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This paper poses the question of whether or not the usage of the kernel trick is justified. We investigate it for the special case
of its usage in the kernel k-means algorithm. Kernel-k-means is a clustering algorithm, allowing clustering data in a similar
way to k-means when an embedding of data points into Euclidean space is not provided and instead a matrix of “distances”
(dissimilarities) or similarities is available. The kernel trick allows us to by-pass the need of finding an embedding into
Euclidean space. We show that the algorithm returns wrong results if the embedding actually does not exist. This means
that the embedding must be found prior to the usage of the algorithm. If it is found, then the kernel trick is pointless. If it is
not found, the distance matrix needs to be repaired. But the reparation methods require the construction of an embedding,
which first makes the kernel trick pointless, because it is not needed, and second, the kernel-k-means may return different
clusterings prior to repairing and after repairing so that the value of the clustering is questioned. In the paper, we identify
a distance repairing method that produces the same clustering prior to its application and afterwards and does not need to
be performed explicitly, so that the embedding does not need to be constructed explicitly. This renders the kernel trick
applicable for kernel-k-means.
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1. Introduction

A fundamental requirement for the evaluation of the
quality of an algorithmic method is that it returns what
it promises. This does not need to be the case with
the quite common kernel trick method, widely used in
conjunction with classification and clustering methods,
including SVM (Shawe-Taylor and Cristianini, 2004,
Chap.7) and kernel-k-means (Wierzchoń and Kłopotek,
2018). The so-called kernel methods have been invented
to allow for the application of Euclidean embedding
based algorithms to other data structure representations.
There exist domains in which not an embedding, but
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rather a similarity matrix (Demontis et al., 2017) or
the distance matrix (which should be rather called the
dissimilarity matrix) (Jacobs et al., 2000; Jain and
Zongker, 1998; Kleinberg, 2002) are available. In such
cases, the dissimilarity matrix can be transformed to a
similarity matrix (Demontis et al., 2017; Gower, 1982;
Cox and Cox, 2001; Kłopotek, 2019) and then the
embedding can be found via eigendecomposition if it
exists (that is, there are no negative eigenvalues (Pękalska
and Duin, 2005)). If there is no such embedding,
then the distance/similarity matrix can be repaired using
various techniques (Demontis et al., 2017; Gower and
Legendre, 1986; Lingoes, 1971; Cailliez, 1983; Higham,
1988), which are also based on eigendecomposition.
To by-pass the need for eigendecomposition, the
so-called kernel-trick is applied which works directly
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on the similarity matrix, as described in many popular
publications; see, e.g., the works of Shawe-Taylor and
Cristianini (2004) for kernel-k-means.

But some serious problems with this procedure
emerge if embeddability is not granted (e.g., due to
measurement or computational or typing errors (see
Higham, 1988), due to a specific definition of distance,
e.g., between time series (Marteau, 2019), or due to
the treatment of missing values, or the nature of the
distances themselves (Legendre and Legendre, 1998)) and
other approaches need to be used (Schleif and Tino,
2015; Villmann et al., 2016; Higham, 1988; Marteau,
2019). In such a case, the kernel-k-means does not
optimize the k-means cost function when applied to the
dissimilarity matrix that is not Euclidean, or equivalently,
to the similarity matrix that is not positive semidefinite
(Section 3). This means that the eigendecomposition
of the similarity matrix needs to be performed prior
to the kernel trick application. This makes the kernel
trick pointless. Furthermore, most of the aforementioned
methods of repairing the distance/similarity matrix,
besides relying on eigen decomposition, have the flaw that
if the repair transformation is performed, the clustering
resulting from the usage of kernel-k-means prior to
the transformation may be different from that after the
transformation so that we do not really know which one
to trust (unless they are identical, see Section 8). Last but
not least, the transformation method described by Gower
and Legendre (1986) and reproduced in a number of later
publications (e.g., Szekely and Rizzo, 2014; Qi, 2016) is
actually inaccurate.1

Therefore, we contribute the following in this paper:
(i) we show that a non-Euclidean distance matrix leads
to wrong clustering by kernel-k-means (Section 3); (ii)
we show that the distance matrix corrections proposed in
(Gower and Legendre, 1986) (recalled in Section 4) do not
repair the matrix to an Euclidean one (Sections 5 and 7);
(iii) we show that the original theorems of Lingoes (1971)
and Cailliez (1983), on which the method of Gower and
Legendre (1986) was based, are correct (Sections 6 and
8); (iv) we show that the Cailliez (1983) correction is
not suitable for the classical kernel-k-means as there are
clustering discrepancies—it may be applied only for its
variants rooted in �1 like the k-median algorithm (Bradley
et al., 1996; Du et al., 2015; Kashima et al., 2008)
(Section 6); and (v) we show under what assumptions
the correction of Lingoes (1971) is suitable for usage
with kernel-k-means as the clusterings before and after
this transformation agree and hence the kernel trick can

1Compare the original formulas derived by Cailliez (1983) and Lin-
goes (1971) and reproduced correctly later by Legendre and Legendre
(1998) as well as Cox and Cox (2001). Note, however, that Legendre and
Legendre (1998) refer on page 433 to the paper by Gower and Legendre
(1986) notifying the reader that the form provided by Gower and Leg-
endre (1986) is misprinted, which must have gone unnoticed by Szekely
and Rizzo (2014) as well as (Qi, 2016).

be validly applied, i.e., without the prior checking for
embeddability of the distance matrix (Section 8).

2. Background

Apparently, k-means is a broadly used clustering
algorithm. It works efficiently for data embedded into
a fixed-dimensional Euclidean space. Its numerous
properties have been widely studied. In spite of the
high worst-case complexity, it is generally very quick
and some good properties have been established, like its
probabilistic k-richness (Ackerman et al., 2010), meaning
that with high probability the intrinsic cluster structure
may be recovered by k-means for favorable distances.

The k-means clustering algorithm seeks to split data
points xi into k clusters Cj , j = 1, . . . , k by finding
k points µj , j = 1, . . . , k, called cluster centers, or
prototypes, in the data space such that the cost function

J({µj}kj=1) =

m∑

i=1

min
1≤j≤k

‖xi − µj‖2 (1)

is minimized. The cluster Cj consists then of data points
xi such that j = argmin1≤j≤k ‖xi − µj‖2. Note that in
the optimal clustering,

µj =
1

mj

∑

i∈Cj

xi (2)

holds, due to properties of Euclidean spaces. The k-means
algorithm has the very attractive property of being easy
to implement, and there exist various variants of it
like k-means++ possessing even closeness-to-optimum
properties. A drawback of this algorithm is that it accepts
numeric attributes only and requires an embedding in
a Euclidean space. Embedding into other spaces were
investigated, like hyperbolic space, but the computation
of cluster centers which is vital and very easy in
Euclidean spaces, is not so easy in the other spaces.
However, real-world objects are frequently described by
non-numeric attributes, or are not embedded in any space
whatsoever and instead only similarity, dissimilarity or
distance between objects is known. In such cases,
the kernel-k-means clustering algorithm can be used
which at least partially inherits the good properties
of k-means. These applications usually rely on the
kernel trick. Kernel-trick based k-means algorithms are
applied in various areas (e.g., gene expression clustering
(Handhayania and Hiryantob, 2015) or spectral clustering
of graphs (Shawe-Taylor and Cristianini, 2004)).2

