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In this paper, a stability analysis of interconnected discrete-time fractional-order (FO) linear time-invariant (LTI) state-
space systems is presented. A new system is formed by interconnecting given FO systems using cascade, feedback, parallel
interconnections. The stability requirement for such a system is that all zeros of a non-polynomial characteristic equation
must be within the unit circle on the complex z-plane. The obtained theoretical results lead to a numerical test for stability
evaluation of interconnected FO systems. It is based on modern root-finding techniques on the complex plane employing
triangulation of the unit circle and Cauchy’s argument principle. The developed numerical test is simple, intuitive and can
be applied to a variety of systems. Furthermore, because it evaluates the function related to the characteristic equation on
the complex plane, it does not require computation of state-matrix eigenvalues. The obtained numerical results confirm the
efficiency of the developed test for the stability analysis of interconnected discrete-time FO LTI state-space systems.
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1. Introduction

Stability is a fundamental problem in all branches of
engineering. Any type of system, in the areas such as
control engineering, signal processing, mechanical, civil
or aerospace engineering, must be stable. In this paper,
we focus on stability analysis of discrete-time linear
time-invariant (LTI) systems. Such a classical system of
integer order (IO) is (asymptotically) stable if and only if
all zeros of the characteristic equation are within the unit
circle on the complex z-plane (Ogata, 1987; Oppenheim
et al., 1999; Jury, 1964). An analogous criterion of
stability also exists for fractional-order (FO) systems
(Ostalczyk, 2012; Stanislawski and Latawiec 2013a;
2013b; Busłowicz and Kaczorek, 2009; Busłowicz and
Ruszewski, 2013; Busłowicz, 2012). The main difference
between the stability criteria for FO and IO systems relies
in different shapes of stability contours on the complex
z-plane. It stems from the fact that the characteristic
equation is not a polynomial for FO systems. We
have already addressed the issue of stability of a single
discrete-time LTI system from a numerical point of view
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(Grzymkowski and Stefański, 2018b; 2018a).

Although the theory of FO systems has been a
popular research topic recently (Bingi et al., 2019;
Kaczorek and Ruszewski, 2020), the stability of FO
interconnected systems remains a subject that has not
been thoroughly investigated yet to the best of our
knowledge. Moreover, industrial applications of such
systems have recently been reported (Mercorelli, 2017a;
2017b). We have thus decided to investigate basic
interconnections (Vaccaro, 1995; Brogan, 1991) of two
FO systems. Then, the results are generalized into
more than two interconnected systems. The characteristic
equation of interconnected FO systems is complicated
and the stability cannot be easily evaluated using existing
approaches. Therefore, we formulate a general numerical
test for stability evaluation of systems, including
interconnected systems, whose stability depends on the
location of zeros of the non-polynomial characteristic
equation.

The proposed method is based on an algorithm
finding global complex roots and poles, employing
triangulation and Cauchy’s argument principle
(Kowalczyk, 2018a). It allows for exploration of
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various system models by analysing the characteristic
equation f(z) = 0 which can include singular points and
branch cuts. In the proposed method, the area outside
the unit circle (|z| = 1) is transformed into its interior
with the use of the inverse variable w (i.e., z = w−1,
F (w) = f(w−1) = 0). Then, using triangulation, the
obtained function is sampled within the unit circle and
sign changes are detected for its real and imaginary
parts separately. If the real and imaginary parts of the
function change simultaneously signs for both ends
of the same edge, then a zero of the function F (w)
can be located in its vicinity. The existence of the
function zero is finally proved with the use of Cauchy’s
argument principle. Because the developed test evaluates
a complex-valued function related to the characteristic
equation on the complex plane, it does not require
computation of eigenvalues. The obtained results confirm
that the developed numerical test is an efficient tool for
the stability analysis of interconnected discrete-time FO
LTI state-space systems.

