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Descriptor and standard linear continuous-time systems with different fractional orders are investigated. Descriptor systems
are analyzed making use of the Drazin matrix inverse. Necessary and sufficient conditions for the pointwise completeness
and pointwise degeneracy of descriptor continuous-time linear systems with different fractional orders are derived. It is
shown that (i) the descriptor linear continuous-time system with different fractional orders is pointwise complete if and
only if the initial and final states belong to the same subspace, (ii) the descriptor linear continuous-time system with
different fractional orders is not pointwise degenerated in any nonzero direction for all nonzero initial conditions. Results
are reported for the case of two different fractional orders and can be extended to any number of orders.
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1. Introduction

Descriptor (singular) linear systems have been considered
in many papers and books (Borawski, 2018; Campbell
et al., 1976; Dai, 1989; Fahmy and O’Reilly, 1989;
Guang-Ren, 2010; Kaczorek, 2014; Kucera and Zagalak,
1988). In descriptor systems it is assumed that detE =
0 therefore, their analysis is more complex. Standard
systems are a special case of descriptor systems for which
detE �= 0.

Mathematical fundamentals of fractional calculus are
given in the monographs of Kaczorek (2011), Miller and
Ross (1993) or Podlubny (1999). This idea was used
by engineers for modeling various processes (Dzieliński
et al., 2009; Ferreira and Machado, 2003; Kaczorek
and Rogowski, 2015; Bingi et al., 2019; Djennoune
et al., 2019). The positive fractional linear systems
were introduced by Kaczorek (2009), while the systems
consisting of n subsystems with different fractional orders
were analyzed by Busłowicz (2012), Kaczorek (2010;
2011) and Sajewski (2015; 2016). Absolute stability and
global stability of a class of fractional positive nonlinear
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systems were considered by Kaczorek (2019; 2020). The
Drazin inverse matrix method for fractional descriptor
continuous-time linear systems was proposed also by
Kaczorek (2014).

A dynamical autonomous system is called pointwise
complete if every final state of the system can be
reached by a suitable choice of its initial conditions.
A system which is not pointwise complete is called
pointwise degenerated. These properties were studied in
many works (Kaczorek, 2011; Korobov, 2017; Metel’skii
and Karpuk, 2009). The pointwise completeness and
pointwise degeneracy of fractional linear continuous-time
systems were investigated by Kaczorek (2015) or
Kaczorek and Busłowicz (2009), and for systems with
different fractional orders by Trzasko (2014).

In this paper, necessary and sufficient conditions for
the pointwise completeness and pointwise degeneracy of
standard and descriptor continuous-time linear systems
with different fractional orders will be established.

The paper is organized as follows. In Section 2 basic
definitions and theorems regarding descriptor fractional
continuous-time linear systems and the systems with
two different fractional orders are recalled. Section 3
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gives necessary and sufficient conditions for the pointwise
completeness and pointwise degeneracy of standard
(nondescriptor) continuous-time linear systems with two
different fractional orders. Similar conditions but for
descriptor systems are given in Section 4. Concluding
remarks are given in Section 5.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n × m real matrices; Rn×m

+ ,
the set of n × m real matrices with nonnegative entries;
C, the field of complex numbers; In, the n × n identity
matrix.

2. Preliminaries

2.1. Fractional systems. Consider the descriptor
fractional continuous-time linear system

E 0D
α
t x(t) = Ax(t),

n− 1 < α < n, n ∈ W = {1, 2, . . .}, (1)

where α is the fractional order, x(t) ∈ R
n is the state

vector, E,A ∈ R
n×n and

0D
α
t x(t) =

dαx(t)

dtα

=
1

Γ(n− α)

∫ ∞

0

f (n)(τ)