A kernel is understood as a function κ : X ×
X → R mapping the dot product of some representation

2An overview of the kernel k-means algorithm may be found in,
e.g., the works of Shawe-Taylor and Cristianini (2004) or Wierzchoń
and Kłopotek (2018).
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space X into a subset of real numbers, whereby
satisfying, for all x, x′ ∈ X , κ(x, x′) = 〈Φ(x),Φ(x′)〉,
where Φ maps X into some dot product space H ,
sometimes called the feature space (Hofmann et al.,
2008). A dot product space is a vector space (with,
e.g., real-valued or complex-valued coordinates) together
with a dot product operator. The dot product operator
〈·, ·〉 has to have, for all vectors x,y, z and all scalars
a the properties: (i) conjugate symmetry, 〈x,y〉 =
〈y,x〉; (ii) linearity in the first argument, 〈ax,y〉 =
a〈x,y〉, 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉; (iii) positive
definiteness, 〈x,x〉 > 0, for any non-zero vector x.
The kernel approach exploits the function Φ : X →
R

m mapping the original representation space X to
a high-dimensional Euclidean space R

m (Shawe-Taylor
and Cristianini, 2004), i.e., it operates on Mercer kernels.
The (embedding) transformation Φ is chosen in such
a way that classes or clusters not linearly separable in
the original representation space will become linearly
separable in the feature space. Hence, a number of data
mining methods requiring linear data separation can be
applied to non-linearly separated data sets.

Instead of the mapping Φ, the aforementioned
kernel-function κ is used. In practice, however, we are
not interested in the whole space X , but rather in a
(finite) sample S ⊂ X , for which the function κ can be
summarized by the kernel matrix K with the property
that Kij = κ(i, j) for any two data objects i, j ∈ S.
The matrix K can be considered as a kind of similarity
matrix between the data points. If κ is a Mercer kernel,
K is positive semidefinite. To recover the embedding, the
eigenproblem has to be solved for K . Though the solution
has been shown to be of polynomial complexity (Pan and
Chen, 1999), it may still be prohibitive if the matrix is
huge.

For a number of algorithms, including
kernel-k-means, the so-called kernel trick has been
elaborated, allowing to sidestep the solving of the
eigenproblem. The essence of the kernel trick is that the
kernel matrix K is sufficient for performing the algorithm
in the feature space, and one does not need to know the Φ
function, even for data points from S. Section 3 explains
the usage of the kernel trick for the k-means algorithm.
Please pay attention to the difference between formulas
(4) and (1).

Nonetheless, the very existence of the mapping
Φ, and hence of the kernel function κ is of vital
importance for the validity of the application of the
k-means algorithm in the feature space. Φ transforms
the data to points in an Euclidean space so that k-means
can be applied at all. In other words, the matrix K
needs to be positive semidefinite. In many cases, like
Laplacians of graphs (Wierzchoń and Kłopotek, 2018) or
density-based regression (Jaworski, 2018), one knows in
advance that they can be deemed as kernels embedded

into an Euclidean space, so that there are no obstacles
to apply kernel-k-means clustering. However, the kernel
matrix may not be a Mercer kernel matrix. The validity
of the kernel trick underpins various improvements of
kernel k-means clustering, like single pass clustering
(Sarma et al., 2013), global kernel k-means (Tzortzis
and Likas, 2009), subsampling kernel k-means (Chitta
et al., 2011), robust kernel k-means (Yao and Chen, 2018)
and other. Therefore, research is performed like the one
reported by Li et al. (2013), Roth et al. (2003) and Marin
et al. (2019) to transform a similarity matrix into the
closest proper positive semidefinite kernel matrix.

This issue is closely connected to the other
mentioned data representations. As mentioned, instead
of the kernel matrix, the distance matrix D may be
available. This matrix can be easily transformed into a
kernel matrix for usage with kernel-k-means. The most
general proposal of a distance-to-kernel-matrix transform
seems to be that defined in Theorem 2 of Gower (1982):

K = KG(D) =
(
I− 1sT

)
(−1

2
D◦2)

(
I− s1T

)
(3)

where s is a vector such that sT1 = 1, and D◦2 is a
matrix containing squared distances from D as entries.
If all elements of s are equal to 1/m, then

(
I− 1sT

)
is

called a centering matrix. It generalizes other proposals
like that of Schoenberg (1938), recalled by Balaji and
Bapat (2007) as well as Cox and Cox (2001). If the
distance matrix D is Euclidean, then the kernel matrix K
is positive semidefinite. But what if D is not Euclidean?
As shown in Section 3, kernel-k-means applied to the
respective kernel matrix K will not be able to reach the
optimum (minimum) of the k-means cost function. Does
it mean that we cannot legitimately apply kernel-k-means
(with kernel trick) to distance matrix D without checking
a priori whether or not it is Euclidean? But if it is so,
then there is no point in applying the kernel trick at all.
The advantage of the kernel trick was to save the costs
of seeking eigenvalues and eigenvectors of K . But if we
have to check the eigenvalues for non-negativity, then (i)
this advantage is lost, and (ii) the distance matrix needs to
be “repaired” to represent the Euclidean distance.

Theorem 7 of Gower and Legendre (1986) proposes
two ways of “repairing” a non-Euclidean distance3 matrix
to become a Euclidean one (cf. Section 4). Other
proposals come from Lingoes (1971), Roth et al. (2003),
Cailliez (1983), Szekely and Rizzo (2014), Qi (2016), and
others. For an overview of other approaches, see also the
work of Gisbrecht and Schleif (2015).

In the context of transforming non-Euclidean
distances to Euclidean ones, the paper by Gower and
Legendre (1986) is cited, e.g., by Gonzalez and Munoz

3The non-Euclidean distance d for a dataset X should have the prop-
erties: d(x, x) = 0, d(x, y) = d(y, x), d(x, y) > 0 for x, y ∈ X ,
x �= y.
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(2010), Marin et al. (2019), Cox and Cox (2001) and
Pękalska et al. (2002). For example, Pękalska et al.
(2002) cite the theorem on page 179, though, as we prove
below, this theorem is inaccurate. Marin et al. (2019),
in the proof of their Theorem 3, cite the Gower/Legendre
theorem and the results of Lingoes (1971) as if they were
equivalent, which is not true. Gonzalez and Munoz (2010)
just assume the Gower/Legendre theorem works.