2. Stability condition for discrete-time FO
LTI systems

Let us define two discrete-time FO LTI systems (which are
considered in the paper) using the following state-space
equations (Stanislawski and Latawiec, 2013a; 2013b):

Δαx1(n+ 1) = Af1x1(n) +B1u1(n),

y1(n) = C1x1(n) +D1u1(n),
(1)

Δβx2(n+ 1) = Af2x2(n) +B2u2(n),

y2(n) = C2x2(n) +D2u2(n).
(2)

In (1) and (2), n = 0, 1, . . . denotes the discrete time,
α, β ∈ (0, 2) denote FO values and Afi = Ai − I
(i = 1, 2) is the difference between the discrete-time
state-space system matrix Ai and the identity matrix I
being of the same dimension as Ai. The dimensions
of matrices A1 and A2 are N and M , respectively.
Furthermore, xi, ui, yi (i = 1, 2) respectively denote
state, input and output vectors. The fractional difference
is defined for discrete time as

Δγx(n) =

n∑

j=0

(−1)j
(
γ

j

)
q−jx(n), (3)

where q−1 is the backward shift operator. The
definition (3) directly results from the Grünwald-Letnikov
difference of FO which is defined as (Samko et al., 1993;
Mozyrska and Girejko, 2013)

Δγ
T f(t) =

∞∑

j=0

(−1)j
(
γ

j

)
f(t− jT ), (4)

where γ > 0 and the function f is defined on the real
line. The definition (4) enables the Grünwald-Letnikov
formulation of the (left-sided) derivative of the order γ >
0 given by (Samko et al., 1993)

Dγf(t) = lim
T→0+

Δγ
T f(t)

T γ
. (5)

The expression (5) agrees with the usual derivative
definition when γ is a positive integer.

Let us limit our considerations to a single FO system
for a moment. For the system defined by (1), the
characteristic equation in the Z-transform domain is given
by

f(z) = det[z(1− z−1)αI−Af1] = 0. (6)

The function f(z) in the characteristic equation (6) can
be considered as a polynomial of the complex variable
z(1 − z−1)α. Hence, f(z) has an infinite expansion
into Laurent’s series. For a discrete-time FO LTI system,
the stability condition can be formulated in the following
form.

Theorem 1. (Ostalczyk, 2012; Stanislawski and
Latawiec, 2013a) The discrete-time FO LTI system (1)
with α ∈ (0, 2) is asymptotically stable if and only if all
the roots of the characteristic equation (6) are strictly in-
side the unit circle on the complex z-plane.

This means that the system (1) is unstable if at least
a single zero of f(z) exists outside the unit circle.

3. Interconnections of discrete-time FO LTI
systems

Consider interconnected discrete-time FO LTI systems.
For the sake of brevity, let us limit our considerations
to basic interconnections of systems (1) and (2), which
represent fundamental blocks for building any network
of interconnected systems. That is, two systems
(subsystems) are interconnected to form a single system.
The obtained results can then be generalized towards any
network of interconnected systems.

Consider the following state equations in the
Z-transform domain related respectively to the systems
(1) and (2):

z(1− z−1)αX1 = Af1X1 +B1U1, (7)

z(1− z−1)βX2 = Af2X2 +B2U2. (8)

From (3) it follows that

z(1− z−1)γ =

+∞∑

j=0

(−1)j
(
γ

j

)
z−j+1, (9)

where γ = α, β. In general, the output equations related
to (7) and (8) are respectively given by

Y1 = C1X1 +D1U1, (10)
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Fig. 1. Basic interconnections of two FO systems: cascade in-
terconnection (a), feedback interconnection (b), paral-
lel interconnection (c), isolated configuration with inputs
and outputs appended (d).

Y2 = C2X2 +D2U2. (11)

We assume that D1 = D2 = 0 for the sake of brevity.

In Fig. 1, four fundamental interconnections of two
FO systems are presented: (a) cascade interconnection,
(b) feedback interconnection, (c) parallel interconnection,
and (d) isolated configuration with inputs and outputs
appended.

3.1. Cascade interconnection. In this case, the output
of the system (1) is the input to the system (2),

U2 = Y1, (12)

whereas the output of the interconnected systems is given
by (11). From (7), we obtain

X1 =
[
z(1− z−1)αI−Af1

]−1
B1U1. (13)

Hence, based on (8), (10), (12) and (13),

X2 =
[
z(1− z−1)βI−Af2

]−1
B2C1

× [
z(1− z−1)αI−Af1

]−1
B1U1, (14)

accompanied by the output equation (11). The matrix
which relates X2 and U1 in (14) is not a square matrix.
Hence, (13) and (14) can be written as

Mcas

[
X1

X2

]
=

[
B1U
0

]
, (15)

where

Mcas

=

[
z(1− z−1)αI−Af1 0

−B2C1 z(1− z−1)βI−Af2

]
.