(t− τ)α+1−n
dτ,

fn(τ) =
dnf(τ)

dτn

(2)

is the Caputo definition of order α ∈ R (for 0 < α < 1)
of x(t) and

Γ(α) =

∫ ∞

0

e−ttα−1 dt (3)

is the Euler gamma function.
If detE �= 0 (the case of standard systems), then the

solution of (1) is

x(t) = Φ0(t)x(0), (4a)

where

Φ0(t) =

∞∑
k=0

Aktkα

Γ(kα+ 1)
. (4b)

If detE = 0 and the pencil (E,A) of (1) is regular, i.e.,

det[Es−A] �= 0 (5)

for some s ∈ C, assuming that, for some chosen c ∈ C,
det[Ec − A] �= 0 and premultiplying (1) by [Ec− A]−1,
we obtain

Ē 0D
α
t x(t) = Āx(t), (6a)

where

Ē = [Ec−A]−1E, Ā = [Ec−A]−1A. (6b)

Note that (1) and (6a) have the same solution x(t).

Definition 1. (Kaczorek, 2014) The smallest nonnegative
integer q is called the index of the matrix Ē ∈ R

n×n if

rank Ēq = rank Ēq+1. (7)

Definition 2. (Kaczorek, 2014) A matrix ĒD is called the
Drazin inverse of Ē ∈ R

n×n if it satisfies the conditions

ĒĒD = ĒDĒ, (8a)

ĒDĒĒD = ĒD, (8b)

ĒDĒq+1 = Ēq, (8c)

where q is the index of Ē defined by (7).
The Drazin inverse ĒD of a square matrix Ē always

exists and is unique. If det Ē �= 0, then ĒD = Ē−1.

Lemma 1. (Kaczorek, 2014) The matrices Ē and Ā de-
fined by (6b) satisfy the following equalities:

1. ĀĒ = ĒĀ and ĀDĒ = ĒĀD , ĒDĀ = ĀĒD,
ĀDĒD = ĒDĀD ,

2. ker Ā ∩ ker Ē = {0},

3. Ē = T

[
J 0
0 N

]
T−1,

ĒD = T

[
J−1 0
0 0

]
T−1,

Ā = T

[
A1 0
0 A2

]
T−1,

det T �= 0, J ∈ R
n1×n1 is nonsingular, N ∈

R
n2×n2 is nilpotent, n1 + n2 = n,

4. (In − ĒĒD)ĀĀD = In − ĒĒD and
(In − ĒĒD)(ĒĀD)q = 0,

5. (ĒĒD)k = ĒĒD for k = 2, 3, . . . ,

6. ĒĒDx = x.

The solution to (1) in case detE = 0 is

x(t) = Φ0(t)ĒĒDw, (9a)

where

Φ0(t) =

∞∑
k=0

(ĒDĀ)ktkα

Γ(kα+ 1)
(9b)

and the vector w ∈ R
n is arbitrary (Kaczorek, 2014).

2.2. Systems with different fractional orders.
Consider a standard (detE �= 0) fractional linear system
with two different fractional orders α �= β described by
the equation (Sajewski, 2015; 2016)

⎡
⎢⎢⎢⎣

dαx1(t)

dtα

dβx2(t)

dtβ

⎤
⎥⎥⎥⎦ =

[
A11 A12

A21 A22

] [
x1(t)
x2(t)

]
(10)
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and p − 1 < α < p; q − 1 < β < q; p, q ∈ W , where
x1(t) ∈ R

n1 , x2(t) ∈ R
n2 and Aij ∈ R

ni×nj ; i, j = 1, 2.

The initial conditions for (10) have the form

x1(0) = x10, x2(0) = x20,

x(0) =

[
x1(0)
x2(0)

]
.