We will concentrate on Theorem 7 of Gower and
Legendre (1986). Therefore we will call it simply the
G/L-theorem. We will demonstrate that the G/L-theorem
is misprinted (Sections 5 and 7), i.e., the two methods
suggested there do not turn a non-Euclidean to a
Euclidean distance matrix. We prove that, instead, the
original proposals (Cailliez, 1983; Lingoes, 1971) from
which the G/L-theorem was constructed yield such a
matrix transformation (Sections 5 and 7). However,
the proposal of Cailliez (1983) is unsatisfactory because
kernel-k-means applied to the original dissimilarity
matrix and to the euclidized one yield different results
(Section 6). The same applies to the formulas suggested
by Szekely and Rizzo (2014) as well as Qi (2016) for the
very same reason that is a modification of the distances
by the same constant. Some researchers, e.g., Choi and
Choi (2005) or Bao and Kadobayashi (2008), recommend
explicit usage of the Cailliez euclidization.

It is only in the case of the transformation proposed
by Lingoes (1971) that kernel-k-means applied to the
original dissimilarity matrix and to the euclidized one
yield identical results (Section 8). The reason is that
this transformation adds the same constant to the squared
distances which corresponds to the nature of k-means cost
function (Eqns. (4) and (1)). Hence no identification of
eigenvalues is needed, and the advantage of the kernel
trick is preserved. This is the main result of this paper,
and it is of crucial importance for the applicability of the
kernel trick for kernel-k-means.

Many applications of kernel-k-means do not care at
all about whether the kernel matrices are embeddable in
Euclidean spaces. A non-Euclidean space requires serious
modification of k-means, accommodating to that fact that
the gravity center of a cluster cannot serve any more as a
cluster center (gradient descent methods are needed, for
example (see Richter et al., 2017, Section 6)).

There also exist other publications in other domains
referring to the misprinted formulation of Theorem 7, like
that by Dokmanic et al. (2015, Theorem 2).

These facts underpin the need to demonstrate that
there exist such ways of transforming the non-Euclidean
distance matrix to a Euclidean one such that the results of
kernel k-means for the original and the repaired matrices
agree, what we actually do in this paper.

3. k-Means under non-Euclidean kernels

The kernel-k-means algorithm consists in switching to
a multidimensional feature space F . The method relies
upon searching for prototypes µΦ

j minimizing the error or
cost function J , (see, e.g., Shawe-Taylor and Cristianini,
2004), Section 8.2 defined as

J({µΦ
j }kj=1) =

m∑

i=1

min
1≤j≤k

‖Φ(i)− µΦ
j ‖2 (4)

over all possible choices of the set of cluster centers µΦ
j ,

j = 1, . . . , k, on the analogy of (1). But the possible
choices are limited. Here µΦ

j may only be equal to

µΦ
j =

1

mj

∑

i∈Cj

Φ(i) (5)

for some subset Cj of all the data points and no other
vectors of cluster centers in the feature space are taken
into account, by analogy to (2). If the feature space
is Euclidean, it is guaranteed (Gower, 1982) that no
other vector of cluster centers from the feature space
will ever be considered as a cluster center, because the
clustering will not be optimal. It is not so in the case of
non-Euclidean feature spaces. Let us discuss the concerns
for applying kernel-k-means in such situations and about
the validity of the obtained clusters.

Kernel-k-means uses the so-called kernel-trick,
eliminating the need to know the Φ function and the need
to handle high-dimensional vectors that Φ may induce.
The kernel trick relies on the equation

‖Φ(i)− µΦ
j ‖2 = kii − 2

mj

∑

h∈Cj

khi

+
1

m2
j

∑

r∈Cj

∑

s∈Cj

krs, (6)

where kij = Φ(i)TΦ(j) = K(i, j). Hence

J({µΦ
j }kj=1) =

m∑

i=1

min
1≤j≤k

(
kii − 2

mj

∑

h∈Cj

khi

+
1

m2
j

∑

r∈Cj

∑

s∈Cj

krs

)

=
m∑

i=1

min
1≤j≤k

(
− 2

mj

∑

h∈Cj

khi

+
1

m2
j

∑

r∈Cj

∑

s∈Cj

krs

)
+

m∑

i=1

kii, (7)

where
∑m

i=1 kii is a constant in this optimization
task. In this way, one can update the elements of
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clusters without explicitly determining the prototypes. A
respective implementation of kernel-k-means is presented
by Shawe-Taylor and Cristianini (2004, Algorithm 8.22,
pp. 274–275). We use our own R implementation; see the
package at the end of the paper.

Equation (5) and implicitly also (7) state that one
uses only unweighted combinations of the Φ images of
data points in the feature space to compute the candidate
cluster centers under kernel-k-means. However, under
the kernel mapping Φ, it is also possible to compute the
squared distance of any data point i to other candidate
prototypes, like those µΦ

w(C) from the convex hull of C,
defined by (8). Let w1, . . . , wm be non-negative weights
of data points 1, . . . ,m. Let C be a subset of {1, . . . ,m}
such that

∑
i∈C wi �= 0. Define µΦ

w(C) as a weighted
center of the datapoints of C,

µΦ
w(C) =

1∑
i∈C wi

∑

i∈C

wiΦ(i). (8)

The distance from a data point in the feature space to such
a candidate prototype amounts to

‖Φ(i)− µΦ
w(C)‖2 = kii − 2∑

h∈C wh

∑

h∈C

whkhi

+
1

(
∑

h∈C wh)2

∑

r∈C

∑

s∈C

wrwskrs.

(9)

Consider the following example of a non-Euclidean
distance matrix:

nED =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 12 24 24 48 48
12 0 48 48 24 48
24 48 0 48 48 24
24 48 48 0 24 12
48 24 48 24 0 48
48 48 24 12 48 0

⎞

⎟⎟⎟⎟⎟⎟⎠
,

and the corresponding kernel4 matrix, computed
according to (3) with s = 1/m:

nEF =
⎛

⎜⎜⎜⎜⎜⎜⎝

384 456 276 96 −588 −624
456 672 −444 −624 420 −480
276 −444 744 −588 −408 420
96 −624 −588 384 276 456

−588 420 −408 276 744 −444
−624 −480 420 456 −444 672

⎞

⎟⎟⎟⎟⎟⎟⎠
.

Kernel-k-means, with k = 2, produces a clustering
[1, 2, 1, 1, 2, 1] 5 with the total value of the cost function

4The matrix nEF is actually not a Mercer kernel matrix, as it is not
positive semidefinite. But we use this term by analogy to the usage of
“non-Euclidean distances” for dissimilarities by, e.g., Gower (1985), in
spite of the fact that they do not possess (Euclidean) distance properties.

5Clustering [1, 2, 1, 1, 2, 1] means that the first, third, fourth and
sixth elements belong to cluster 1, while second and fifth to cluster 2.

1908, Eqn. (7). Other clusterings, around unweighted
centers, would not be better.

Consider a different clustering, [1,1,1,2,2,2], where
you choose weighted cluster centers of Eqn. (8) with
weights [10,1,1,10,1,1], instead of the k-means cluster
centers of Eqn. (5), and substitute them into Eqn. (4).
Then the cost function will amount to 1692, which is
below what kernel-k-means produces. Thus we have
demonstrated by this example that the following results
holds.

Theorem 1. Kernel-k-means does not optimize the cost
function J(µΦ

j ; j = 1, . . . , k) of (4) for non-Euclidean
kernel matrices, where the cluster assignment is driven by
the condition of the closest cluster center.

