on ranking functions is done as follows: consider
ranking functions defined by

Vi : Xi → Di (4)

for each i ∈ I, where Di = {0, 1, 2, . . . , di}, for some
di ∈ N0, and |Di| ≤ |Xi|. Intuitively, the ranking
functions (4) represent some notion of distance to the set
V −1
i (0) ⊆ Xi, i ∈ I. In principle, they can be freely

proposed, but we will give a constructive way to build
them when considering persistency specifications in the
next section.

To begin with, the functions fi of (2) defined in
the domain Xi ×

∏
j∈Ĩi Xj × Ui are used to define the

functions Fi over a simplified domain, as follows: ∀i ∈
I, ∀(xi, ṽi, ui) ∈ Xi ×

∏
j∈Ĩi Dj × Ui,

Fi(xi, ṽi, ui) =
⋃

x̃i∈
∏

j∈Ĩi V −1
j (vj)

fi(xi, x̃i, ui). (5)

Note that the relationship between states x̃i ∈
∏

j∈Ĩi Xj

and values ṽi ∈
∏

j∈Ĩi Dj in (5) is determined by
the ranking functions defined in (4). The controllable
predecessor based on the values of ranking functions for
each subsystems i ∈ I from a set Si ⊆ Xi under the
influence of ṽi ∈

∏
j∈Ĩi Dj is defined as

CPreṽii (Si|Ui) =

{
xi ∈ Xi : ∃ui ∈ Ui,
Fi(xi, ṽi, ui) ⊆ Si

}

. (6)

The value ṽi in (6), which is defined from ranking
functions (4), characterizes some partial information
about the states of components other than i.

To simplify the notation, V −1
i (≤ vi) will denote a

shorthand for
⋃

k≤vi
V −1
i (k) with k ∈ N0. Consider



632 W.A. Apaza-Perez et al.

the function V+
i (vi, ṽi) for all i ∈ I defined with the

controllable predecessor:

V+
i (vi, ṽi) = min

{
k ∈ N0 : V −1

i (vi) ⊆
CPreṽii

(
V −1
i (≤ k)

∣
∣Ui

)

}

. (7)

For such V+
i , consider the abstraction T given by T =

(XT , UT , FT ), where XT =
∏

i∈I Di, UT = {uT } and
uT is the only control input, and

FT =

{
(v, uT , v

′) ∈ XT × {uT } ×XT :
∀ i ∈ I, v′i ≤ V+

i (vi, ṽi)

}

. (8)

Lemma 1. (Apaza-Perez et al., 2019) The relation R ⊆
XT ×XS given by

R =
{

(v, x) ∈ XT ×XS : ∀ i ∈ I, vi = Vi(xi)
}
,
(9)

is an alternating simulation relation from T to S.

The next result gives the domain of admissible
controllers for T satisfying the persistency specification.

Theorem 1. (Apaza-Perez et al., 2019) Suppose that T
satisfies the specification ♦�PT , for some set PT ⊆ XT .
Then there exists a controller c = (c1, . . . , cn), where ci
has domain Xi ×

∏
j∈Ĩi Dj enforcing the specification

♦�PS given by

PS = {x ∈ X : (V1(x1), V2(x2), . . . , Vn(xn)) ∈ PT }.
(10)

In this case, the controller can be chosen as follows:

ci(xi, ṽi)

∈
{
ui ∈ Ui : max

x̃i∈
∏

j∈Ĩi V −1
j (vj)

Vi(fi(xi, x̃i, ui))

≤ V+
i (Vi(xi), ṽi)

}
(11)

Note that Theorem 1 is valid also for specifications
♦PT , ♦PS instead of ♦�PT , ♦�PS .

Theorem 1 gives an explicit admissible set of
controllers only when the system T satisfies the desired
specification. Later, this property can be checked by
analyzing cycles in T .

Definition 3. A directed graph G = (V , E) consists of
a vertex set V and an edge set E , where E ⊆ V × V is
a collection of ordered pairs. A cycle is a sequence of
vertices c(1), c(2), . . . , c(m) ∈ V such that c(1) = c(m)
and (c(i), c(i+ 1)) ∈ E for all i. A cycle is called a self-
cycle when m = 2, e.g., (c(1), c(1)) ∈ E .