(11)

The solution of (10) with initial conditions (11) has
the form [

x1(t)
x2(t)

]
= Φ0(t)

[
x1(0)
x2(0)

]
, (12a)

where

Tk,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

In for k = l = 0,[
A11 A12

0 0

]
for k = 1, l = 0,

[
0 0

A21 A22

]
for k = 0, l = 1,

T10Tk−1,l + T01Tk,l−1 for k + l > 0,
(12b)

Φ0(t) =

∞∑
k=0

∞∑
l=0

Tk,l
tkα+lβ

Γ(kα+ lβ + 1)
. (12c)

Now, consider the descriptor fractional
continuous-time linear system with different fractional
orders

E

⎡
⎢⎢⎢⎣

dαx1(t)

dtα

dβx2(t)

dtβ

⎤
⎥⎥⎥⎦ = A

[
x1(t)
x2(t)

]
(13)

and p− 1 < α < p; q − 1 < β < q; p, q ∈ W , where

E =

[
E1 0
0 E2

]
∈ R

(n1+n2)×(n1+n2),

A =

[
A11 A12

A21 A22

]
∈ R

(n1+n2)×(n1+n2).

It is assumed that detE = 0 but the pencil (E,A) of (13)
is regular, i.e.,

det

[[
E1 0
0 E2

] [
sα 0
0 sβ

]
−
[

A11 A12

A21 A22

]]
�= 0

(14)
for some sα, sβ ∈ C. Similarly to (1), assuming that for
some chosen c1, c2 ∈ C, det[Ediag(In1c1, In2c2)−A] �=
0 and premultiplying (13) by [Ediag(In1c1, In2c2) −
A]−1, we obtain

Ē

⎡
⎢⎢⎢⎣

dαx1(t)

dtα

dβx2(t)

dtβ

⎤
⎥⎥⎥⎦ = Ā

[
x1(t)
x2(t)

]
, (15a)

where

Ē = [Ediag(In1c1, In2c2)−A]−1E

=

[
Ē11 Ē12

Ē21 Ē22

]
,

Ā = [Ediag(In1c1, In2c2)−A]−1A

=

[
Ā11 Ā12

Ā21 Ā22

]

= T̄10 + T̄01,

T̄10 =

[
Ā11 Ā12

0 0

]
,

T̄01 =

[
0 0

Ā21 Ā22

]
.

(15b)

Note that (13) and (15a) have the same solution x(t).
In the case of the system with two different fractional

orders Definition 1 takes the following form.

Definition 3. The pair of smallest nonnegative integers
qi, i = 1, 2 is called the index of the matrix Ēii ∈ R

ni×ni

if
rank Ēqi

ii = rank Ēqi+1
ii (16)

and q = q1 + q2 is the index of Ē.

Theorem 1. If T̄k,lĒ = ĒT̄k,l, then the solution of (15a)
is

x(t) = Φ̄0(t)ĒĒDw, (17a)

where

T̄k,l =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

In for k = l = 0,[
Ā11 Ā12

0 0

]
for k = 1, l = 0,

[
0 0

Ā21 Ā22

]
for k = 0, l = 1,

T̄10T̄k−1,l + T̄01T̄k,l−1 for k + l > 0,
(17b)

Φ̄0(t) =
∞∑
k=0

∞∑
l=0

(ĒD)k+lT̄k,l
tkα+lβ

Γ(kα+ lβ + 1)
(17c)

and the vector

w =

[
w1

w2

]
∈ R

n1+n2

is arbitrary.

Proof. First, we shall show that if T̄k,l = ĒT̄k,l, then

T̄D
k,lĒ = ĒT̄D

k,l, (18a)

ĒDT̄k,l = T̄k,lĒ
D, (18b)

T̄D
k,lĒ

D = ĒDT̄D
k,l. (18c)
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Postmultiplying T̄k,lĒ = ĒT̄k,l by (T̄D
k,l)

2, we
obtain for the right-hand side

T̄k,lĒ(T̄D
k,l)

2 = ĒT̄k,l(T̄
D
k,l)

2

= ĒT̄D
k,lT̄k,lT̄

D
k,l = ĒT̄D

k,l

(19)

since T̄D
k,lT̄k,lT̄

D
k,l = T̄D

k,l and for the left-hand side taking
into account that T̄D

k,l can be written as a polynomial
p(T̄k,l)