It is clearly a consequence of the non-suitability of
k-means for non-Euclidean distances. Similar problems
with SVM have been pointed out by Loosli et al. (2016).
This theorem may seem not to be a dramatic discovery,
but recall that many popular works do not warn the reader
that kernel-k-means requires an (underlying) Euclidean
distance matrix.6

4. Gower/Legendre formulation of the
kernel-trick related theorem

Recall that a matrix D ∈ R
m×m is a Euclidean distance

matrix between points 1, . . . ,m if and only if there exists
a matrix X ∈ R

m×n the rows of which (xT
1 , . . . ,x

T
m) are

coordinate vectors of these points in the n-dimensional
Euclidean space and

dij =
√
(xi − xj)T (xi − xj). (10)

Theorem 7 by Gower and Legendre seeks to
transform a non-Euclidean distance matrix into a
Euclidean one.

Theorem 2. (Gower and Legendre, 1986, Theorem 7)

Part (a) or the Lingoes (1971) part. Any dissimilarity
matrix D may be turned to a Euclidean distance ma-
trix, by adding a constant σ to the squared distances:
d′(z, y) =

√
d(z, y)2 + σ, where σ is such that σ ≥ −λm,

λm being the smallest eigenvalue of

FL(D) =
(
I− 11T

m

)(
− 1

2
D◦2

)(
I− 11T

m

)
, (11)

where D◦2 is the matrix of squared values of elements of
D, m is the number of rows/columns in D.

6Szalkai (2013) proceeds as if it were inessential that the space is not
Euclidean.
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Part (b) or the Cailliez part. Define FC(D) =(
I− 11T

m

)
(− 1

2D)
(
I− 11T

m

)
and

MC(D) =

(
0 2FL(D)
−I 2FC(D)

)
. (12)

Let κ be any number greater than or equal to the largest
eigenvalue of MC(D). Then d′(z, y) = d(z, y) + κ is Eu-
clidean.

The significance of a theorem like this is the
following: Each non-Euclidean distance matrix can
be turned to an Euclidean one, though one has to
compute the matrix eigenvalues, which is of polynomial
complexity (Pan and Chen, 1999), but may be expensive
for large matrices. But the question arises: What
about the relationship between clusterings obtained via
kernel-k-means from the original dissimilarity matrix and
that after correction. If they are different, then the
semantics of kernel-k-means results are questionable. If
they are identical, then there is a tremendous advantage.
First of all, the results of kernel-k-means on the original
matrix mean those obtained via euclidization. Second,
the euclidization itself does not need to be performed,
because the results for the Euclidean distance are identical
with those for the non-Euclidean one. Accordingly, the
eigenvalues do not need to be determined, and we save
computation while creating a semantics.

Regrettably, Gower and Legendre’s Theorem 7 is
actually inaccurate in both parts. We will demonstrate
this by examples. As the old theorem of Gower and
Legendre proved to be incompletely proven, the still older
results of Lingoes and Cailliez need a careful review. In
fact, a later publication by one co-author (Legendre and
Legendre, 1998) points at misprints in the G/L-theorem,
but some questions remain: (i) Are those misprints that
bad? (ii) Why did some authors modify the formulas of
the G/L-theorem, producing further inaccuracies? But we
do not verify these results for the pure sake of reviewing,
but rather to enable posing the question of whether or not
they are suitable for the purposes of kernel-k-means.

5. Failure of the Gower/ Legendre
euclidization theorem in the Cailliez part

Section 3 convinced us that the application of
kernel-k-means to non-Euclidean distances may be
disastrous. This fact strengthens the interest in the various
ways of euclidizing a distance matrix.

Let us first investigate the Cailliez part of Theorem 2.
The formulation by itself is not quite accurate, because the
matrix MC(D) defined by (12) has complex eigenvalues
(it is not symmetric), so the concept of a maximum
is ill-defined. But even when we take the largest real
eigenvalue, the embeddability is not achieved.

Apparently, Gower and Legendre misrepresented
Cailliez (1983). Let us note in passing that other authors
also misrepresent this result, e.g., Qi (2016, page 2, B̂
formula):

MQiC(D) =

(
0 2FL(D)
−I 4FC(D)

)
, (13)

and Szekely and Rizzo (2014):

MSzekelyC(D) =

(
0 FL(D)
I FC(D)

)
. (14)

Let us illustrate this with an example. The matrix
FC(nED) =nE FC has the form

nEFC =
⎛

⎜⎜⎜⎜⎜⎜⎝

11.3 7.3 2.3 −0.7 −9.7 −10.7
7.3 15.3 −7.7 −10.7 4.3 −8.7
2.3 −7.7 17.3 −9.7 −6.7 4.3
−0.7 −10.7 −9.7 11.3 2.3 7.3
−9.7 4.3 −6.7 2.3 17.3 −7.7
−10.7 −8.7 4.3 7.3 −7.7 15.3

⎞

⎟⎟⎟⎟⎟⎟⎠
.

The minimal κ from part (b) of Theorem 2 for
MC(nED) =nE MC amounts to κ = 38.307. Upon
modifying the distance matrix according to part (b) of
Theorem 2, we get the new kernel matrix which is
not Euclidean, because its lowest eigenvalue is equal
to −1076.146. Therefore, change MC to the original
notation by Cailliez (Cailliez, 1983):

MoC(D) =

(
0 2FL(D)
−I −4FC(D)

)
(15)

(factor −4 instead of 2 in the last row). Cailliez
demonstrated that the transformation to an embeddable
distance version may have the form

d′(z, y) = d(z, y) + κ

for the original MoC , where κ is a number greater than or
equal to the largest eigenvalue of MoC which is positive
for non-Euclidean distances.

Only upon applying the original Cailliez
formulation, Eqn. (15), yielding minimal κ = 69.134,
we get a kernel matrix which is Euclidean, because
its lowest eigenvalue is zero. Regrettably, the kernel
matrix FC(nED + κ

(
11T − I

)
) =nE FcC implies a

clustering [ 1, 1, 2, 2, 1, 2] with the total value of the cost
function 19317.864, which is different from the original
clustering, [1, 2, 1, 1, 2, 1], obtained for the matrix nEF
via kernel-k-means.

Qi (2016), though producing a Euclidean matrix,
overshoots the distance correction, yielding the minimal
number greater than or equal to the largest eigenvalue
of (13) κ = 118.309, while Szekely’s formula
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underestimates it, yielding the minimal number greater
than or equal to the largest eigenvalue of (14) κ = 67.948,
which results in a non-Euclidean distance matrix.

Though we have seen by example that the original
Cailliez theorem works better, we still need a proof for
the general case. It is sufficient to show that in fact
the largest real eigenvalue of MoC needs to be positive
when the distance is non-Euclidean. Assume that λ is
an eigenvalue of the matrix MoC with the eigenvector v
which can be decomposed into two parts of equal lengths
v = (vT

L ,v
T
C)

T . Therefore, due to (15),

λvL = 2FL(D)vC4

and
λvC = −IvL − 4FC(D)vC .