The system T defined by (7) and (8) can be
considered as a directed graph G = (XT , ET ), where
(v, v′) ∈ ET if and only if (v, uT , v

′) ∈ FT . A necessary
and sufficient condition under which system T enforces
the specification ♦�PT , for some set PT ⊆ XT , can be
obtained in terms of cycle properties:

Proposition 1. Consider T defined in (7)–(8), a target set
PT ⊆ XT . T satisfies the specification ♦�PT if and only
if all cycles in G = (XT , ET ) are included in PT .

Proof.
(Necessity) Assume that T satisfies ♦�PT and consider
a cycle v(1), v(2), . . . , v(m) = v(1) that is reachable
from some initial state w(1), through a path w(1) →
w(2) → · · · → w(k) = v(1). Since the infinite path
w(1) → w(2) → · · · → v(1) → · · · → v(m− 1)→ . . .
reaches PT and stays there forever, all vertices of the
cycle must belong to PT .

(Sufficiency) This is proved by contradiction: assume that
all reachable cycles are included in PT , and consider an
infinite path from some initial state. If this path does
not satisfy ♦�PT then some vertex that appears infinitely
often on this path does not belong to PT . But this
means that some reachable cycle is not included in PT ,
a contradiction. �

The following proposition gives a sufficient
condition under which the ranking functions give a
system T satisfying the specification reach-and-stay
♦�PT , for some set PT = P1T × · · · × PnT ⊆ XT . The
stay part of ♦�PT is guaranteed by condition (i) and the
reach part by (ii), (iii).

Proposition 2. Consider the system T = (XT , UT , FT )
defined from (7) and (8) and any downward closed set
PT ⊆ XT , i.e., for every (v(1), . . . , v(n)) ∈ PT , if
w(i) ≤ v(i) for all i ∈ I, then (w(1), . . . , w(n)) ∈ PT .
T satisfies the specification ♦�PT if the following condi-
tions are satisfied:

(i) ∀v ∈ PT ,
(
V+
1 (v1, ṽ1), . . . ,V+

n (vn, ṽn)
) ∈ PT ,

(ii) ∀ v ∈ XT \ PT , ∀i ∈ I, V+
i (vi, ṽi) ≤ vi,

(iii) ∀v ∈ XT \ PT , ∃i ∈ I, V+
i (vi, ṽi) < vi.

Proof. The proof of Proposition 2 must ensure that all
cycles consist of vertices inPT according to Proposition 1.
Condition (i) implies that there are no cycles with vertices
in PT and XT \ PT simultaneously. The argument is
reduced to two claims. The first one shows that there are
no cycles with more than one vertex in XT \ PT , and the
second one shows that there are no self-cycles in XT \PT .

Claim 1. There are no cycles (except maybe self-cycles)
in T with vertices in XT \ PT .

Consider a cycle

v(1)
uT−→ v(2)

uT−→ v(3) (12)

in T outside of PT , where v(1) = v(3).
The relation in (8) implies vi(2) ≤ V+

i (vi(1), ṽi(1))
and vi(3) ≤ V+

i (vi(2), ṽi(2)). From the condition (i)
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and considering the cycle condition v(1) = v(3), one
can conclude v(1) = v(2). Analogously this procedure
can be extended to v(1)

uT−→ v(2)
uT−→ . . .

uT−→ v(m)
for arbitrary values of m, proving v(1) = v(2) = · · · =
v(m).

Claim 2. There are no self-cycles in T with vertices in
XT \ PT .

This claim is proved by contradiction: let v ∈ XT \
PT and suppose that there is a self-cycle in v. This means
(v, {uT }, v) ∈ FT . Using the relation (8), it is equivalent
to vi ≤ V+

i (vi, ṽi) for all i ∈ I, this is a contradiction
with the condition (iii).

These claims guarantee that all cycles are included
in PT . Thus, T satisfies the specification ♦�PT by
Proposition 1. �

This section has shown that it is possible to build
reduced discrete abstractions from the ranking functions
and these can provide an explicit admissible set of
controllers only when the specifications are satisfied. The
next section will address the problem of constructing
ranking functions ensuring that the reduced system
satisfies the reach, reach and stay specifications.