(16)

3.2. Feedback interconnection. For systems with the
feedback loop, we get

U1 = U−C2X2, (17)

U2 = C1X1. (18)

Applying (17) and (18) to (7) and (8), we see that

Mfl

[
X1

X2

]
=

[
B1U
0

]
, (19)

where

Mfl

=

[
z(1− z−1)αI−Af1 B1C2

−B2C1 z(1− z−1)βI−Af2

]
.

(20)

3.3. Parallel interconnection. For the parallel
interconnection of systems, the state equations (7) and (8)
have the same input signal

U1 = U2 = U, (21)

whereas the output equation has the form

Y = C1X1 +C2X2. (22)

Combining (7), (8) and (21), we get

Mpar

[
X1

X2

]
=

[
B1

B2

]
U, (23)

where

Mpar

=

[
z(1− z−1)αI−Af1 0

0 z(1− z−1)βI−Af2

]
.

(24)
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3.4. Isolated configuration with inputs and outputs
appended. In this case, we consider simple mutually
decoupled systems

Mapp

[
X1

X2

]
=

[
B1 0
0 B2

] [
U1

U2

]
, (25)

where

Mapp

=

[
z(1− z−1)αI−Af1 0

0 z(1− z−1)βI−Af2

]
.

(26)

The output equation is given by
[
Y1

Y2

]
=

[
C1 0
0 C2

] [
X1

X2

]
. (27)

3.5. Analysis. In the case of the interconnected
systems (1) and (2) considered above, the calculation of
the state vectors X1 and X2 involves inverting the matrix
M (e.g., Mcas, Mfl, Mpar, Mapp) which has diagonal
components of the type (9). The inverse matrix M−1

can be calculated as MD/det(M). The elements of the
adjoint matrix MD are of the form

[
MD

]
ij
=

+∞∑

k=0

ξijkz
−k+N+M−1, (28)

where

det(M) =
+∞∑

k=0

ζkz
−k+N+M . (29)

The upper summation limits in (28) and (29) are
infinite. Hence, both the expressions are Laurent’s series
representations of analytic functions which are valid in the
corresponding convergence regions.

Let us generalize the obtained results. In the case
of more than two interconnected FO LTI systems, the
state-space equation of such a system is of the form

MX = F, (30)

where M is the matrix of elements being functions of the
z-variable, X is the state vector and F is the input-related
vector.

Solving this state-space equation still requires the
inversion of the matrix M and calculation of det(M). The
characteristic equation for such a system can be written as
f(z) = det(M(z)) = 0.

4. Stability analysis of interconnected
discrete-time FO LTI systems

The basic interconnections in the previous section can
be extended towards other interconnection topologies

including more than two systems. Assume that L is
the length of practical implementation (Busłowicz and
Ruszewski, 2013; Busłowicz, 2012; Kaczorek, 2008).
Then, the upper limits of summations in (28) and (29)
are replaced by L. Based on the results of Busłowicz
and Ruszewski (2013), Busłowicz (2012), and Kaczorek
(2008), we can introduce analogous definitions and
theorems.

Definition 1. The system consisting of interconnected
FO subsystems is called practically stable if the
interconnected FO subsystems, each of the length L of
the practical implementation, are asymptotically stable.

Definition 2. The system consisting of interconnected
FO subsystems is called asymptotically stable if the
interconnected FO subsystems, each of the length L of
the practical implementation, are asymptotically stable for
L → ∞.

Theorem 2. (Ogata, 1987; Oppenheim et al., 1999; Jury,
1964) The discrete-time IO LTI system is asymptotically
stable if and only if all zeros of the characteristic equation
are strictly within the unit circle |z| < 1.

Theorem 3. The system consisting of interconnected
FO subsystems, each of the length L of practical imple-
mentation, is practically stable if and only if all zeros of
the determinant det(M) are strictly within the unit circle
|z| < 1.