Substitution of the former to the latter leads to

λvC = −λ−12FL(D)vC − 4FC(D)vC

(valid only if λ �= 0). Upon multiplying with −λ, we get

− λ2vC = (2FL(D) + λ4FC(D))vC . (16)

Thus we may think of this equation as of an eigenvalue
problem with some parameter β

−λ2vC = 2(FL(D) + β2FC(D))vC

subject to the constraint β = λ. It can be rewritten as

−λ2vC =

(
−
(
I− 11T

m

)
D◦2

(
I− 11T

m

)

−2β

(
I− 11T

m

)
D

(
I− 11T

m

))
vC ,

−λ2vC =
(
−
(
I− 11T

m

)(
D◦2 + 2βD

)

·
(
I− 11T

m

))
vC . (17)

If D is Euclidean, then D′ = D◦ 1
2 (element-wise

square root of D) has the property that it is also a matrix
of Euclidean distances. If β (parameter) is positive, then
(D◦2 + 2βD′◦2)◦

1
2 is also a Euclidean distance matrix.

The solution of the eigenvalue problem to the right will
then generate non-negative eigenvalues. But apparently,
−λ2 is non-positive. So if D is Euclidean, then λ must be
non-positive. Thus we have shown that, indeed, whenever
the biggest eigenvalue of the matrix MoC(D) is positive,
D is non-Euclidean.

What remains to be shown is that the matrix D can be
turned to Euclidean by adding a constant to each distance.
For this purpose, let us return to (16). We claim that for
any κ the following holds:

− (λ− κ)2vC

= (2FL(D + κ
(
11T − I

)
)

+ λ4FC(D + κ
(
11T − I

)
))vC , (18)

i.e., if we increase non-diagonal distances in D by
κ, then the eigenproblem of Cailliez will have the
same eigenvectors with associated eigenvalues λ − κ
for non-zero λ. This means that if we increase the
distances by max(λ), then all the eigenvalues in the
Cailliez eigenproblem will be non-positive, hence the
distance matrix will be Euclidean, which completes the
proof of the Cailliez claim (compare this with the original
proof by Cailliez (1983)). Let us prove our claim. Recall
(see Eqn.(17)) that

−λ2vC =
(
−
(
I− 11T

m

)(
D◦2 + 2λD

)

·
(
I− 11T

m

))
vC .

(19)

After adding (2λκ− κ2)vC to both the sides, we get

− (λ− κ)2vC

= −
(
I− 11T

m

)(
D◦2 + 2λD

+ (2λκ−κ2)
(
11T − I

))(
I− 11T

m

)
vC .

Hence

− (λ− κ)2vC

= −
(
I− 11T

m

)(
D◦2 + 2κD + κ2

(
11T − I

)

+2λD − 2κD + 2λκ
(
11T − I

)

−2κ2
(
11T − I

))(
I− 11T

m

)
vC .

Obviously,
(
D + κ

(
11T − I

))◦2
= D◦2 + 2κD +

κ2
(
11T − I

)
. Hence

− (λ− κ)2vC

=

(
−
(
I− 11T

m

)((
D + κ

(
11T − I

))◦2

+2(λ− κ)
(
D + κ

(
11T − I

)))

·
(
I− 11T

m

))
vC .

But this is exactly (19), i.e., (16) after adding κ to
off-diagonal elements of D and subtracting κ from λ.
Thus we are done with the Cailliez theorem.

6. Deficiency of the Cailliez approach to
euclidization

But, though the original theorem of Cailliez is correct,
as we have seen with the numerical example, the
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transformation of the non-Euclidean matrix to a Euclidean
one is useless from the point of view of kernel-k-means as
the clustering is not preserved, i.e., the clustering obtained
via kernel-k-means for the original matrix is not the same
as the one produced after the transformation.

In the case of k-means, by adding a constant to the
distance, and not to the squared distance, the contribution
of each cluster element to the cost function will differ,
and the “outlier points" (those more distant than the other
ones) will contribute more, so that the structure of clusters
may impact the cluster assignment after a distance change.
If we add κ in a cluster Cj for an element i to all its
distances, then its contribution will increase to

1

2mj

∑

l∈Cj ,l �=i

(‖Φ(i)− Φ(l)‖+ κ)2

= κ2mj − 1

2mj
+ 2κ

1

2mj

∑

l∈Cj,l �=i

‖Φ(i)− Φ(l)‖

+
1

2mj

∑

l∈Cj

‖Φ(i)− Φ(l)‖2.

This means an increase by

κ2mj − 1

2mj
+ κ

1

mj

∑

l∈Cj ,l �=i

‖Φ(i)− Φ(l)‖

for a single element. For the whole cluster
Cj , we get an increase of κ2(mj − 1)/2 +
κ 1
mj

∑
i∈Cj

∑
l∈Cj,l �=i ‖Φ(i) − Φ(l)‖ which takes

into account also the structure of the cluster in a different
manner than in the kernel-k-means cost function (4). It
is easily seen that, with an increase in κ, not squared
distances, but linear distances will play a role in the
clustering process. Hence the different outcome upon
euclidization.

Theorem 3. For kernel-k-means, adding a constant to
dissimilarity measures of different elements is a clustering
non-preserving operation.

We conclude that even the original Cailliez
transformation makes the application of the kernel-trick
in the kernel k-means algorithm a questionable practice.
We do not know how to interpret the outcome of the
clustering with this method. It has to be stressed, however,
that given a kernel clustering method with a cost function
based not on �2, as in the case of traditional k-means, but
rather based on �1 (Kashima et al., 2008; Bradley et al.,
1996; Du et al., 2015), the original Cailliez transformation
would be the appropriate choice.

7. Failure of the Gower/ Legendre
euclidization theorem in the Lingoes part

Turn our attention to the Lingoes part of the Gower and
Legendre theorem. Note that Roth et al. (2003) in their

Theorem 2 provide the correct formulation attributed also
to Cox and Cox (2001). Continue the above example.
Constant σ, implied by Part (a) of Theorem 2 , for nEF
amounts to σ = 1090.376. Modifying the distance matrix,
as prescribed by Part (a) of Theorem 2, we get a new
kernel matrix which is again non-Euclidean, because its
lowest eigenvalue is equal to −545.188.

Let us investigate a “correction” of Gower/Legen-
dre’s “euclidization” theorem, that is, the result due to
Lingoes (1971).

Theorem 4. (Lingoes, 1971) Any dissimilarity matrix
D may be turned to a Euclidean distance matrix, see
their Theorem 7, by adding an appropriate constant (to
non-diagonal elements), e.g., d′(z, y) =

√
d(z, y)2 + 2σ,

where σ is a constant such that σ ≥ −λm, λm being
the smallest eigenvalue of (I − 11T /m)(− 1

2D
◦2)(I −

11T /m), D◦2 is the matrix of squared values of elements
of D, m is the number of rows/columns in D.