5. Ranking functions and persistency
specifications

The definition of predecessor (6) relies on the ranking
functions {Vi}i∈I and we introduce a generic definition
for building ranking functions. The controllable
predecessors CPi (Ui, E, Si), where Ui is the input set,
E ⊆∏

j∈Ĩi Xj and Si ⊆ Xi, is defined by

CPi (Ui, E, Si) =

{
xi ∈ Xi : ∃ui ∈ Ui, ∀x̃i ∈ E,

fi(xi, x̃i, ui) ⊆ Si

}

.

(13)

The controllable predecessor defined in (13) describes the
states in Xi for which the controlled system i is able to
reach the target set Si despite the influences (expressed by
E) of other interconnected systems (robustness property).
E may depend on some available partial knowledge about
states of other components.

The predecessor in (13) does not depend on ranking
functions defined a priori. When ranking functions
{Vi}i∈I are given, and v ∈ ∏

i∈I Di (the domain of
ranking functions), then taking E =

∏
j∈Ĩi V

−1
j (vj)

allows us to recover the predecessor defined in (6),
through

CPi

⎛

⎝Ui,
∏

j∈Ĩi

V −1
j (vj), Si

⎞

⎠ = CPreṽii (Si|Ui) . (14)

The controllable predecessor given in (13) allows us
to find ranking functions based on Algorithm 1 which
satisfy the specifications (Theorem 2). The algorithm
uses the controllable predecessor defined in (13) and some
properties are required to define the ranking functions,
which are obtained from the following lemma.

Lemma 2. The controllable predecessor satisfies

(i) Ei1 ⊆ Ei2 ⇒ CPi (Ui, Ei2 , Si) ⊆ CPi (Ui, Ei1 , Si)

(ii) Si1 ⊆ Si2 ⇒ CPi (Ui, Ei, Si1) ⊆ CPi (Ui, Ei, Si2) .

Proof.
(i) Let xi ∈ CPi (Ui, Ei2 , Si). Then ∃ui ∈ Ui, ∀x̃i ∈
Ei2 , fi(xi, x̃i, ui) ⊆ Si. Due to the condition Ei1 ⊆ Ei2 ,
one can ensure that

∃ui ∈ Ui, ∀x̃i ∈ Ei1 , fi(xi, x̃i, ui) ⊆ Si,

which implies xi ∈ CPi (Ui, Ei1 , Si) by (13).

(ii) Let xi ∈ CPi (Ui, Ei, Si1). Then ∃ui ∈ Ui, ∀x̃i ∈
Ei, fi(xi, x̃i, ui) ⊆ Si1 . Since Si1 ⊆ Si2 , one can ensure
that

∃ui ∈ Ui, ∀x̃i ∈ Ei, fi(xi, x̃i, ui) ⊆ Si2 ,

which implies xi ∈ CPi (Ui, Ei, Si2) by (13). �

Notation. We assume b(c) = 1 if c is true, b(c) = 0
otherwise; Zi(≤ k) =

⋃
l≤k Zi(l), {< i} = {ĵ ∈ I :

ĵ < i}, and {≤ i}, {> i} are defined analogously. The
value �s in (17) and (18) denotes the s-th entry of vector
� ∈ L(i) ⊆ R

n.

The idea of Algorithm 1 is inspired by Lyapunov
functions and level sets from classical control theory.
Intuitively, each set Zi(k) can be considered as a level
set. In each iteration k in Step 3, the search for new
level sets Zi(k) is based on two principles: (i) given the
system i, the set Zi(k) in (17) reaches lower levels, which
is denoted Zi(≤ k − 1), despite the influence of the sets
Zs(�s) on the other systems (which are already defined by
previous iterations); (ii) the condition in (18) shows that
the set Zi(k) will be considered in our sequence when its
effect on the other sets Zj does not cause any increase in
levels. This idea is illustrated in Fig. 1, where Ti denotes
the set Zi(k), and the arrows and circles describe possible
behaviors in the level sets: the arrow indicates that the
set reaches strictly lower levels (decreasing behavior), the
arrow with a circle indicates that it is possible to reach
lower levels or stay in the same level (non-increasing
behavior).