Proof. For the finite length L, the elements of the matrix
M−1 are rational functions of the z−1 variable with a
common denominator being det(M). From Theorem 2,
such a system is (asymptotically) stable if and only if all
zeros of the denominator (i.e., the determinant det(M))
are strictly within the unit circle |z| < 1. �

Corollary 1. Assume that L → ∞. Then, the system
consisting of interconnected FO subsystems is asymptoti-
cally stable if and only if all zeros of det(M) are strictly
within the unit circle |z| < 1.

Equivalently, to ensure the stability of the FO
interconnected systems, the equation f(z) = det(M) =
0 cannot have any solution z = zi outside the unit
circle. That is, the system is unstable if at least
a single zero of f(z) exists outside the unit circle.
One can notice immediately that the stability of two
interconnected systems guarantees the stability of their
cascade, parallel and isolated interconnections. This is
not true for the feedback interconnection. The stability
of the system being an interconnection of FO systems
cannot be evaluated based on its approximation with a
finite length L of its practical implementation. This
stems from the fact that zeros of the complex function
of the complex variable may be unrelated to zeros of its
finite-length approximation (i.e., polynomial or rational
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approximation) (Delves and Lyness, 1967). For instance,
the function e(z) = ez has no zeros whereas its
finite-length polynomial approximations (i.e., e(z) ≈∑N

n=0 z
n/n!) have N zeros. Furthermore, zero locations

can be very sensitive to perturbations of coefficients
of polynomial approximations (Wilkinson, 1994). To
address these issues, we have developed a numerical test
to evaluate stability of discrete-time systems described by
non-polynomial characteristic equations.

5. Numerical test for stability evaluation

Stability evaluation requires knowledge about all zeros of
the characteristic equation outside the unit circle |z| > 1.
Such an area is infinite. Hence, the transformation

z = w−1 (31)

is employed which maps the outer region of the unit circle
to its inner region on the complex w-plane.

Corollary 2. The interconnected systems are asymptoti-
cally stable if and only if there are no roots of the equation

F (w) = 0, (32)

where F (w) = f(w−1), strictly within the unit circle
|w| < 1.

Unfortunately, finding zeros of the complex-valued
function of the complex variable is one of the oldest and
still unsolved mathematical problems. For the purpose
of stability evaluation, we adapt an innovative method
of root finding applied in computational electromagnetics
(Kowalczyk, 2018a). Although the proposed method
is generic and easily implementable on computing
machines, it evaluates stability of systems up to the limit
of the assumed test resolution. The goal of the algorithm is
to verify if any function zero exists and locate it by making
use of Delaunay’s triangulation (Weisstein, 2019b) of the
unit circle on the complex plane. The accuracy of zero
locations is controlled by the resolution parameter Δr.
The algorithm is executed in the following steps:

Step 1. The unit circle on the complex w-plane is
triangulated with a regular mesh, e.g., using Delaunay’s
triangulation. Two sets of nodes W = {w1, w2, . . . , wN}
and edges E = {e1, e2, . . . , eP } are created. It is required
that the length of the longest edge inE is less than or equal
to the assumed test resolution Δr that controls the density
of the triangular mesh.

Step 2. The phase quadrant in which the value of
the function F (w) lies is evaluated at all of the nodes
F = {F (wn) : wn ∈ W}. In the proposed method,
the complex value of the function is not required but
only a quadrant in which its phase lies. Hence, the

algorithm operates on four numbers associated with the
complex-plane quadrants

Q(wn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, 0 ≤ arg[f(wn)] < π/2,

2, π/2 ≤ arg[f(wn)] < π,

3, π ≤ arg[f(wn)] < 3π/2,

4, 3π/2 ≤ arg[f(wn)] < 2π,

(33)

where arg[·] denotes the principal argument of the
complex number in the interval [0, 2π). Therefore, the
algorithm is not sensitive to the numerical precision of
function-value computations.