T̄k,lĒ(T̄D
k,l)

2 = T̄k,lĒ[p(T̄k,l)]
2

= T̄k,l[p(T̄k,l)]
2Ē = T̄D

k,lĒ.
(20)

Therefore, from (19) and (20) we have (18a). The
proof of (18b) is dual. To prove (18c) we pre- and
postmultiply T̄k,lĒ = ĒT̄k,l by (T̄D

k,l)
2 and we obtain for

the right-hand side

(T̄D
k,l)

2T̄k,lĒ(T̄D
k,l)

2 = (T̄D
k,l)

2ĒT̄k,l(T̄
D
k,l)

2

= (T̄D
k,l)

2ĒT̄D
k,l = (T̄D

k,l)
3Ē

(21)

and for the left-hand side

(T̄D
k,l)

2T̄k,l(T̄
D
k,l)

2Ē = (T̄D
k,l)

3Ē. (22)

Applying the Laplace transform (L) to (15a) and
taking into account that (Kaczorek, 2011)

L

[
dαx(t)

dtα

]
= sαX(s)− sα−1x(0), (23)

L[tα] =
Γ(α+ 1)

sα+1
, (24)

we obtain
[

X1(s)
X2(s)

]
=

[
In1s

α − Ā11 −Ā12

Ā21 In2s
β − Ā22

]−1

×
[

In1s
α−1 0
0 In2s

β−1

] [
x1(0)
x2(0)

]
.

(25)

Using (15b), it can be verified that

[
In1s

α − Ā11 −Ā12

Ā21 In2s
β − Ā22

]−1

×
[

In1s
α−1 0
0 In2s

β−1

]
= L[Φ̄0(t)]. (26)

This completes the proof. �

Remark 1. If it is possible to choose c1 = c2 ∈ C

in (15b), then the conditions of Theorem 1 are always
satisfied. If detA �= 0 and we assume c1 = c2 = 0,
then

Ē = [−A]−1E, Ā = −In,

T̄10 =

[
In1 0
0 0

]
, T̄01 =

[
0 0
0 In2

]
. (27)

3. Pointwise completeness and pointwise
degeneracy of fractional continuous-time
linear systems with different fractional
orders

In this section necessary and sufficient conditions for
the pointwise completeness and pointwise degeneracy of
standard (nondescriptor) continuous-time linear systems
with different fractional orders will be established.

Definition 4. The standard fractional continuous-time
linear system (10) is called pointwise complete at the point
t = tf if for every final state xf ∈ R

n, there exists
a boundary condition (11) such that

xf = x(tf ). (28)

Theorem 2. The standard fractional continuous-time
linear system (10) is pointwise complete at the point t =
tf if and only if

rankΦ0(tf ) = n, (29a)

where

Φ0(tf ) =

∞∑
k=0

∞∑
l=0

Tk,l

tkα+lβ
f

Γ(kα+ lβ + 1)
. (29b)

Proof. Using the solution (12) for t = tf of the fractional
linear system (10) we obtain

xf = x(tf ) = Φ0(tf )x(0). (30)

From (30), it follows that for given xf , it is possible
to find x(0) if and only if the condition (29) is
satisfied. Therefore, the fractional system (10) is
pointwise complete at the point t = tf if and only if the
condition (29) is satisfied. �

Example 1. Check the pointwise completeness of the
fractional system (10) for 0 < α, β < 1 with the nilpotent
matrix

A =

[
0 1
0 0

]
. (31)

The nilpotency index of the matrix (31) is equal to 2.
Using (29b) and (31), we obtain

Φ0(tf ) =

[
1 0
0 1

]
+

[
0 1
0 0

]
tαf

Γ(α+ 1)

=

[
1

tαf
α

0 1

]
∈ R

2×2
+ .

(32)

Assuming tf = 1, xf = [ 1 1 ]T and using (30), (32)
we obtain

x(0) = Φ0(tf )
−1xf

=

[
1 1

α
0 1

]−1 [
1
1

]

=

[
1− 1

α
1

]
.

(33)
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Therefore, the fractional system (10) with (31) is
pointwise complete in the point t = tf = 1. �

Definition 5. The standard fractional continuous-time
linear system (10) is called pointwise degenerated in the
direction v for t = tf if there exists a vector v ∈ R

n such
that for all bounded conditions x(0) the solution of (10)
for t = tf satisfies the condition

vTxf = 0. (34)

Theorem 3. The standard fractional continuous-time lin-
ear system (10) is pointwise degenerated in the direction
v ∈ R

n for t = tf if and only if

detΦ0(tf ) = 0. (35)

Proof. From (34) and (30) we have

vTΦ0(tf )x(0) = 0. (36)

Note that there exists a nonzero vector v ∈ R
n such that

(36) holds, if and only if the matrix Φ0(tf ) is singular.
Therefore, the standard fractional system (10) is pointwise
degenerated in the direction v ∈ R

n for t = tf if and only
if the condition (35) is satisfied. �

Example 2. (Continuation of Example 1) Consider the
system (10) for 0 < α, β < 1 with the matrix (31). The
matrix Φ0(tf ) has the form (32) and for tf = 1 we obtain

Φ0(1) =

[
1 1

α
0 1

]
∈ R

2×2
+ . (37)

In this case, the condition (35) is not satisfied since
detΦ0(1) = 1 and the fractional system is not pointwise
degenerated in any direction v ∈ R

2.
Note that the equation vTΦ0(1) = 1 has only the

zero solution vT = [ 0 0 ]. �

4. Pointwise completeness and pointwise
degeneracy of descriptor fractional
continuous-time linear systems with
different fractional orders

In this section, necessary and sufficient conditions for
the pointwise completeness and pointwise degeneracy of
descriptor continuous-time linear systems with different
fractional orders will be established.

Definition 6. The descriptor fractional continuous-time
linear system (13) is called pointwise complete at the point
t = tf if for every final state xf ∈ R

n, there exists
a boundary condition x(0) ∈ Im ĒĒD such that

x(tf ) = xf ∈ Im ĒĒD. (38)

Theorem 4. The descriptor fractional continuous-time
linear system (13) is pointwise complete for t = tf and
every xf ∈ Im ĒĒD ⊂ R

n if and only if

det Φ̄0(tf ) �= 0, (40)

where

Φ̄0(t) =

∞∑
k=0

∞∑
l=0

(ĒD)k+lT̄k,l
tkα+lβ

Γ(kα+ lβ + 1)
. (41)

Proof. From (17) we obtain

xf = x(tf ) = Φ̄0(tf )x(0), (42)

where x(0) ∈ Im ĒĒD.
For given xf ∈ Im ĒĒD ⊂ R

n we may find x(0) if
and only if the condition (39) is satisfied. Therefore, the
descriptor fractional system (13) is pointwise complete
at the point t = tf if and only if the condition (39) is
satisfied. �

Example 3. Consider the descriptor fractional system
(13) for α = 0.6, β = 0.8 with the matrices

E =

[
E1 0
0 E2

]
=

⎡
⎣ 1 0 0

0 0 1
0 0 0

⎤
⎦ ,

A =

[
A11 A12

A21 A22

]
=

⎡
⎣ 0 1 1

0 0 0
0 1 0

⎤
⎦ ,

n1 = 1, n2 = 2.

(43)

We choose c1 = c2 = 1 and, using (15b) and (43), we
obtain

Ē = [Ediag(c1, c2)−A]−1E =

[
Ē11 Ē12

Ē21 Ē22

]

=

⎡
⎣ 1 0 1

0 0 0
0 0 1

⎤
⎦ ,

Ā = [Ediag(c1, c2)−A]−1A =

[
Ā11 Ā12

Ā21 Ā22

]

=

⎡
⎣ 0 0 1

0 −1 0
0 0 0

⎤
⎦ .

(44)

Next, using (17b), we obtain

T̄10 =

[
Ā11 Ā12

0 0

]
=

⎡
⎣ 0 0 1

0 0 0
0 0 0

⎤
⎦ ,

T̄01 =

[
0 0

Ā21 Ā22

]
=

⎡
⎣ 0 0 0

0 −1 0
0 0 0

⎤
⎦ ,

T̄11 = T̄10T̄01 + T̄01T̄10 =

⎡
⎣ 0 0 0

0 0 0
0 0 0

⎤
⎦ ,

...

(45)
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The Drazin inverse matrix of Ē has the form

ĒD =

⎡
⎣ 1 0 −1

0 0 0
0 0 1

⎤
⎦ (46)

and

ĒĒD =

⎡
⎣ 1 0 0

0 0 0
0 0 1

⎤
⎦ . (47)

Using (17) and (45), (47) we obtain the solution x(t) to
(15a), where

x(0) ∈ Im ĒĒD =

⎡
⎣ x11(0)

0
x21(0)

⎤
⎦

and x11(0), x21(0) are arbitrary.
Note that the matrix Φ̄0(t) is nonsingular and by

Theorem 4 the descriptor fractional system with (43) is
pointwise complete for t = tf = 1 and every xf ⊂ R

3 of
the form

xf =

[
x11(tf )
x21(tf )

]
,

where x11(tf ), x21(tf ) are arbitrary. �
Definition 7. The descriptor fractional continuous-time
linear system (13) is called pointwise degenerated in the
direction v for t = tf if there exists a vector v ∈ R

n

such that for all bounded conditions x(0) ∈ Im ĒĒD the
solution of (13) for t = tf satisfies the condition

vTxf = 0. (48)

Theorem 5. The descriptor fractional continuous-time
linear system (13) is pointwise degenerated in the direc-
tion v ∈ R

n for t = tf if and only if

detΦ̄0(tf ) = 0. (49)

Proof. From (48) and (42) for t = tf we have

vT Φ̄0(tf )x(0) = 0. (50)

There exists a nonzero vector v ∈ R
n such that (50) holds

for all x(0) ∈ ImĒĒD if and only if the condition (49) is
satisfied. Therefore, the descriptor fractional system (13)
is pointwise degenerated in the direction v ∈ R

n for t =
tf if the condition (49) is satisfied. �

Remark 2. The vector v ∈ R
n in which the descriptor

fractional continuous-time linear system (13) is pointwise
degenerated can be computed from the equation

vT Φ̄0(tf ) = 0. (51)

Example 4. (Continuation of Example 3) Consider the
system (13) for α = 0.6, β = 0.8 with the matrices (43).
In Example 3 it was shown that the matrix Φ̄0(tf ) for
tf = 1 is nonsingular. Therefore, the descriptor fractional
system (13) with (43) is not pointwise degenerated for
tf = 1 in any direction v ∈ R

3. �

5. Concluding remarks

Descriptor and standard linear continuous-time systems
with different fractional orders have been analyzed.
The Drazin matrix inverse has been used in the
analysis of descriptor systems. Necessary and sufficient
conditions for the pointwise completeness and pointwise
degeneracy of descriptor continuous-time linear systems
with different fractional orders have been given provided.
We have proven the following:

(i) The descriptor linear continuous-time system with
different fractional orders is pointwise complete if
and only if the initial and final states belong to the
same subspace.

(ii) The descriptor linear continuous-time system
with different fractional orders is not pointwise
degenerated in any nonzero direction for all nonzero
initial conditions.

The discussion has been complemented with numerical
examples for two different fractional orders α and β. The
presented results can be extended to any number of orders.
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