Regarding Step 2 in Algorithm 1, the computation of
feasible contracts for invariance (or safety) can be used
to find the sets Bi; e.g., Zonetti et al. (2019) propose
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Algorithm 1. Building a sequence of sets Zi(k) ⊆ Xi,
i ∈ I, k ∈ N0 and controller domain.
Step 1. Initialization with the target sets related for each
subsystem:

Z1(0)← P1, . . . , Zi(0)← Pi, . . . , Zn(0)← Pn; (15)

Step 2. Find sets Bi ⊆ Pi, ∀ i ∈ I such that

Bi ⊆ CPi

⎛

⎝Ui,
∏

s∈Ĩi

Zs(0), Bi

⎞

⎠ . (16)

Step 3. Find a sequence of sets in each subsystem,
which reach the target sets despite the influence of other
subsystems.
k ← 0; for i← 1, n do Zi(0)← Bi end for;
while ∃i ∈ I, Zi(k) 	= ∅ do
k ← k + 1;
for i← 1, n do
L(i)← {0, 1, ..., k}(i−1) × {k} × {0, 1, ..., k − 1}(n−i);

Zi(k)←
⋂

�∈L(i)

CPi

⎛

⎝Ui,
∏

s∈Ĩi

Zs(�s), Zi(≤ k − 1)

⎞

⎠;

(17)
cond = ∀� ∈ L(i), ∀ j ∈ Ĩi, ∀q ∈ {≤ k − b (j > i)},

Zj(q) ⊆ CPj

(
Uj,

∏
s∈Ĩj Zs(�s), Zj(≤ q)

)
; (18)

If cond ∧ not (Zi ⊆ Zi(≤ k − 1)), then

Zi(k)← Zi(k) \ Zi(≤ k − 1); (19)

else
Zi(k)← ∅;

end if
end for

end while

an approach based on the monotonicity property; Eqtami
and Girard (2019) base their the approach on quantitative
computation of controlled invariants; in the works of
Ghasemi et al. (2020) the approach is based on convexity
properties; Chen et al. (2019) propose an approach based
on an epigraph method. (16) ensures that the specification
“stay in PT ” is fulfilled (see also Theorem 2).

Remark 1. The domain of the distributed controller
dom(c) resulting from Algorithm 1 can be explicitly
characterized as

dom(c) =
∏

i∈I

Zi(≤ kmax(i)), (20)

where ∀i ∈ I, kmax(i) := max{k ∈ N0|Zi(k) 	=
∅}. Note that, ∅ denoting the empty set (to be

…

Fig. 1. Algorithm 1: k-th iteration for the system i. Ti denotes
the set Zi(k) in (17), the arrows and circles describe pos-
sible behaviors in the sets of Zj ’s (level sets): the arrow
indicates that the set Ti reaches lower levels, the arrow
with a circle indicates that other Zj ’s reach lower levels
or stay on the same level.

distinguished from a non-empty “zero” value) and
provided fi(xi, x̃i, ui) satisfies ∀(xi, ui), fi(xi, ∅, ui) =
∅, then CPi(Ui, ∅, Si) = Xi from (13).

Since the Xi’s are finite sets, the completion of the
procedure in Algorithm 1 can be characterized by the
following: ∀i ∈ I, ∃ l ∈ N, k ≥ l, Zi(k) = ∅.
Consequently, we define

di := min {k ∈ N0 : Zi(k + 1) = ∅} . (21)

Let XZ
i := ∪k∈[0;di]Zi(k) be the domain where the

ranking functions are defined, and XZ =
∏

i∈I X
Z
i .

XZ
T =

∏
i∈I{0, 1, . . . , di} denotes the state space used

to build the reduced abstraction according to Section 4.

Lemma 3. Consider the sets Zi obtained from Algorithm
1. The ranking functions Vi defined in XZ

i as

∀ i ∈ I, Vi(x) = min{k ∈ N0 : x ∈ Zi(k)}, (22)

satisfy

∀vi ∈ [0, . . . , di], V −1
i (vi) = Zi(vi). (23)

The proof of Lemma 3 is immediately obtained by
condition (19) in Algorithm 1, which ensures a property
of disjoint sets in the sets Zi.

Theorem 2. Consider the system (2) and the sets Zi

according to Algorithm 1. Define the ranking functions
Vi : XZ

i ⊆ Xi → N0, i ∈ I based on the sets Zi

as in (22) and define a system T as in (7) and (8). Let
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XZ =
∏

i∈I X
Z
i . Then, T satisfies the specification ♦PT

in XZ , and the truth of (16) also ensures that T satisfies
♦�PT .