Step 3. For each of the edges ek between nodes wp and
wq , the phase change is computed based on quadrants
obtained in the previous step

ΔQ(ek) = Q(wp)−Q(wq). (34)

Its value is from the set {−2,−1, 0, 1, 2}. Any zero
or pole of the function F (w) is a point where lines of
quadrant-changes cross and regions meet for which the
function values belong to four different quadrants. For
instance, consider a function with a single zero w = 0
and a single pole w = −0.5 as presented in Fig. 2. The
phase portrait of the function is placed in the background,
i.e., the phase quadrants of function values are denoted by
different colors. As seen, the zero and pole are located
within the triangles 123. For a dense mesh, a zero/pole
is located inside a triangle which has to include an edge
such as ΔQ(ek) = ±2. This stems from the application
of the triangular mesh in the algorithm. Of course, it
would not be true for, e.g., a rectangular mesh. Hence,
the vicinity of zero/pole of the considered function F (w)
can easily be detected, because it only requires to find all
edges such that ΔQ(ek) = ±2. All these candidate edges
are collected in a single set Ec = {ek : ΔQ(ek) = ±2}.
As can be seen, the zero/pole is a point around which
the function values belong to each of the four different
quadrants of the complex plane. However, directions
of phase changes of the function (i.e., orders of color
circulations) are opposite for zeros and poles. As can be
seen, edges 13 are parts of two triangles 123 and 134,
hence, the quadrangle 1234 is identified as a region of
possible zero/pole location.

Step 4. The triangles including at least a single candidate
edge from the set Ec, are collected in a single set of
candidate triangles Tc. Then, all the edges of the triangles
belonging to Tc are collected in the set Et. Those edges
that occur only once in Et represent the boundary C of
the candidate regions, because internal edges must be
attached to two candidate triangles. The boundary C of
the candidate regions is constructed only from the edges
such as |ΔQ(ek)| < 2. Then, the set C is decomposed
into subsets Ck, where Ck denotes a closed contour being
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Fig. 2. Triangles around a single zero w = 0 and a single pole
w = −0.5. For the candidate edges between nodes 1
and 3, |ΔQ| = 2. Hence, zero/pole is potentially located
inside the quadrangles 1234. Quadrants of the w-plane:
� Q = 1, � Q = 2, � Q = 3, � Q = 4.

the boundary of the k-th candidate region. Starting from
any edge from the set C, the algorithm searches for an
edge connected to the considered one. Then, the process
is repeated iteratively and the boundary of a region is
constructed by finding the next edge connected to the
previous one. Finally, if no edge is connected to the
previous edge, the last edge should close the contour
and the construction of the next candidate region can be
started.

Step 5. The mesh is refined to increase the accuracy of
locating zero/pole candidates. For this purpose, additional
nodes are added in the centres of the edges in the candidate
regions. Then, Delaunay’s triangulation is executed to
obtain a new mesh. Function F (w) is evaluated at
new nodes and the test starts from the second point for
the locally denser mesh. The sizes of the candidate
regions are smaller after the mesh refinement. Hence,
the precision of zero/pole location is increased. The
process of mesh refinement is repeated until the assumed
precision of zero/pole location is obtained. During the
mesh refinement, the problem of ill-conditioned mesh
geometry (the so-called “skinny triangles”) may appear
(Kowalczyk, 2018a). To avoid this problem, an additional
zone surrounding the region should be considered as
recommended by Kowalczyk (2018a). Then, if the
triangle is “skinny” in the extra zone (e.g., the ratio of the
longest triangle edge to the shortest edge is greater than
3), a new additional node is added in its center.

Step 6. For each candidate region after the mesh
refinement, Cauchy’s argument principle (Weisstein,
2019a; Duren et al., 1996; Krantz, 1999) is applied to its
boundary contour Ck to verify the actual existence of a
zero of the function F (w) within this region. This step

requires the evaluation of the parameter

qk =
1

2πj

∮

Ck

F ′(w)
F (w)

dw (35)

where j =
√−1. Based on Cauchy’s argument principle,

qk is equal to the sum of all zeros counted with their
multiplicities minus the sum of all poles counted also
with their multiplicities within the contour Ck. If the
region contains only a single candidate point, the value
of qk can be either a positive integer (zero of order qk),
a negative integer (pole of order −qk), or zero (regular
point). Equation (35) represents a total change in the
argument of the function F (w) over a closed contour Ck,
which is given for the sampled function along the contour
as

qk =
1

2π

P∑

p=1

arg

[
F (wp+1)

F (wp)

]
, (36)

where w1 = wP+1. We assume that points {wk : k =
1, 2, . . . , P} belong to the contour Ck and the change in
the function argument between two neighbouring points is
always less than or equal to π.