Proof. It has been proven (Kłopotek, 2019, Eqns. (24) and
(25)) that, given sT1 = 1, tT1 = 1, we have

(I− 1tT )(I− 1sT ) = I− 1tT . (20)

Equation (20) allows us to conclude that given

F = −1

2

(
I− 11T

m

)
D◦2

(
I− 11T

m

)

for a dissimilarity matrix D, the following holds:

F =

(
I− 11T

m

)
F

(
I− 11T

m

)

= F

(
I− 11T

m

)
=

(
I− 11T

m

)
F.

Let v be an eigenvector of F for a non-zero
eigenvalue λ. Therefore

λ

(
I− 11T

m

)
v =

(
I− 11T

m

)
Fv

= Fv = F

(
I− 11T

m

)
v.

Assuming that v′ = (I− 11T

m )v, we get

λv′ = Fv′,

which means that v′ is also an eigenvector of F for the
same eigenvalue. Notably, the sum of components of v′ is
equal to zero. Consider the following expression for some
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number σ:

F ′ =
(
I− 11T

m

)(
−1

2
D◦2 − σ

(
11T − I

))

·
(
I− 11T

m

)

=

(
I− 11T

m

)(
−1

2
D◦2

)(
I− 11T

m

)

+ σ

(
I− 11T

m

)
.

Consider an eigenvector v′ of F ′ for a non-zero
eigenvalue λ′, such that the sum of its components equals
zero. For each λ, such a vector always exists. We see
immediately that

F ′v′ =
(
I− 11T

m

)(
−1

2
D◦2

)(
I− 11T

m

)
v′ + σv′,

λ′v′ = Fv′ + σv′,

(λ′ − σ)v′ = Fv′,

i.e., that (λ′ − σ) is an eigenvalue of F with eigenvector
v′.

This means that, by subtracting σ from non-diagonal
elements of − 1

2D
◦2 in the computation of F , we can

increase its eigenvalues of eigenvectors with zero-sum
components by σ. But subtracting σ from non-diagonal
elements of − 1

2D
◦2 means adding σ to non-diagonal

elements of 1
2D

◦2, or adding 2σ to non-diagonal elements
of D◦2, or just replacing non-diagonal elements dij of

D with
√
d2ij + 2σ, when i �= j. If we add at least the

negative of the lowest eigenvalue of non-Euclidean F to
all its eigenvalues, then, of course, it turns to a Euclidean
one, given that all eigenvectors with non-zero eigenvalues
have zero sums of components.

How can we tell if all such eigenvectors have
zero-sums? In case all eigenvalues are different, this
is simple. As shown, each eigenvalue has a zero-sum
eigenvector, and this is the only one up to a scaling factor.

The details of handling special cases (of identical
eigenvalues) follow now. Consider the set of all
eigenvectors related to multiple eigenvalues. The whole
set can be represented as a linear combination of some
number of orthogonal vectors from this set with the
number equal to the multiplicity of the eigenvalue.

Let v be one of these orthogonal vectors. Then
any linear combination of all the other orthogonal vectors
is orthogonal to v. Let v” be an example from this
combination. Then clearly v”Tv = 0. But also
v”T (Fv) = λv”Tv = 0. Hence v”T (F (I − 11T

m )v) =

v”Tλv′ = 0. So v′ = (I − 11T

m )v is orthogonal
to v”. As the latter represents any vector orthogonal
to v of the subspace co-spanned by v, so v′ must be

identical to v up to scaling factor. Hence the subspace
of eigenvectors can be spanned by a set of orthogonal
vectors with components summing up to zero. Thus all
the eigenvectors of F have this property and hence adding
the respective constant adds it to all the eigenvalues of the
matrix F . �

Let us illustrate Theorem 4 by continuing the
previous example. The euclidization of the kernel
nEF , according to Theorem 4, will lead to a kernel
matrix EF which is now Euclidean, because its lowest
eigenvalue is zero. The kernel matrix EF implies a
clustering [ 2, 1, 2, 2, 1, 2] with the total value of
the cost function 6269.502, cf. (7). Other clusterings
would not do better. Check, e.g., that the clustering
[1,1,1,2,2,2] produces the cost function amounting to
6377.502, which is higher than what kernel-k-means
produces. Consider a different clustering, [1,1,1,2,2,2],
where you choose weighted cluster centers with weights
[10,1,1,10,1,1], instead of the k-means cluster centers.
Then the cost function will amount to 8506.847, which
is again higher than what kernel-k-means produces. In
a Euclidean space, kernel-k-means produces appropriate
results. The clustering obtained is identical with the
clustering delivered by kernel-k-means from the original
kernel matrix nEF . But what about the case when we
have the kernel matrix KG(D) of Gower’s general form
(3) instead of the distance matrix D? In this case

K∗ =

(
I− 11T

m

)
KG(D)

(
I− 11T

m

)

=

(
I− 11T

m

)
(−1

2
D◦2)

(
I− 11T

m

)

= FL(D) (21)

see (11). Hence, we can make Euclidean (Mercer’s)
any non-Euclidean kernel matrix K by identifying σ ≥
−λm with λm being the lowest (negative) eigenvalue of(
I− 11T

m

)
K
(
I− 11T

m

)
and then modifying K directly

to

K ′ = K − σ
(
I− 1sT

) (
11T − I

) (
I− s1T

)
(22)

because

(
I− 1sT

)(−1

2

(
D◦2 + 2σ

(
11T − I

))) (
I− s1T

)

= K − σ
(
I− 1sT

) (
11T − I

) (
I− s1T

)
.

Consider once again

F = −1

2

(
I− 11T

m

)
D◦2

(
I− 11T

m

)

and its eigenvalue λ and eigenvector v =
(
I− 11T

m

)
v.

Thus λv = Fv and therefore λ
(
I− 1sT

)
v =
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(
I− 1sT

)
Fv. Applying (20), we obtain

λ
(
I− 1sT

)
v

=
(
I− 1sT

)
F
(
I− s1T

)(
I− 11T

m

)
v,

that is
λ
(
I− 1sT

)
v = Kv. (23)

Therefore, λ is a solution to the generalized eigenproblem
(23). Thus we can generalize the Lingoes euclidization
Theorem 4.

Theorem 5. Any dissimilarity matrix D may be turned to
a Euclidean distance matrix by adding constant σ to the
squared distances: d′(z, y) =

√
d(z, y)2 + 2σ, where σ is

such that σ ≥ −λm, λm being the smallest eigenvalue of
the generalized eigenproblem

λ
(
I− 1sT

)
v = KG(D)v,

where KG(D) =
(
I− 1sT

)
(− 1

2D
◦2)
(
I− s1T

)
being

Gower’s general form (3).

It follows that we are not restricted to the
Lingoes kernelizations FL(D) of (11) and we can apply
the general Gower kernelization KG(D) of (3) when
we are discussing euclidizations for the purposes of
kernel-k-means application, with a kernel trick. But this
happens at the expense that we cannot solve the simple
eigenproblem of the matrix FL(D). We have to solve a
more general eigenproblem (23) and need to know a pri-
ori the vector s.