Proof. It is based on Proposition 2, where the three
conditions are expressed by the following three claims.

Claim 1. If the “stay” condition (16) in Algorithm 1 is
true, then

∀v ∈ PT ,
(
V+

1 (v1, ṽ1), . . . ,V+
n (vn, ṽn)

) ∈ PT .

According to (15) and (22) the ranking functions
satisfy

∀ i ∈ I, V −1
i (0) = Pi, (24)

which implies PT = {0}where 0 ∈ XT is the zero vector.
In terms of ranking functions, Step 2 in Algorithm 1
implies

∀ i ∈ I, V −1
i (0) ⊆ CPi

(
Ui,

∏
s∈Ĩi V

−1
s (0), V −1

i (0)
)
. (25)

Note that CPi

(
Ui,

∏
s∈Ĩi V

−1
s (0), V −1

i (0)
)

=

CPre0̃i
i

(
V −1
i (0)|Ui

)
is satisfied by (14), from which the

inclusion (25) can be expressed as

∀ i ∈ I, V −1
i (0) ⊆ CPre0̃i

i

(
V −1
i (0)|Ui

)
. (26)

The inclusion (26) ensures (27) according to (7):

∀ i ∈ I, V+
i (0) = 0. (27)

Claim 2. ∀ v ∈ XZ
T \ PT , ∀i ∈ I, V+

i (vi, ṽi) ≤ vi.

Let v ∈ XZ
T \ PT , then ∀ i ∈ I, vi ∈ [0; di]. Define

v̂m = max{vi : i ∈ I},
r = max{i ∈ I : vi = v̂m},

(28)

which implies that vi ≤ v̂m for i ≤ r, and vi < v̂m for
i > r.

Note that vr = v̂m > 0, and consider the k-th
iteration with k = v̂m and the subsystem r in Algorithm 1,
giving Tr = Zr(vr),

Tr =
⋂

�∈L(r)

CPr(Ur,
∏

s∈Ĩr

Zs(�s), Zr(≤ vr − 1)),

(29)

L(r) = {0, 1, . . . , ṽm}(r−1) × {ṽm}
× {0, 1, . . . , ṽm − 1}(n−r),

Zj(vj) ⊆ CPj

⎛

⎝Uj ,
∏

s∈Ĩj

Zs(vs), Zj(≤ vj)

⎞

⎠ , (30)

∀j ∈ Ĩr, by (17) and (18).

Lemma 3 implies V −1
i (≤ vi) = Zi(≤ vi) and∏

s∈Ĩj V
−1
s (vs) =

∏
s∈Ĩj Z(vs), ensuring

∀j ∈ Ĩr, CPj

⎛

⎝Uj,
∏

s∈Ĩj

Zs(vs), Zj(≤ vj)

⎞

⎠

= CPj

⎛

⎝Uj ,
∏

s∈Ĩj

V −1
s (vs), V

−1
j (≤ vj)

⎞

⎠ .

(31)

For each j ∈ Ĩr, we have that V −1
j (vj) =

Zj(vj) and CPj

(
Uj ,

∏
s∈Ĩj V

−1
s (vs), V

−1
j (≤ vj)

)
=

CPre
ṽj
j

(
V −1
j (≤ vj)|Uj

)
are obtained by Lemma 3 and

(14) respectively, which imply

∀j ∈ Ĩr, V −1
j (vj) ⊆ CPre

ṽj
j

(
V −1
j (≤ vj)|Uj

)
, (32)

from (30) and (31). Consequently, V+
j (vj , ṽj) ≤ vj , ∀j ∈

Ĩr is satisfied from (7).
Moreover, the inclusion

⋂

�∈L(r)

CPr

⎛

⎝Ur,
∏

s∈Ĩr

Zs(�s), Zr(≤ vr − 1)

⎞

⎠

⊆ CPr

⎛

⎝Ur,
∏

s∈Ĩr

Zs(vs), Zr(≤ vr − 1)

⎞

⎠ , (33)

is guaranteed by (28) due to the relations vi ≤ v̂m for
i ≤ r and vi < v̂m for i > r. Lemma 3 guarantees

CPr

⎛

⎝Ur,
∏

s∈Ĩr

Zs(vs), Zr(≤ vr − 1)