Instead of directly using discrete Cauchy’s argument
principle (36), the value of qk is computed for candidate
regions by summing all the increases in the quadrants
along the contour Ck in the counterclockwise direction

qk =
1

4

P∑

p=1

ΔQ(ep). (37)

Finally, if any value of qk is a positive integer,
then a zero of F (w) of order qk is located and the
system is unstable. If the method does not detect
any zero within the unit circle, then the system is
stable under limitation of the assumed test resolution
Δr. For instance, if the distance between a single
zero and a single pole on the complex w-plane is less
than the assumed test resolution Δr, then the algorithm
may not detect the system instability. However, any
numerical computations aimed at evaluating stability are
also always limited by the numerical precision, equal
to 10−7 (single-precision floating-point format) or 10−16

(double-precision floating-point format).

6. Numerical results

We develop code for stability testing of interconnected FO
systems in Matlab (Matlab, 2017). For this purpose, open
source code of the global complex roots and poles finding
algorithm based on phase analysis (Kowalczyk, 2018b)
has been used as the starting point of our research.
For numerical tests, we consider cascade, feedback and
parallel interconnections of FO systems investigated by
Stanislawski and Latawiec (2013b). The computations
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are executed on an Intel Core i5-5200U processor clocked
at 2.2 GHz. For the presented test results, the accuracy
being the final candidate region size is set to tol = 10−9.
This parameter value is independent from the resolution
parameter Δr which describes the initial maximum size
of triangle edges in the mesh.

Let us consider the system S1 (Af1,B1,C1,D1)
with α = 0.95 given by the following matrices:

Af1 =

[
0.6 −1
1 −1

]
, B1 =

[
1
0

]
,

C1 =
[
1 −0.95

]
, D1 = 0. (38)

The stability test of the system S1 with the resolution
Δr = 0.01 lasts Δt = 6.965 s and confirms that the
system is stable. In Fig. 3, the final mesh obtained
from the test execution is presented. As can be seen, the
mesh is so dense that the phase portrait of the function is
well visible. The algorithm finds the pole at w = 0 and
verifies based on Cauchy’s argument principle that it is the
double pole without influence on the system stability. For
Δr = 0.1, the stability test lasts Δt = 0.926 s and also
confirms that the system is stable. Figure 4 shows that the
mesh is only refined around the pole w = 0 whereas the
other area of the unit circle is triangulated with edge sizes
being maximally equal to Δr = 0.1. The computation
time is below 1 s which demonstrates algorithm efficiency.
However, any zero of F (w) located at a distance less than
Δr = 0.1 from the pole may not be detected by the
algorithm. To sum up, reducing the accuracy of the test
Δr results in longer execution times.

Consider the system S2 (Af2,B2,C2,D2) with
α = 0.95, given by the following matrices:

Af2 =

[
0.8 −1.17
1 −1

]
, B2 =

[
1
0

]
,

C2 =
[
1 −1.05

]
D2 = 0.

(39)

For the system S2 and Δr = 0.01, the stability test lasts
Δt = 7.008 s. The system is unstable, because there are
conjugated zeros at w = 0.799 ± j0.531, cf. Fig. 5. It
can be noticed that there is also a double pole in w =
0 and the order of color circulation around this point is
opposite to the one for zeros at the phase portrait. For the
system S2 and Δr = 0.1, the stability test lasts Δt =
0.954 s. According to the test result, cf. Fig. 6, the system
is unstable.