Note that, in order to apply (22) to the kernel matrix
K , we need to know the vector s. But this is not necessary
if we instead use the kernel matrix

K∗ =

(
I− 11T

m

)
K

(
I− 11T

m

)
.

Then the euclidization is performed as

K∗′ = K∗ − σ

(
I− 11T

m

)(
11T − I

)(
I− 11T

m

)

= K∗ − σ(−
(
I− 11T

m

)
)

(
I− 11T

m

)

= K∗ + σ

(
I− 11T

m

)
,

where σ is derived from solving the simple eigenproblem
of the matrix K∗, because of (21) and Theorem 4.

8. Advantage of the Lingoes approach to
euclidization

Let us investigate this phenomenon more generally.

Theorem 6. If we pursue the kernel-k-means clustering
when seeking an optimum among cluster center sets being
a subset of the set of µΦ

j that may only be equal to

µΦ
j =

1

mj

∑

i∈Cj

Φ(i) (24)

for some subset Cj of all the data points and no other vec-
tors in the feature space are taken into account, then, after
adding a constant 2σ to the distance matrix d′(z, y) =√
d(z, y)2 + 2σ, the optimal clustering will remain the

same.

Proof. Note that the cost function of kernel-k-means from
(4) may be reformulated as follows: Assume that we have
the set of k cluster centers {µΦ

j ; j = 1, . . . , k}, inducing
clusters C = {C1, . . . , Ck} (consisting of points for which
the given cluster center is the closest one), where cluster
Cj ∈ C is of cardinality mj . From (4) it follows that

J(µΦ
j ; j = 1, . . . , k)

=

k∑

j=1

∑

i∈Cj∈C
‖Φ(i)− µΦ

j ‖2

=

k∑

j=1

1

2mj

∑

i∈Cj∈C

∑

l∈Cj∈C
‖Φ(i)− Φ(l)‖2.

Let us investigate any such set of cluster centers
{µΦ

j ; j = 1, . . . , k} inducing the clustering C. Consider
only such clusterings where the cluster centers are at
the same time their gravity centers. Under this latter
condition, we can attribute to each data point i from
clusterCj the contribution to the entire cost function being

1

2mj

∑

l∈Cj

‖Φ(i)− Φ(l)‖2.

If we add a value 2σ to all squared distances of an element
i of a cluster Cj , then its contribution will increase to

1

2mj

∑

l∈Cj,l �=i

(‖Φ(i)− Φ(l)‖2 + 2σ)

= σ
mj − 1

mj
+

1

2mj

∑

l∈Cj

‖Φ(i)− Φ(l)‖2

(increase by σ
mj−1
mj

) because d(i, i) = 0 is unchanged.
This increase is just cluster size-dependent and not cluster
structure-dependent. Consequently, in the whole cluster
Cj contribution to the cost function will increase by

σ
mj − 1

mj
mj = σ · (mj − 1).

Thus, the overall cost function of all k clusters will
increase by σ · (m − k). That is, it is independent of
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the clustering C, given of course that the cluster centers
are their gravity centers, which is what kernel-k-means
produces.

Hence the optimum clustering of k-means,
achievable by kernel-k-means will remain unchanged
after this addition. �

Theorem 6 and its proof imply the following result.

Theorem 7. For kernel-k-means, adding a constant to
squared dissimilarity measures of non-identical elements
is a clustering preserving and embeddability improving
operation.

Note that the transformation mentioned above (i)
increases all distances, (ii) the absolute increase in
distances is the largest for the smallest distances, and
the smallest for the largest, and (iii) no new clustering
structures occur under this transformation. In this way, we
define a new axiom/property of k-means, i.e., in that we
require that the clustering algorithm yields the same result
under the mentioned distance change/transformation.
The idea behind is that in the permissible domain for
k-means (Euclidean), the optimum is unchanged if we
add a constant to the squared distances between different
elements. By means of this conceptual extension, we can
carry on this assumption backward into non-Euclidean
distances. Then we need to define under what regime we
compute the permissible optimum of k-means, because
it is not true in the whole space itself. Only if we limit
the permissible space in a reasonable way, we can still
assume that we are computing k-means optimum. In
consequence, if we agree that the kernel function Φ(·)
for kernel k-means is deemed to transmit the data points
into the Euclidean space under the above-mentioned
invariance transformation, then it is permissible to apply
kernel-k-means without checking for embeddability.7

9. Concluding remarks

In this paper, we resolved the issue of applicability
of kernel-k-means for non-embeddable kernel matrices.

7As pointed out by Higham (1988), we can consider this opera-
tion as a search for a matrix K ′, which is positive semi-definite, close
(preferably the closest) to the matrix K . The closeness can be ex-
pressed as a norm ‖K − K ′‖, whereby for the matrix A we may use
the 2-norm ‖A‖2, which is the maximal absolute value of the eigenval-

ues of A or the Frobenius norm ‖A‖2 =
√∑

i

∑
j a

2
ij . Therefore,

‖K∗′ − K∗‖2 = ‖σ
(
I − 11T

m

)
‖2 = |σ|‖

(
I− 11T

m

)
‖2 = |σ|.

Note that Higham (1988) proposes a different way of making K posi-
tive semidefinite by seeking the closest matrix (see their Theorem 3.1 in
particular), but the resulting matrix does not fit our criterion of cluster-
ing before and after transformation being identical. The reason is that
their formula (3.2) modifies the matrix K by adding a constant to the
diagonal. As implied by Gower’s formula (3), this leads to a possible
variety of modifications of squared distances between data points. The
approach proposed here, based on the Lingoes formula, is optimal in
some other sense than Higham’s. That is, the smallest constant is found
such that adding it to all distances (between distinct point) leads to a
positive semidefinite matrix K ′, as implied by our proof.

First, we showed that kernel k-means produces wrong
results when applied to non-Euclidean kernel matrices.
We demonstrated that, under some types of euclidization,
the kernel-k-means will produce different results before
and after euclidization. We identified that the Lingoes
transformation is the one free of this effect and so the
usage of the kernel trick for non-Euclidean spaces is
justified.

Though other researchers, like Roth et al. (2003),
were interested in euclidizations providing the same
results as kernel-k-means for non-Euclidean spaces, but
they did not realize that applying kernel-k-means for
non-Euclidean spaces produces essentially wrong results
and hence neither sought nor provided ways of resolving
this issue.

Additionally, we provided alternative proofs of the
correctness of euclidizations of Lingos and Cailliez,
which give new insights into their results. In particular,
we paved the way for considering the general type of
kernelization proposed by Gower (1982), recalled here
as Eqn. (3), instead of the double-centering one. As we
have shown, the Lingoes theorem applies with a slight
modification not only to dissimilarity matrices, but also to
kernel matrices of this generalized type. An open question
is whether or not the generalized Gower kernelization
covers all conceivable (Euclidean and non-Euclidean)
kernel matrices matching a given dissimilarity matrix.
In such a case we would not need to turn the kernel
matrix to a dissimilarity matrix in order to verify if it
is Euclidean and to correct the modified kernel matrix(
I− 11T

m

)
K
(
I− 11T

m

)
directly. Otherwise, there is a

question of whether or not the cases not covered here are
easily reducible to the Gower’s kernel matrices so that the
same would apply.