⎞

⎠

⊆ CPr

⎛

⎝Ur,
∏

s∈Ĩr

V −1
s (vs), V

−1
r (< vr)

⎞

⎠ . (34)

The following relation is obtained from (14):

CPr

⎛

⎝Ur,
∏

s∈Ĩr

V −1
s (vs), V

−1
r (< vr)

⎞

⎠ =

= CPreṽrr
(
V −1
r (< vr)|Ur

)
. (35)

Thus, from (29), (33), (34) and (35) we get

V+
r (vr , ṽr) < vr. (36)

Finally, the following condition is ensured by (32)
and (36):

∀ v ∈ XZ
T \ PT , ∀i ∈ I,V+

i (vi, ṽi) ≤ vi. (37)

Claim 3. ∀v ∈ XZ
T \ PT , ∃i ∈ I, V+

i (vi, ṽi) < vi.
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Claim 3 is guaranteed from a process analogous to
that of case i = r in Claim 2, where (28), (29) (33) and
(34) imply

V+
r (vr, ṽr) < vr.

Claims 1–3 satisfy the conditions of Proposition 2,
which imply that the system T , according to (7) and (8),
enforces the specification ♦�PT in XZ . �

Consequently, Theorem 2 provides a constructive
way to satisfy the main assumptions of Theorem 1, so
giving an explicit procedure for controller synthesis.

6. Numerical example

In this section, the theoretical results of this paper are
illustrated through distributed control of a three-tank
system. Figure 2 shows the diagram of a coupled
three-tank system. This example has been extensively
used in the control literature as a benchmark (see,
e.g., Zolghadri et al., 1996). The system consists of
three cylinders T1, T2 and T3; these are connected by
cylindrical pipes with a circular cross-section of area SC

and outflow coefficients of Tanks 1 and 2 are az1 and az2,
respectively. The nominal inflows (q1 and q2) are located
at Tanks 1 and 3, respectively. The inflow rate can be
continuously manipulated from 0 to a maximum flow rate
of qmax to maintain the tank level. The measured variables
are the level of Tank 1 (h1), Tank 2 (h2) and Tank 3 (h3).
The nominal outflow pipe has a cross section SC with
an outflow coefficient az3 and located at Tank 3. The
control objective is to control the levels of Tanks 1 and
3 by manipulating the inflow rates q1 and q2.

The three-tank system represented using the mass
balance is given by

ḣ1(t) =
1

S
(q1 − S1az1sign(h1 − h2)

√
2g(h1 − h2)),

ḣ2(t) =
1

S

(
S1az1sign(h1 − h2)

√
2g(h1 − h2)

− S2az2sign(h2 − h3)
√
2g(h2 − h3)

)
,

ḣ3(t) =
1

S

(
q2 − S2az2sign(h2 − h3)

√
2g(h2 − h3)

− S3az3
√
2ah3

)
. (38)

The physical parameters of the three tank system are
presented in Table 1.

The linearized state-space model in continuous form
is

ẋ(t) = Ax(t) +Bu(t). (39)

The linearization technique is valid in the vicinity of
an operating point. The nonlinear system (38) is
linearized around the following steady state operating

point:
[
h1o h2o h3o

]
=

[
0.6 0.5 0.4

]T
m and

[
q1o q2o

]T
=

[
0.35787 0.6563

]T × 10−4 m3/s. The

h1

Tank 1

h2

Tank 2

h3

Tank 3

az1 az2

q1 q2S

SC

az3

Pump 1 Pump 2

Fig. 2. Structure of the three-tank system.

Table 1. Physical parameters of the three-tank system.
Parameters Values

Tank cross-section
area

S = 0.0171 m2

Pipe cross-section
area

SC = S1 = S2 = S3

= 0.00005 m2

Pipe outflow
coefficients

az1 = 0.511, az2 = 0.5279
az3 = 0.7313

Maximum level hmax = 0.68 m
Maximum in-flow

rate
qmax = 1.2× 10−4 m3/s

continuous state space model for the parameters in Table 1
is

A =

⎡

⎣
−0.01046 0.01046 0
0.01046 −0.02127 0.01081

0 0.01081 −0.0183

⎤

⎦ ,

B =

⎡

⎣
58.4795 0

0 0
0 58.4795

⎤

⎦ . (40)