6.1. Cascade interconnection. For the cascade
interconnection of the systems S1 and S2 and Δr = 0.01,
the stability test lasts Δt = 7.234 s. Because one of the
interconnected systems is unstable, the test should return
that the interconnected system is also unstable. It is indeed
confirmed by the test result because the system conjugated
zeros are located at w = 0.799± j0.531 and the 4th order
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Fig. 3. Final mesh obtained for system S1 after test execution
with Δr = 0.01. Quadrants of the w-plane: � Q = 1,
�Q = 2, � Q = 3, �Q = 4.
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Fig. 4. Final mesh obtained for system S1 after test execution
with Δr = 0.1. Quadrants of the w-plane: � Q = 1, �
Q = 2, � Q = 3, � Q = 4.
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Fig. 5. Final mesh obtained for system S2 after test execution
with Δr = 0.01. Quadrants of the w-plane: � Q = 1,
�Q = 2, � Q = 3, �Q = 4.
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Fig. 6. Final mesh obtained for system S2 after test execution
with Δr = 0.1. Quadrants of the w-plane: � Q = 1, �
Q = 2, � Q = 3, �Q = 4.
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Fig. 7. Final mesh obtained for the cascade interconnection of
systems S1 and S2 after test execution with Δr = 0.01.
Quadrants of the w-plane: � Q = 1, � Q = 2, �
Q = 3, � Q = 4.
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Fig. 8. Final mesh obtained for the cascade interconnection of
systems S1 and S2 after test execution with Δr = 0.1.
Quadrants of the w-plane: � Q = 1, � Q = 2, �
Q = 3, � Q = 4.

pole is located at w = 0, cf. Fig. 7. For the cascade
interconnection of systems S1 and S2 and Δr = 0.1, the
stability test lasts Δt = 0.745 s. For these test parameters,
the test also returns that the system is unstable, cf. Fig. 8.

6.2. Feedback interconnection. Consider the system
S3 (Af3,B3,C3,D3) with α = 0.95, given by the
following matrices:

Af3 =

⎡

⎣
1.56 −2.536 0.96
1 −1 0
0 1 −1

⎤

⎦ ,

B3 =

⎡

⎣
1 0.2
1 −1.5

−0.3 1

⎤

⎦ ,

C3 =

[
0 1 0
1 0 −0.6

]
,

D3 =

[
0 0
0 0

]
.

(40)

Assume that the system S3 is feedback interconnected
with the system S4 (Af4,B4,C4,D4) with α = 0.84
that is given by the following matrices:

Af4 =

[
0.2 −0.5121
1 −1.1

]
, B4 =

[
0.5 0
0 0.5

]
, (41)

C4 =

[−0.5 0.5
0.5 0.5

]
, D4 =

[
0 0
0 0

]
.

Although both systems are stable separately, their
feedback interconnection is unstable because there are
conjugated zeros of the function F (w) in the unit circle.
In Fig. 9, one can notice these two single zeros at w =
0.523 ± j0.283 and the pole of the 5th order at w = 0.
For the feedback interconnection of the systems S3 and
S4 and Δr = 0.01, the stability test lasts Δt = 7.285 s.

6.3. Parallel interconnection. Let us consider the
parallel interconnection of systems S3 and S4. In this
case, the matrix M is block-diagonal and given by (24).
Hence, if each of the interconnected systems is stable then
their parallel interconnection is also stable. In Fig. 10,
one can notice only the pole of the 5th order at w = 0.
For the parallel interconnection of systems S3 and S4 and
Δr = 0.01, the stability test lasts Δt = 7.325 s.

7. Conclusions

In this paper, we analyse the stability of interconnected
discrete-time FO LTI state-space systems. We propose
a general numerical test allowing us to evaluate the
stability of interconnected systems. It consists of
a transformation of the characteristic equation of the
system, the triangulation of the unit circle with a
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Fig. 9. Final mesh obtained for the feedback interconnection of
systems S3 and S4 after test execution with Δr = 0.01.
Quadrants of the w-plane: � Q = 1, � Q = 2, �
Q = 3, � Q = 4.

-1 -0.5 0 0.5 1
Re(w)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Im
(w

)

Fig. 10. Final mesh obtained for the parallel interconnection of
systems S3 and S4 after test execution with Δr =
0.01. Quadrants of the w-plane: � Q = 1, � Q = 2,
�Q = 3, � Q = 4.

self-adaptive mesh refinement and final verification based
on Cauchy’s argument principle. The test efficiency is
demonstrated on several numerical tests for FO systems
described by state-space equations.
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