Software. Please feel free to experiment with our R
package (source code) implementing the kernel-k-means
functionality: https://home.ipipan.waw.pl/m
.klopotek/ipi_archiv/kernelKmeansAndPl
usPlusDemo_1.0.tar.gz.

References

Ackerman, M., Ben-David, S. and Loker, D. (2010). Towards
property-based classification of clustering paradigms, in
J. Lafferty et al. (Eds), Advances in Neural Information
Processing Systems 23, Curran Associates, Red Hook, NY,
pp. 10–18.

Balaji, R. and Bapat, R. (2007). On Euclidean distance matrices,
Linear Algebra and Its Applications 424(1): 108–117.

Bao, T. and Kadobayashi, Y. (2008). On tighter inequalities
for efficient similarity search in metric spaces, IAENG
International Journal of Computer Science 35(3):
IJCS_35_3_17.

https://home.ipipan.waw.pl/m.klopotek/ipi_archiv/kernelKmeansAndPlusPlusDemo_1.0.tar.gz
https://home.ipipan.waw.pl/m.klopotek/ipi_archiv/kernelKmeansAndPlusPlusDemo_1.0.tar.gz
https://home.ipipan.waw.pl/m.klopotek/ipi_archiv/kernelKmeansAndPlusPlusDemo_1.0.tar.gz


714 R. Kłopotek et al.

Bradley, P.S., Mangasarian, O.L. and Street, W.N. (1996).
Clustering via concave minimization, Proceedings of the
9th International Conference on Neural Information Pro-
cessing Systems, NIPS’96, Denver, CO, USA, pp. 368–374.

Cailliez, F. (1983). The analytical solution of the additive
constant problem, Psychometrika 48(2): 305–308.

Chitta, R., Jin, R., Havens, T. and Jain, A. (2011). Approximate
kernel k-means: Solution to large scale kernel clustering,
Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD’11, San Diego, CA, USA, pp. 895–903.

Choi, H. and Choi, S. (2005). Kernel Isomap on noisy manifold,
4th International Conference on Development and Learn-
ing, Osaka, Japan, pp. 208 – 213.

Cox, T.F. and Cox, M.A.A. (2001). Multidimensional Scaling,
2nd Edn, Chapman & Hall, London.

Demontis, A., Melis, M., Biggio, B., Fumera, G. and Roli, F.
(2017). Super-sparse learning in similarity spaces, CoRR:
abs/1712.06131.

Dokmanic, I., Parhizkar, R., Ranieri, J. and Vetterli, M. (2015).
Euclidean distance matrices: A short walk through theory,
algorithms and applications, CoRR: abs/1502.07541.

Du, L., Zhou, P., Shi, L., Wang, H., Fan, M., Wang, W. and
Shen, Y. (2015). Robust multiple kernel k-means using
l21-norm, Proceedings of the 24th International Confer-
ence on Artificial Intelligence, IJCAI’15, Buenos Aries, Ar-
gentina, pp. 3476–3482.

Gisbrecht, A. and Schleif, F.-M. (2015). Metric and non-metric
proximity transformations at linear costs, Neurocomputing
167(1): 643–657.

Gonzalez, J. and Munoz, A. (2010). Representing functional
data in reproducing kernel Hilbert spaces with applications
to clustering and classification, Statistics and Economet-
rics Series 013, Working paper 10-27.

Gower, J.C. (1982). Euclidean distance geometry, The Mathe-
matical Scientist 7: 1–14.

Gower, J.C. (1985). Properties of Euclidean and non-Euclidean
distance matrices, Linear Algebra and Its Applications
67: 81–97.

Gower, J. and Legendre, P. (1986). Metric and Euclidean
properties of dissimilarity coefficients, Journal of Classi-
fication 3(1): 5–48.

Handhayania, T. and Hiryantob, L. (2015). Intelligent kernel
k-means for clustering gene expression, International
Conference on Computer Science and Computational In-
telligence (ICCSCI 2015), Jakarta, Indonesia, Vol. 59,
pp. 171–177.

Higham, N.J. (1988). Computing a nearest symmetric positive
semidefinite matrix, Linear Algebra and Its Applications
103: 103–118.

Hofmann, T., Schölkopf, B. and Smola, A.J. (2008). Kernel
methods in machine learning, Annals of Statistics
36(3): 1171–1220.

Jacobs, D., Weinshall, D. and Gdalyahu, Y. (2000).
Classification with nonmetric distances: Image retrieval
and class representation, IEEE Transactions on Pattern
Analysis and Machine Intelligence 22(6): 583–600.

Jain, A. and Zongker, D. (1998). Representation and recognition
of handwritten digits using deformable templates, IEEE
Transactions on Pattern Analysis and Machine Intelligence
19(12): 1386–1390.

Jaworski, M. (2018). Regression function and noise variance
tracking methods for data streams with concept drift, In-
ternational Journal of Applied Mathematics and Computer
Science 28(3): 559–567, DOI: 10.2478/amcs-2018-0043.

Kashima, H., Hu, J., Ray, B. and Singh, M. (2008). K-means
clustering of proportional data using l1 distance, Pro-
ceedings of the 19th International Conference on Pattern
Recognition, Tampa, FL, USA.

Kleinberg, J. (2002). An impossibility theorem for clustering,
Proceedings of the 16th Neural Information Processing
Systems Conference, NIPS 2002, Vancouver, BC, Canada,
pp. 446–453.

Kłopotek, M. (2019). On the existence of kernel function for
kernel-trick of k-means in the light of Gower theorem,
Fundamenta Informaticae 168(1): 25–43.

Legendre, P. and Legendre, L. (1998). Numerical Ecology, 2nd
Edn, Elsevier, Amsterdam.

Li, C., Georgiopoulos, M. and Anagnostopoulos, G.C. (2013).
Kernel-based distance metric learning in the output
space, International Joint Conference on Neural Networks
(IJCNN), Dallas, TX, USA, pp. 1–8.

Lingoes, J. (1971). Some boundary conditions for a
monotone analysis of symmetric matrices, Psychometrika
36(2): 195–203.

Loosli, G., Canu, S. and Ong, C. (2016). Learning SVM in Kreĭn
spaces, IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 38(6): 1204–1216.

Marin, D., Tang, M., Ayed, I.B. and Boykov, Y. (2019).
Kernel clustering: Density biases and solutions, IEEE
Transactions on Pattern Analysis and Machine Intelligence
41(1): 136–147.

Marteau, P.-F. (2019). Times series averaging and denoising
from a probabilistic perspective on time-elastic kernels, In-
ternational Journal of Applied Mathematics and Computer
Science 29(2): 375–392, DOI: 10.2478/amcs-2019-0028.

Pan, V.Y. and Chen, Z.Q. (1999). The complexity of the matrix
eigenproblem, Proceedings of the 31st Annual ACM Sym-
posium on Theory of Computing, STOC’99, Atlanta, GA,
USA, pp. 507–516.
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