In the first step, the tool SCOTS (Rungger and
Zamani, 2016) is used to abstract the infinite state
system from (38) as a finite transition system. SCOTS
constructs non-deterministic transition systems, which
are obtained using a state-quantization parameter η, an
input-quantization parameter μ, and a time-quantization
parameter τ . Three admissible values for the control
signals qi’s have been selected around the operating point:
∀ i ∈ {1, 2}, Ui = {qio, 1

2 (qio + qio), qio} with q1o =

0.1 × 10−4, q1o = 0.7× 10−4, q2o = 0.3× 10−4, q2o =

0.9 × 10−4. The quantization parameters are considered
as follows: ∀i ∈ {1, 2}, j ∈ {1, 2, 3}, ηj = 0.005,
μi =

1
2 (qio − qio) and τ = 0.1 s. The transition relation

(3) can be expressed through a matrix FS where columns
represent the tank levels, controls and next tank levels, and
the rows correspond to the transitions.

The control objective is to satisfy the specification
to reach and stay in the target set defined as follows:
0.59 ≤ h1 ≤ 0.61, 0.48 ≤ h2 ≤ 0.52, 0.39 ≤ h3 ≤ 0.41.
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Thus, Algorithm 1 is initialized at Step 1 (see (15)) with
the discrete target sets given by P1 = η1Z ∩ [0.59, 0.61],
P2 = η2Z ∩ [0.48, 0.52], P3 = η3Z ∩ [0.39, 0.41]. The
computation of the sets Zi(k) from Algorithm 1 leads to
the following maximum values for the co-domain of the
ranking functions: d1 = 4, d2 = 3, d3 = 6, see (4).
The state space can be decomposed using level sets of
ranking functions, see Fig. 3. As can be seen in Fig. 3,
the level sets are represented around the target set (dark
gray set). Next, the admissible values for each controller
qi with i = 1, 2 have been computed (see (11)). This
results in a reduced domain Xi×

∏
j∈{1,2,3}\{i} Dj which

is illustrated in Fig. 4. This numerical example shows
that the distributed symbolic control can be designed in a
step-by-step way based on user-chosen design parameters.
The controller can be implemented using a lazy evolution
strategy (Mazo et al., 2010).

7. Conclusions

In this paper, the problem of distributed control design
for interconnected systems is addressed. An advantage
of the presented control synthesis methodology is that
the knowledge of the full state is not required: the
ranking functions provide partial information used in the
abstraction considered. This results in lower complexity
controllers for each sub-system. An algorithmic
procedure was proposed to implement the method also
illustrated through a numerical example. The optimization
of the ranking functions calculation to improve the
scalability of the proposed method is a topic of our current
research.
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Paris-Saclay, Gif sur Yvette.

Saoud, A., Girard, A. and Fribourg, L. (2019).
Assume-guarantee contracts for discrete and
continuous-time systems, Preprint, https://hal.
archives-ouvertes.fr/hal-02196511.

Saoud, A., Girard, A. and Fribourg, L. (2020). Contract-based
design of symbolic controllers for safety in distributed
multiperiodic sampled-data systems, IEEE Transactions
on Automatic Control, DOI:10.1109/TAC.2020.2992446.

https://hal.archives-ouvertes.fr/hal-02196511
https://hal.archives-ouvertes.fr/hal-02196511


On distributed symbolic control of interconnected systems under persistency specifications 639

Saoud, A., Jagtap, P., Zamani, M. and Girard, A. (2018).
Compositional abstraction-based synthesis for cascade
discrete-time control systems, 6th IFAC Conference on
Analysis and Design of Hybrid System, Oxford, UK.

Tabuada, P. (2009). Verification and Control of Hybrid Systems,
Springer, New York, NY.

Tazaki, Y. and Imura, J. (2012). Discrete abstractions of
nonlinear systems based on error propagation analysis,
IEEE Transactions on Automatic Control 57(3): 550–564.

Weber, A., Rungger, M. and Reissig, G. (2017). Optimized state
space grids for abstractions, IEEE Transactions on Auto-
matic Control 62(11): 5816–5821.

Wongpiromsarn, T., Topcu, U., Ozay, N., Xu, H. and Murray, R.
(2011). Tulip: A software toolbox for receding horizon
temporal logic planning, 14th International Conference
on Hybrid Systems: Computation and Control, HSCC’11,
Chicago, IL, USA, pp. 313–314.

Zamani, M., Esfahani, P.M., Majumdar, R., Abate, A. and
Lygeros, J. (2014). Symbolic control of stochastic systems
via approximately bisimilar finite abstractions, IEEE
Transactions on Automatic Control 59(12): 3135–3150.

Zamani, M., Pola, G., Mazo, M. and Tabuada, P. (2012).
Symbolic models for nonlinear control systems without
stability assumptions, IEEE Transactions on Automatic
Control 57(7): 1804–1809.

Zhai, G., Chen, N. and Gui, W. (2013). Decentralized
design of interconnected H∞ feedback control systems
with quantized signals, International Journal of Ap-
plied Mathematics and Computer Science 23(2): 317–325,
DOI:10.2478/amcs-2013-0024.

Zolghadri, A., Henry, D. and Monsion, M. (1996). Design of
nonlinear observers for fault diagnosis: A case study, Con-
trol Engineering Practice 4(11): 1535–1544.

Zonetti, D., Saoud, A., Girard, A. and Fribourg, L. (2019). A
symbolic approach to voltage stability and power sharing
in time-varying DC microgrids, 2019 18th European Con-
trol Conference (ECC), Naples, Italy, pp. 903–909.

W. Alejandro Apaza-Perez received his MSc
degree in mathematics (2014) and his PhD (with
honors) in electrical engineering and automatic
control (2018), both from the National Au-
tonomous University of Mexico (UNAM) in
Mexico City. He also holds a Bachelor’s degree
in mathematics (2011). Between 2018 and 2020,
he was a member of the ARIA team in the Con-
trol System Group of the IMS Lab (Integration:
from Material to Systems), Bordeaux, France.

Currently, he is a postdoctoral researcher at the Laboratory of Signals
and Systems (L2S), Gif-sur-Yvette, France. His present research covers
computational approaches, formal methods and applications to cyber-
physical systems. He is also interested in robust and nonlinear con-
trol/observers, dissipative systems, high order sliding mode control, and
their applications.

Christophe Combastel received his MSc degree
in electrical engineering (1997) and his PhD in
control systems (2000), both from the Grenoble
Institute of Technology (Grenoble-INP), France.
From 2001 to 2015, he was an associate profes-
sor at ENSEA. Since 2015, he has been with the
University of Bordeaux and the IMS Lab (CNRS
UMR5218), France. His main focus is on dy-
namic model-based decision-making in uncertain
contexts. As a member of the ARIA team in the

Control System Group of IMS, his research interests include interval,
set-membership and stochastic algorithms for integrity control applica-
tions ranging from on-line fault diagnosis to verification and synthesis
of cyber-physical systems, with special emphasis on uncertainty propa-
gation and model-based data fusion.

Ali Zolghadri is currently an exceptional class
university professor in control and system engi-
neering at the University of Bordeaux, France.
His research deals with model-based fault man-
agement issues. More recently, his research in-
terests have included interconnected, hybrid and
distributed engineered systems by combining as-
pects of symbolic methods/models and robust
techniques from control theory, and new methods
for autonomous navigation and safety-related is-

sues in future civil aviation operations. He has authored and co-authored
about 80 papers in leading international journals, about 140 communica-
tions in international conferences, one Springer book and 12 book chap-
ters. He is a co-holder of 15 patents (French and US) in the aerospace
field. He has been the coordinator of a number of collaborative French,
European and international research projects and actions in control and
aeronautics. He has coordinated (or participated in) a number of col-
laborative French, European (FP7, H2020) and international (Mexico,
the USA, China and Russia) research projects. He has developed with
his team the first model-based fault management system for new gen-
eration A350 aircraft, which entered commercial service in 2015 and is
now flying worldwide. He is the recipient of the 2016 CNRS Innovation
Medal for outstanding scientific research with innovative applications in
the technological and societal fields.

Received: 3 February 2020
Revised: 19 July 2020
Re-revised: 18 August 2020
Accepted: 26 August 2020


	Introduction
	Symbolic models and equivalence notions
	Notation
	Transition systems

	Problem statement
	Construction of reduced discrete abstractions
	Ranking functions and persistency specifications
	Numerical example
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice




