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A modified lazy learning algorithm combined with a relevance vector machine (MLL-RVM) is presented to address a data-
driven modelling problem for a gasification process inside a united gas improvement (UGI) gasifier. During the UGI
gasification process, the measured online temperature of the produced crude gas is a crucial aspect. However, the gasifica-
tion process complexities, especially severe changes in the temperature versus infrequent manipulation of the gasifier and
the unknown noise in collected data, pose difficulties in dynamics process descriptions via conventional first principles. In
the MLL-RVM, a novel weighted neighbour selection method is adopted based on the proposed dynamic cost functions.
Moreover, the RVM is utilized in the implementation and design of the proposed online local modelling owing to its short
test time and sparseness. Furthermore, the leave-one-out cross-validation technique is used for local model validation, by
which the modelling performance is further improved. The MLL-RVM is applied to a series of real data collected from
a pragmatic UGI gasifier, and its effectiveness is verified.
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1. Introduction

Today, there exist various types of gasifiers applied in
the coal gasification industry. Based on their working
conditions, gasifiers can be classified into many types,
including the Texaco gasifier (Yu et al., 2013), the Shell
gasifier (Sun et al., 2011), the ALSTOM gasifier (Huang
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et al., 2013), the Lurgi gasifier (Papole et al., 2012),
the UGI gasifier (Ren et al., 2004), the Winkler gasifier
(Mondal et al., 2011) and others (Wei and Liu, 2014;
2013). In China, most coal gasification reactors are
UGI gasifiers, which are widely applied in the synthetic
ammonia industry.

The temperature of the gasification zone inside a UGI
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gasifier is important during the gasification process but
has not been measured straightforwardly to date. As an
alternative, another two indices, the downdraft crude gas
temperature (D-temperature) and the updraft crude gas
temperature (U-temperature), are usually considered in
practice. If both the U-temperature and D-temperature
remain steady within permissible ranges, the gasification
process is considered to operate in good conditions.

For practical industrial applications, it is expected
that the U/D-temperature can be properly modelled
such that the engineers can make prognoses as well as
assess and monitor the gasification process. Moreover,
by predicting the temperature and its tendency, we
can devise reasonable manual/automatic control for the
gasification process to achieve the objective of stable and
high-efficiency production. Therefore, the research in
this manuscript has its unique and important merit for
the UGI gasification industry. Our objective is to create
a mathematical model that describes the dynamics of
U-temperature and D-temperature inside a UGI gasifier.

Some modelling methods based on physical or
chemical principles have been proposed for different
applications of different gasifiers. For instance, in
fluidized-bed gasifiers, methods based on two-phase
models are applied for different purposes, such as
assessing the gas composition (Raman et al., 1981),
optimizing the pressure and gas velocity (Fiaschi and
Michelini, 2001), predicting the bed temperature, the
heating value and production (Sadaka et al., 2002), and
predicting the temperature and concentration profiles of
gases (Gordillo and Belghit, 2011). Moreover, for a
general class of fixed-bed biomass gasifiers, methods
based on equilibrium models are applied in a wide
scope, including in exergy analysis (Srinivas et al.,
2009), assessment of the syngas composition variability
(Simone et al., 2013), adjustment of gasifier working
parameters (Altafini et al., 2003), and prediction of the
composition and calorific value of syngas (Ruggiero
and Manfrida, 1999). Furthermore, other unnamed first
principle modelling methods are also used for gasification,
such as calculation of the syngas composition (Petersen
and Werther, 2005), generation of temperature profiles for
the reduction zone of a downdraft biomass gasifier (Babu
and Sheth, 2006), calculation of the temperature and axial
profiles of concentration (Babu and Sheth, 2006; Corella
and Sanz, 2005), etc.

However, the above-mentioned methods strongly
depend on first principles, whose derivation is based on
some assumptions that are rarely satisfied in practice.
Furthermore, the first principles for complicated processes
often result in sophisticated models that are difficult
to use. In addition, large amounts of data are
generated daily during industrial production processes
since these available data contain all of the valuable
information about the system. For these reasons, the

data-driven modelling approach can be considered to
study gasification processes.

In recent years, many global offline data-driven
modelling methods aimed at different applications have
been proposed in the gasification field, including artificial
neural networks (Puig-Arnavat et al., 2013; Nougués
et al., 2000; Simani et al., 2018), fuzzy methods (Shabbir
et al., 2012; Zanoli et al., 2012), support vector machines
(SVMs) (Han et al., 2008), multivariate regression (MVR)
(Kalita et al., 2013; Chavan et al., 2012), reinforcement
learning (RL) methods (Zhao et al., 2019), etc. However,
in most cases, when applied to a system, it is difficult for
a global model to cover the entire scope of the operation.
In addition, the models established by applying these
methods are laborious to renew online.

Recently, a memory-based technique for local
learning, named lazy learning (LL), has developed rapidly
(Aha, 1997). The modelling procedure of LL uses a
query-based method to select the best model configuration
at each query by assessing and comparing different
alternatives. To date, LL has been successfully applied in
modelling (Bontempi et al., 1999), time series prediction
(Taieb et al., 2010), data-driven control (Hou and Wang,
2013; Hou and Xu, 2009), etc.

Although various innovative methods have been
developed for different gasifiers (e.g., fluidized-bed
gasifiers and downdraft biomass gasifiers) with different
applications (e.g., estimation of the composition and
adjustment of the gasifier’s working parameters), few
studies are proposed for modelling the gasification
process, especially for the UGI gasifier. The contribution
of this paper is to establish an online model within
the UGI gasifier crude gas temperature with a modified
lazy learning algorithm and relevance vector machine
(MLL-RVM), in which two enhancement methods are
introduced based on the classical lazy learning modelling
algorithm.

One of the enhancements aims at the neighbour
selection problem of the new query. The gasification
process is known as a particular multiple-input,
multiple-output (MIMO) nonlinear dynamic system,
and some of its characteristics increase the difficulty of
modelling, such as small and infrequent changes in some
inputs, serious coupled outputs and unknown irregular
noise existing in collected data. For these reasons,
the classical neighbour selection method merely based
on the distance of the Euclidean norm is not suitable
here. Relying on these features, a new local modelling
neighbour selection method is proposed. It uses a new
dynamic cost function to select the neighbours of the
query object.

The second improvement is for local modelling
problems in the modelling process. The relevance
vector machine (RVM) is considered. The RVM is
a new machine learning implementation that is valid
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for modelling and prediction of small-sample nonlinear
systems (Tipping, 2001). To date, the RVM has been
adopted in some pragmatic fields, including hyperspectral
image classification (Demir and Erturk, 2007), channel
equalization applications (Chen et al., 2001), automatic
detection of clustered microcalcifications (Wei et al.,
2005), etc. Based on the sparse Bayesian learning method,
compared with the SVM and support LSSVM, the RVM
has better performance and fewer kernel functions and
is not limited by the Mercer condition (Tipping and
Faul, 2003). Moreover, RVM sparsity has short test time
characteristics and can be substantially constructed of
nonlinear partial models.

The MLL-RVM is applied to a series of data
collected from an actual UGI gasifier at the RuiXing
Chemical Group, Shandong Province, China, whose
effectiveness is verified via comparison with the
conventional LL methods.

This is organized as follows. In Section 2,
the gasification process is briefly introduced and the
complexity of the problem is formulated. In Section 3,
the MLL-RVM for modelling the gasification process
is presented. The experimental results are shown in
Section 4. A conclusion is drawn in Section 5.

2. UGI gasification process

2.1. Principle and work flow of the UGI gasification
process. During the gasification process, some complex
gas-solid reactions take place inside the UGI gasifier.
Air, steam and oxygen can be supplied to the reactions
as gasifying agents. Furthermore, a variety of gaseous
products are generated, including CO2, H2, CO, H2O and
other gaseous hydrocarbons as well as small quantities of
char, ash and several condensable compounds (tars and
oils).

The schematic of a single gasification system is
illustrated in Fig. 1. As a type of batch process,
the gasification process occurring in a UGI gasifier is
intermittent, periodic and repeated; that is, during each
gasification cycle (batch) lasting for 150 seconds, gases
(reactants) and feedstock are supplied to the gasifier in
a fixed sequence for reaction by switching dozens of
valves installed on different pipes that are connected to the
gasifier. Basically, the UGI gasification process consists
of several intermittent stages as follows.

Stage 1 (Aeration): At this stage, it will take
approximately five seconds for a selected quantity coal to
be fed from the top of the gasifier. At the same time, the
air is blown into the gasifier through the aeration pipe (P2,
Fig. 1) for approximately 28–40 seconds. An oxidation
reaction then occurs to accumulate enough heat that will
be used in the next step of the gasification cycle

Stage 2 (Steam upflow): Then, the depressurized steam is

blown up into the gasifier through the pipe P3 and lasts
approximately 10 seconds. During this period, the crude
gas produced is discharged from the updraft rough gas
pipe (P5, Fig. 1)

Stage 3 (Steam downflow): After the second stage, the
vapor is blown downward through the steam downflow
pipe P1 to the gasifier in a short time. Compared with
Stage 2, the difference lies in the FAC that the produced
crude gas at this stage is gathered and transmitted through
the pipe P6.

When released from the dust collector, the crude
gas must pass through the scrubber tower. Finally,
the produced syngas is obtained and saved into the gas
cabinet.

As an extra product, the slags gathered in the ash
zone (f, Fig. 1) are continuously generated and squeezed
into the left and right ash lock hopper (components B and
C, Fig. 1) with the help of a rotating grate (component A,
Fig. 1) at the bottom of the gasifier.

In each gasification cycle, Stages 1–3 will be
performed in order.

2.2. Formulations of the U- and D-temperatures.
As shown in Fig. 1, during the gasification process,
the interior of a UGI gasifier is often divided into
six zones. They are, from top to bottom, the (a)
carbon-free zone, (b) drying zone, (c) pyrolysis zone, (d)
reduction zone, (e) oxidation zone, and (f) ash zone. In
practice, the gasification zone, which is an integration
of the reduction zone and oxidation zone, is important
during the gasification process since most reactions are
conducted within it. If the gasification zone temperature
is steadily maintained at an approximately ideal value
within a permissible range, then the production efficiency,
including the quantity and quality of the crude gas, will
reach a satisfactory level required for practical production.

In fact, the gasification zone temperature cannot be
measured in practice. As a substitution, process engineers
in the field usually observe two other indices related to
the gasification zone temperature: the updraft crude gas
temperature (U-temperature) and the downdraft crude gas
temperature (D-temperature), measured by Sensors 1 and
2 in Fig. 1, respectively. If both the D-temperature and
U-temperature remain stable in the allowable ranges, it
can be assumed that the gasification process is carried out
under a fine status.

Many first-principle modelling methods are
applicable on the basis of numerous strict assumptions.
In practical UGI gasification processes, however, most of
these assumptions cannot be satisfied. Furthermore, there
are abundant U/D-temperature data that are collected
daily from industrial fields, which can reflect the status
and tendency of the gasification zone temperature.
Therefore, it is necessary and possible to develop a
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Fig. 1. Schematic of a single gasification system.

dynamic model for the U/D-temperature in a data-driven
manner.

In the process of UGI gasification, there are
many factors that affect the U/D-temperature and
the corresponding data collection and storage of the
distributed control system (DCS) including the steam
upwelling time, steam downwelling time, rotating grate
speed, steam flow, aeration time, etc. Only the inflation
time and steam upflow are considered here because the
time of each gasification cycle is a constant (150 seconds).
Moreover, by regulating the speed of rotation of the grate,
the gasifier can indirectly control the thickness of the gray
zone, thus affecting the gasification zone.

From the above analysis, a general MIMO nonlinear
discrete-time system describing the dynamical process
of U-temperature y1(t) and D-temperature y2(t) is
formulated as

y(k + 1) =f(u(k), · · · ,u(k − nu),y(k),

· · · ,y(k − ny),d(k)),
(1)

where

u(k) = [u1(k), u2(k), u3(k), u4(k)]T , (2)

y(k) = [y1(k), y2(k)]T (3)

indicate the control input and process output, respectively,
k is the sampling index, and f(·) is an unknown nonlinear
function. In particular, u1(t), u2(t), u3(t) and u4(t)
represent the speed of the rotating grate, duration of
aeration, duration of the steam upflow, and the steam flow,
respectively.

Moreover, d(k) represents the noise and any
disturbances that have a weak impact on the
U/D-temperature, including observable factors such

as the air temperature, air pressure, U-pressure and
D-pressure. Furthermore, d(k) also represents other
factors that cannot be measured in a quantitative
manner, such as the shape of the slag inside the rotating
grate. Because all data collected under formal working
conditions are bounded, this gasification process is
considered bounded-input, bounded-output (BIBO)
stable.

3. DATA-driven modelling for the UGI
gasification process

It can be seen in Section 2 that the U/D-temperature of
the UGI gasification process can be expressed as (1)–(3).
In this section, we will set up this relation by using the
suggested MLL-RVM.

The idea of the classical lazy learning (CLL) method
for modelling was systematically introduced by Aha
(1997) and Aha et al. (1991), as well as Bontempi et al.
(1999). The MLL-RVM is a modified version based on
CLL. The enhancements are presented in two aspects: a
novel local neighbour selection method and an efficient
local modelling algorithm (RVM). The MLL-RVM will
be introduced in Sections 3.1–3.3.

3.1. Local neighbor selection based on the dynamic
cost function.

3.1.1. Introduction of the dynamic cost function.
For the input data u(t), a relevant information vectorϕ(t)
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and weight vector w(t, i) are defined as

ϕ(t) = [u(t)T , . . . ,u(t− nu)
T ,

y(t)T , . . . ,y(t− ny)
T ]T , (4)

w(t, i) = [w0
u(t, i), . . . ,w

nu
u (t, i),

w0
y(t, i), . . . ,w

ny
y (t, i)]T , (5)

where

wj
u(t, i)

= [cju · exp(−β1 ·
∥
∥u1(t− j)− u1(i − j)

∥
∥
p
), . . . ,

cju exp(−β1 · ‖um(t− j)− um(i− j)‖p)],
j = 0, . . . , nu. (6)

wl
y(t, i)

= [cly exp(−β2 ·
∥
∥y1(t− l)− y1(i− l)

∥
∥
p
), . . . ,

cly · exp(−β2 · ‖yn(t− l)− yn(i− l)‖p)],
l = 0, . . . , ny, (7)

where ‖·‖p denotes the Minkowski Lp norm, and
β1, β2, c

j
u, c

l
y , j = 0, . . ., nu, l = 0, . . .ny are weight

parameters. With this information vector, the original
training set can be rebuilt as a set consisting of data
pairs {ϕ(t),y(t+ 1)}. Remarkably, the ‖·‖p norm is
a description of the distance of the neighbours, and the
distance can also be replaced with other kinds of norms.

The distance similarity between the new query ϕ(t)
and the i-th information vector ϕ(i) in the original
training set is defined as

J1(ϕ(t),ϕ(i)) =
∥
∥w(t, i)T (ϕ(t)−ϕ(i))∥∥

p
. (8)

Recent research has proven that similarity combining
the distance and angle is more effective than using
the distance similarity alone to improve the prediction
accuracy of local models (Cheng and Chiu, 2004b). The
angle similarity is defined as follows:

cos(θti) =
〈Δϕ(t),Δϕ(i〉

‖Δϕ(t)‖p · ‖Δϕ(i)‖p
, (9)

where Δϕ(i) = ϕ(i)−ϕ(i− 1). Then the dynamic cost
function describing the comprehensive similarity between
ϕ(t) and ϕ(i) in the data set is defined as

J(ϕ(t),ϕ(i))

= λ · exp(−J1(ϕ(t),ϕ(i))) + (1 − λ) · cos(θti), (10)

where J1(ϕ(t),ϕ(i)) and cos(θti) are the distance
similarity and the angle similarity betweenϕ(i) andϕ(i),

respectively. In this way, λ is the weight parameter and
only the distance similarity (or angle similarity) is adopted
when λ = 1 (or λ = 0). It is worth mentioning that, if
cos(θti) is negative, then the corresponding ϕ(i) will be
ignored since it has an opposite direction from the query.

Furthermore, the weight of each item in
J(ϕ(t),ϕ(i)) is adjusted by wj

u(t, i), j = 0, . . ., nu,
and wl

y(t, i), l = 0, . . ., ny, or especially by the relevant
weight parameter. Taking wj

u(t, i) as an example, cju,
j = 0, . . ., nu in wj

u(t, i) are used to approximately
estimate the size of wj

u(t, i). When cju is fixed, β1 in
wj

u(t, i) is used to accurately regulate the weights of all
‖us(t− j)− us(i− j)‖, s = 1, 2, . . .m in wj

u(t, i). The
effect of cly and β2 in wl

y(t, i) is similar to that of cju and
β1.

Remark 1. Compared with the classical distance
function based on the simple Euclidean norm (Bontempi
et al., 1999), this paper summarizes the novelty of the
dynamic cost function from two perspectives. One is
to consider the angular similarity, and the other is to
introduce a special weight vectorw(t, i) into the distance
similarity J(ϕ(t),ϕ(i)) as described in (5)–(7). Note that
w(t, i) may not be the focus of most existing research, but
in this paper w(t, i) plays a leading role in the choice of
neighbors.

The dynamic cost function (10) can be used
to calculate the similarity between the new query
ϕ(t) and ϕ(i) and each ϕ(i) in the training set.
With regard to a single-input, single-output (SISO) or
multiple-input, single-output (MISO) system, k data pairs
{ϕ(tm), y(tm + 1)}m=1,··· ,k are selected in descending
order starting from the one with the largest similarity, and
the local model can be built. With regard to a MIMO
system, we can use different weight vectors wr(t, i) to
define different dynamic cost functions for each output,
indicated as Jr(ϕ(t),ϕ(i)), r = 1, . . ., n. Consequently,
the relevant data pairs {ϕr(tm), yr(tm + 1)}m=1,...,k are
chosen and employed for the local modelling for each
output yr, r = 1, . . ., n.

3.1.2. Application of local neighbour selection
in a gasification process. The MIMO gasification
system depicted in Section 2 has many features that
make the modelling process difficult. Aiming at these
difficulties, based on the proposed dynamic cost function,
a corresponding efficient neighbour selection strategy is
adopted.

One feature is that very few changes in some input
occur, and they are small. Generally, the duration of
aeration u2 and of steam upflow u3 may not be adjusted
more than once in a few hours, and the value must be
an integer, often changing one or two values within the
allowable range. For example, as shown in Fig. 2, u2

is adjusted from 32 to 33 at approximately 22:42, and
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Fig. 2. Inputs and outputs displayed in the host computer of
a DCS.

u3 is adjusted from 49 to 48 at approximately 23:11.
The corresponding outputs of the U-temperature and
D-temperature, however, change sensitively during this
period.

In the MLL-RVM, the approach to solve this
problem is to determine the appropriate w(t, i) based
on the correlation between u(t)T , . . . ,u(t − nu)

T and
y(t)T , . . . ,y(t − ny)

T in ϕ(t) when selecting local
neighbours from the training set. In particular, since u2

and u3 have infrequent changes, β1 and cju in wj
u(t, i)

should be set specifically smaller than β2 and cly when we
select neighbours from the training set according to (10).

Remarkably, although u2 and u3 are adjusted
infrequently and slightly as described above, they should
not be ignored when selecting local neighbours since
tuning u2 and u3 can affect the long-term tendency of the
U/D-temperature. For instance, in Fig. 2, after adjusting
the u3 at approximately 23:11, U-temperature y1 and
D-temperature y2 have downward and upward trends in
the next 20 minutes, respectively.

Another characteristic is that there exists severe
coupling during the gasification process between the
D-temperature and U-temperature, which cannot be
accurately obtained. In this case, the MLL-RVM uses
the method of decomposing the MIMO system into two
MISO systems: the U-temperature and D-temperature.
When modelling the MISO system for the U-temperature
(D-temperature), the message of the U-Temperature
(D-temperature) is still taken into consideration. By
doing this, although the severe coupling between outputs
is unknown, the MIMO model for the UGI gasification
process can still be guaranteed by the MLL-RVM with the
help of two dynamic cost functions Jr(ϕ(t),ϕ(i)) with
different weight vectorswr(t, i), r = 1, 2.

3.1.3. Selection criterion of weight coefficients.
Generally, the selection of weight coefficients cju, β1
(in wj

u(t, i), j = 0, . . ., nu) and cly , β2 (in wl
y(t, i),

l = 0, . . .ny) closely depends on the practical problem
we studied. Therefore, it is difficult to give a series of
strict mathematical methods to select the perfect weight
coefficients for any given problem. For these reasons,
we give a heuristic weight coefficient selection method
only for the gasification process modelling problem
investigated in this manuscript as follows. For other
problems, the selection method can be ensured similarly.

First, the sum of all cju and cly, j = 0, . . ., nu, l =
0, . . ., ny is set as constant 1. Furthermore, cju ∈ (0, 0.4],
cly ∈ (0, 0.3]. In practice, we usually first set each cju
as the same nonzero value and each cly as a different
one. After that, if the performance cannot achieve a
satisfactory level, we will adjust the cju and cly slightly
(plus or minus 0.1 for them gradually). As a result, the
weight coefficients can be easily tuned in practice.

3.2. Relevance vector machine for local mod-
elling. After the local neighbours for each output have
been selected, the corresponding local models should be
created next. Taking U-temperature y1 as a example,
an selected local training set consisting of k neighbours
around ϕ(t) is described as

{(ϕ1(t1), y
1(t1 + 1)), (ϕ1(t2), y

1(t2 + 1)),

. . . , (ϕ1(tk), y
1(tk + 1))}. (11)

After the local training set has been selected, the next
step is to use these neighbours to build a local model.
In most previous works, the local weighted regression
(Atkeson et al., 1997) (LWR) based on the least-squares
method (LSM) is commonly used for local modelling.
However, given the small and infrequent changes of the
duration of aeration u2 and of steam upflow u3, some
matrices existing in th LSM become singular such that
the corresponding regression parameter of the local linear
model cannot be calculated.

As a substitution, this paper uses a small-sample
RVM implemented under the probabilistic Bayesian
learning framework to construct a basic nonlinear local
model (Tipping, 2001). The RVM is more suitable for
online modelling because of its sparse and shorter test
time. Compared with the standard SVM and LS-SVM, the
RVM based on the sparse Bayesian learning method can
achieve better performance with a significantly reduced
number of kernel functions and is not limited by the Mer-
cer conditions. The process of creating a local RVM
model is briefly described as follows.

The local RVM model can be described as learning a
mapping f : ϕ(t) → y1(t + 1) using the local ‘training
set.’ Each y1(t + 1) can be expressed as the sum of its
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estimate ŷ1(t+ 1) and noise as

y1(t+ 1) = f(ω1(t);ϕ(t)) + ε1(t)

=

k∑

m=0

(ω1
m(t) · φm(ϕ(t))) + ε1(t),

(12)

where ω1(t) is a parameter vector, ε1(t) is an independent
zero-mean Gaussian process and φm(ϕ(t)) is the basis
function denoted asφm(ϕ(t)) = K(ϕ(t),ϕ1(tm)). K(·)
is the Gaussian kernel function adopted in most nonlinear
modelling cases. The output is a linearly weighted sum
of k nonlinear basis functions. Here, our goal is to assess
the optimum ω1(t). In this way, the output can be well
generalized to new data since many elements of ω1(t) are
zero.

According to the assumption of the independence of
ϕ(t), the likelihood of the local training set is denoted as

p(y1(t)|ω1(t), σ1(t)2)

= (2π)−k/2(σ1(t))−k

× exp
(

−
∥
∥y1 −ψ1(t)ω1(t)

∥
∥
2

2(σ1(t))2

)

,

(13)

where y1 = [y1(t1+1), · · · , y1(tk+1)]T , ψ is a k×(k+
1) ‘design’ matrix with

ψ1(t) = [φ(ϕ1(t0)), . . . ,φ1(ϕ(tk))]
T , (14)

φ(ϕ1(t0)) = 1, (15)

φ(ϕ1(tm)) = [K(ϕ1(tm),ϕ1(t1)), . . . ,

K(ϕ1(tm),ϕ1(tm))]T , m �= 0.
(16)

In the RVM, a Bayesian probabilistic framework is
introduced to learn the general model of (12). First, the a
priori probability distribution for ω1(t) is given as

p(ω1(t)|α1(t))

= (2π)−k/2
k∏

m=0

(α1
m(t))1/2

× exp
(

− 1

2
α1
m(t)(ω1

m(t))2
)

,

(17)

where α1(t)= [α1
0(t), . . . ,α1

k(t)]T is a hyperparameter
vector, and each α1

m(t), m = 0, . . ., k is associated with
ω1
m(t) to moderate the strength of the prior. It is this

form of prior that is ultimately responsible for the sparse
properties of the model.

From the Bayesian rule, the posterior probability
distribution of ω1(t) is calculated as

p(ω1(t)|y1,α1(t), (σ1(t))2)

=
p(y1|ω1(t), σ1(t)2) · p(ω1(t)|α1(t))

p(y1|α1(t), σ1(t)2)

= N(ω1(t)|μ1(t),Σ1(t)),

(18)

where the posterior mean and covariance are

μ1(t) = (σ1(t))−2Σ1(t)(ψ1(t))Ty1, (19)

Σ1(t) = (σ1(t))−2(ψ1(t))Tψ1(t) +B1(t), (20)

with B1(t) denoting diag(α1
0(t), . . . , α

1
k(t))).

The optimalα1
opt(t) can be found via the type-II max-

imum likelihood procedure. First, the marginal likelihood
function is

L(α1(t))

= log(p(y1|α1(t), (σ1(t))2))

= log

∫ +∞

−∞
p(y1|ω1(t), σ1(t))2)

× p(ω1(t)|α1(t)) d(ω1(t))

= −1

2
[k log 2π + log |C|+ (y1)TC−1y1],

(21)

with

C = (σ1(t))2)I +ψ1(t)(B1(t))−1(ψ1(t))T . (22)

Then, the fast marginal likelihood maximization method
(Tipping and Faul, 2003) is applied for maximization
of the marginal likelihood (21), and α1

opt(t) is finally
obtained via numeric iteration. The optimal ω1

opt(t) =

μ1
opt(t) and σ1

opt(t) is then obtained by (19) and (20).
It is worth mentioning that the final optimal values

of many hyperparameters are infinite (Tipping, 2001).
According to (19), this result leads to some posterior
parameters that are infinitely peaked at zero for many
weights ω1

m(t). Correspondingly, ω1
opt(t) comprises a

small number of nonzero elements. As a consequence,
the RVM model (12) has been obtained. For a new query
ϕ(t), the estimated output is

ŷ1(t+ 1) = (μ1
opt(t))

T · φ(ϕ(t)). (23)

Likewise, for the D-temperature, the corresponding local
model can be calculated as

ŷ2(t+ 1) = (μ2
opt(t))

T · φ(ϕ(t)). (24)

3.3. Local model validation. Based on the dynamic
cost function, k (kmin ≤ k ≤ kmax) related samples can
be chosen for building the RVM model for each output.
Generally, two parameters kmin and kmax are chosen. For
each u(t) and the corresponding output (taking y1, for
example), there are (kmax−kmin+1) local models created.
How to choose an optimal one as the final local model
from these candidates will be discussed in this section.

To date, the leave-one-out (LOO) cross-validation
method has been the most common way to perform model
validation since it is efficient and easy to implement in
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practice (Garcia et al., 2010). The main steps for selecting
the optimal local model for y1(t) are described as follows.

Step V1: Initialize k = kmin. Given a u(t), ϕ(t) is
denoted, and then the local RVM model f1

k (ϕ(t)) can be
created by using the local training set (11).

Step V2: Remove (ϕ1(t1), y
1(t1 + 1)) from the local

training set and create a submodel using the remaining
(k − 1) points. After that, ŷ1(t1 + 1), and the estimate
of y1(t1 + 1) can be calculated. Then the error e1k(t1) is
calculated as

e1k(t1) = ŷ1(t1 + 1)− y1(t1 + 1). (25)

Step V3: Likewise, each data pair of the local training set
is removed once, and then the generalization error vector
E1

k(t) of f1
k (ϕ(t)) is calculated as

E1
k(t) =

1
∑k

m=1 am

× [a1e1k(t1), a2e
2
k(t2), . . . , ake

k
k(tk)]

T ,

(26)

where am is the weight coefficient of the corresponding
element of E1

k(t), here am = 1/k, m = 1, . . ., k.

Step V4: DefineCV 1
k (t) as the LOO generalization error,

which is calculated as

CV 1
k (t) = E

1
k(t)

T ·E1
k(t). (27)

Step V5: Set ε as a sufficiently small positive constant:
If CV 1

k (t) ≤ ε, then k is the optimal size for local
modelling, denoted as kopt and go to Step V7.

If CV 1
k (t) > ε and k < kmax, add the (k + 1)-th

nearest point to the local training set, let k = k+1 and go
to Step V6;

If CV 1
k (t) > ε and k = kmax, this indicates that the

validation vector

CV 1(t) = [CV 1
kmin

(t), CV 1
kmin+1(t), . . . , CV

1
kmax

(t)]T

has been obtained. The minimal element of CV 1(t) as
CV 1

opt(t) and go to Step V7;

Step V6: Let k = k + 1, add the (k + 1)-th neighbour
(ϕ1(tk+1), y

1(tk+1 + 1)) to the local training set, form
f1
k+1(ϕ(t)), and calculate CV 1

k+1(t) and ŷ1k+1(t + 1)
similarly to Steps V1–V4.

Step V7: Finally, the optimal local model is obtained,
denoted as CV 1

opt(t). Correspondingly, f1
opt(ϕ(t)) is

selected as the optimal local model for estimating y1(t1+
1), by which ŷ1(t+ 1) is calculated as

ŷ1(t+ 1) = ŷ1opt(t+ 1) = f1
opt(ϕ(t)). (28)

3.4. Layout of the MLL-RVM for the UGI gasi-
fication process. The detailed modelling steps for the
UGI gasification process by using the MLL-RVM are as
follows:

Step L1: Let k ∈ [kmin, kmax] and initialize k = kmin.
For the UGI gasification process, m = 4 and n = 2.
Given u(t), the information vectorϕ(t) is first calculated.

Step L2: First, for y1, k neighbours around ϕ(t)
are selected from the original training set according to
the dynamic cost function J1(ϕ(t),ϕ(i)) mentioned in
Section 3.1.1. Then the local training set such as (11) can
be formed.

Step L3: Create the candidate local models f1
k (ϕ(t)) and

select the optimal size kopt for local modelling by using
LOO cross-validation mentioned in Subsection 3.3.

Step L4: A local RVM model f1
opt(ϕ(t)) is determined

using the local training set and ŷ1opt(t + 1) can be
calculated.

Step L5: For the estimation of y2(t + 1), the
corresponding dynamic cost function is defined as
J2(ϕ(t),ϕ(i)), and then a local training set for y2(t+ 1)
is selected as

{(ϕ2(t1), y
2(t1 + 1)), . . . , (ϕ2(tk), y

2(tk + 1))}. (29)

Similarly to Steps L1–L4, keeping ϕ(t) unchanged and
calculating ŷ2(t+ 1) as

ŷ2(t+ 1) = ŷ2opt(t+ 1) = f2
opt(ϕ(t)), (30)

the final output vector is calculated as

ŷ(t+ 1) = [f1
opt(ϕ(t)), f

2
opt(ϕ(t))]

T

= [ŷ1(t+ 1), ŷ2(t+ 1)]T .
(31)

Step L6: Store (u(t), y(t)) and wait for u(t+1); if u(t+1)
appears, ϕ(t + 1) is inferred and ŷ(t + 2) is calculated
similarly to Steps L1–L5.

Remark 2. Compared with other online modelling
methods, such as recurrent neural networks and RBF
neural networks, the proposed MLL-RVM is a local
modelling method and creates a local model at each
operating point. To achieve an optimal local model,
model structures and model parameters at each operating
point are different. Moreover, compared with the BP
neural network, the greatest advantage of the proposed
MLL-RVM is the online modelling property. At each time
instant, the local model can be established with the most
recent controller parameters. However, in the BP neural
network, the model should be established in advance with
an offline database.
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Remark 3. Moreover, in practice, if the computing
power of the device is limited, the local model validation
procedure can be simplified. Specifically, the values of
kmax, kmin, and kmax−kmin can be set as relatively small
according to practical situations. Moreover, the size of
the original training set is also flexibly determined by the
capacity and memory of the facilities. When the memory
is full, many rarely used data would be removed from the
original training set since an excessively large database
will cause a prohibitively long computing time. The
proposed MLL-RVM method can also be applied to other
industrial processes in which the precise mathematical
description of the system cannot be established, such as
a water level control system and other complex systems.

Remark 4. Nelles and Isermann (1996) propose a local
linear model tree (LOLIMOT) method based on the idea
to approximate a nonlinear function with piece-wise linear
models. Compared with LOLIMOT, the advantages of
the proposed method are concluded as follows. Firstly,
in the LOLIMOT method, a global linear model needs
to be first established as a hyper-rectangle using all data
points. Then, the hyper-rectangle is cut from every
input dimension and the output is finally estimated by
summing parts of local linear models with normalized
Gaussian weighted functions. However, in the gasification
process, two control inputs (the duration of aeration,
and of the steam upflow) must be set as integers and
change infrequently, and the changes have significant
influence is the gasification process. Consequently, the
data set of the UGI gasification process cannot satisfy the
continuous excitation condition, which makes the global
linear model reasonably difficult. In MLL-RVM, the local
training set used to build a local model is first obtained by
selecting a subset of the whole data set, which has a high
similarity with the current quire. Consequently, the global
linear model is not needed. Moreover, the LOLIMOT
method in the work of Nelles and Isermann (1996) mainly
focuses on the single-input and single-output nonlinear
system. However, the UGI gasification process is a
typical multi-input and multi-output system, and the
coupling between the outputs is difficult to handle using
the LOLIMOT method. In the MLL-RVM the coupling
between the outputs is also considered to select the local
training set by dynamic cost functions, such that the
modelling performance is satisfactory.

Remark 5. The support vector machine is also a common
modelling method. Compared with the conventional
SVM, the advantages of the MLL-RVM can be concluded
as follows. First, the SVM method is essentially a
small-sample modelling one. When the training set is
large, the amount of computations using an SVM will
be greatly increased, whereas the proposed MLL-RVM
creates a local model at each operating point using l
local neighbours. Thus, the amount of computations

of the MLL-RVM method is reduced. Furthermore,
compared with existing global modelling methods, the
advantage of the MLL-RVM is also its small computation
burden, since the local model is created at each operating
point using only l local neighbours selected from the
training set. Moreover, the MLL-RVM is an online
modelling method, and different RVM local models can
be established online with a small amount of computations
using the corresponding local neighbours such that the
modelling accuracy can be ensured.

4. Experimental results

To confirm the usefulness and applicability of the
MLL-RVM, this section uses data from the Ruixing
Chemical Group Company in the Shandong Province,
China, for experiments. The actual data used are from
the database of the Plant 64 # gasifier collected during the
period of 1–20 April 2012. As discussed in Section 2.2,
although the collection consists of many variables that are
stored in a database, only six variables are ultimately used
for modelling, including the steam surge time, aeration
time, rotary grate speed, U/D-temperature, and steam
flow. The original data set contains 3000 consecutive
records, with the first 2400 data records used as the
training set and the remaining 600 as the test data
set. The data measured by various sensors in the field
implementation are converted by ADC and stored in a
database every five seconds. To investigate the data
conveniently for a long-term prediction, the sampling time
is extended to five minutes.
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Fig. 3. Screen of a general-purpose module for online mod-

elling of the U/D-temperature with the MLL-RVM.
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Table 1. Simulation parameters of the MLL-RVM.
Public parameters β1 β2 P λ
of J1 and J2 0.1 0.1 2 0.8

nu ny c1u c1u c1y c2y
J1 2 2 0.2 0.2 0.3 0.3
J2 2 2 0.1 0.1 0.4 0.4

4.1. Design of the U/D-temperature predicting mod-
ule. To perform the U/D-temperature prediction, the
proposed method requires a large volume of historical data
that have been preprocessed in advance. Consequently, all
of the procedures of the MLL-RVM are implemented by
utilizing a commercially available, general-purpose data
processing module, as presented in Fig. 3.

As is shown in Fig. 3, the icon of ‘Read
database’ has a function to read the actual process
data from the database. The icon of ‘Data preprocess’
denotes preprocessing the collected data to check and
delete anomalous data. The icons of ‘Dataset for
U/D-Temperature’ have the corresponding dynamic cost
functions described in Section 3.1.1, which are used
to extract data for modelling the U-temperature and
D-temperature, respectively. The icons of ‘Local RVM
models for U/D-Temperature’ have functions that are
equivalent to the modules for generating and validating
local RVM models described in Sections 3.2 and 3.3.
When clicking the icon of ‘New input data’, the current
and history query can be seen in the corresponding
screen. The icon of ‘Host computer’ is used to display
the modelling results of U/D-temperature. By using this
module, the MLL-RVM can be taken into account for the
practical system and easily implemented by operators who
are not specialists in computer science or programming.

4.2. Analysis of weighting coefficients. As discussed
in Section 3.1.2, during the modelling process using
the MLL-RVM, the weight coefficients, including
Jr2(ϕ(t),ϕ(i)), r2 = 1, 2 and β1, β2, cju, c

l
y , are fairly

important for local neighbour selection. Thus, the
influence of the weight coefficients for the MLL-RVM
will be analyzed in this section. The criterium is the mean
absolute error

MAE =
1

Nts

Nts∑

k=1

|ŷ(k)− y(k)|, (32)

where Nts denotes the size of the test set and ŷ(k)
denotes the model output at the k-th time. The parameters
used in MLL-RVM are listed in Table 1. To facilitate
the comparison, two types of weight setting scenarios
are adopted in the implementation of the MLL-RVM, as
shown in Table 2. Here β1 and β2 are set to be the same
value for both scenarios.

Table 2. Different weight coefficient settings of the MLL-RVM.
Coefficient c1u c1u c1y c2y

Scenario 1
J1 0.2 0.2 0.3 0.3
J2 0.1 0.1 0.4 0.4

Scenario 2
J1 0.4 0.4 0.1 0.1
J2 0.4 0.4 0.1 0.1

Figure 4 shows the U-temperature distribution of the
MLL-RVM for 600 consecutive test sets and different
weighting coefficient settings. It can be seen that the
performance of Scenario 1 is better than that of Scenario 2
since the MAE of Scenario 1 is 5.6738◦C whereas that of
Scenario 2 is 6.3324◦C.

However, although a rational weight setting scenario
can achieve a comparatively well-pleasing performance,
the U-temperature error between the measured value and
the predicted output has scarcely been further decreased.
The reason is that the current data set cannot fully collect
useful information that may come from other adjustable
factors for U-temperature, such as the type of coal and the
height of the free carbon layer, etc.

Figure 5 shows the D-temperature distribution
of the MLL-RVM for 600 consecutive test sets and
different weighting coefficient settings. Similarly to
the U-temperature, compared with that in Scheme 2
(4.6672◦C), the calculation error of the D-temperature
in Scheme 1 (3.8491◦C) has smaller MAE. In addition,
from the comparison between the results shown in
Figs. 4 and 5, the predicted results of the D-temperature
for both scenarios (3.8491◦C for Scenario 1 and
4.6672◦C for Scenario 2) are superior to those of the
U-temperature (5.6738◦C for Scenario 1 and 6.3324◦C
for Scenario 2). The reason is that the measurement
point of the D-temperature (Sensor 2, Fig. 1) is closer
to the gasification zone (marked ‘a’, Fig. 1) than
that of the U-temperature, and the data collected in
this way contain more D-temperature information than
U-temperature information. Thus, a higher accuracy of
the D-temperature is guaranteed.

Summarizing Figs. 4 and 5, the results show that,
regardless of the U-temperature or D-temperature, the
precision of Scheme 1 is higher than that of Scheme 2. In
fact, in the gasification process, the aeration u2 and steam
upwelling u3 undergo minor changes and are not frequent.
From (4), the relevance of u(t)T , . . . ,u(t − nu)

T to
ϕ(t) in (4) would play a subordinate role compared with
that of y(t)T , . . . ,y(t − ny)

T . Just as in Table 2, in
Scenario 1, ciu, i = 1, 2 of J1 and J2 are set as 0.2 and
0.1, respectively, whereas ciy, i = 1, 2 for both dynamic
cost functions is 0.4. Under such a factor setting, the
performance of Scenario 1 at the U/D-temperature can be
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Fig. 4. U-temperature with different weight setting scenarios:
Scenario 1, MAE = 5.6738◦C (a), Scenario 2, MAE =
6.3324◦C (b).

guaranteed to be better than that of Scenario 2.

Remark 6. From Figs. 4 and 5, it can also be
seen that U-temperature is higher than the D-temperature.
The reason is that, during the gasification process, the
temperature of the gasification zone is highest, and the
location of the U-temperature is closer to the gasification
zone.

4.3. Local model validation via LOO cross-validation.
As discussed in Section 3.3, for each ϕ(t), there exist
(kmax − kmin + 1) local models created with a different
number of neighbors k ∈ [kmin, kmax] . The one with
the satisfactory LOO generalization error can be selected
as the final local model. The effectiveness and necessity
of local model selection and validation are analyzed as
follows.

4.3.1. Effectiveness of local model validation.
Figure 6 illustrates the results of the optimal number
of neighbours k1opt(t) for the U-temperature and the
corresponding generalization error CV 1

opt(t). Figures
6(a) and (b) present the profile of the optimal number
of neighbors k1opt(t) changing from four to ten at each
query ϕ(t) in the test set. Figure 6(c) illustrates the
corresponding generalization error of k1opt(t). From
Figs. 6(a) and (b), it can be seen that, for the same ϕ(t),
there are different numbers of neighbors for different
weight setting scenarios. Furthermore, in Fig. 6(c),
it is obvious that the generalization error CV 1

opt(t) of
Scenario 1 is superior to that of Scenario 2 since the
mean value of CV 1

kopt
(t) is 34.8127◦C, decreasing by

approximately 12◦C compared with that of Scenario 1
(48.513◦C). Therefore, the accuracy of the MLL-RVM
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Fig. 5. D-temperature with different weight setting scenarios:
Scenario 1, MAE = 3.8491◦C (a). Scenario 2, MAE
= 4.6672◦C (b).

with weight setting Scenario 1 is more satisfactory than
that of Scenario 2.

Likewise, similar results for the D-temperature are
shown in Fig. 7. Obviously, although there exist
different k2opt(t) with different weight setting scenarios
similar to Fig. 7, the corresponding CV 2

opt(t) for both
scenarios are superior to those of CV 1

opt(t). Therefore,
a higher accuracy for the D-temperature can be achieved
than for the U-temperature. It is worth mentioning that
the generalization error is only an index to estimate the
generalization ability of the local model, rather than
the real model output error. From Figs. 6 and 7,
it can be concluded that the MLL-RVM with weight
setting Scenario 1 should have a higher accuracy than
that of Scenario 2. Furthermore, the same conclusion
reached in Section 4.4. Consequently, the effectiveness of
local model validation by using LOO cross-validation is
verified.

4.3.2. Necessity of local model selection. In some
special cases, the number of neighbors of local modelling
for each ϕ(t) is fixed. In this manuscript, however,
given the existing noise in the original data and the
characteristics of the MIMO gasification process, the data
become irregular. To achieve a satisfactory modelling
accuracy, different numbers of neighborus (k1opt(t) and
k2opt(t) for the U/D-temperature, respectively) are selected
for the local models at each ϕ(t).

Table 3 illustrates different range settings for kiopt(t),
i = 1, 2, and the corresponding LOO generalization error
CV i

opt(t), i = 1, 2 for the U/D-temperature. Obviously,
in Scheme 1, by automatically selecting the optimal
kiopt(t), i = 1, 2, more satisfactory local models for
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Table 3. Different range settings for ki
opt(t), i = 1, 2 and the

corresponding LOO cross-validation error CV i
opt(t),

i = 1, 2, for the U/D-temperature.

Range of
kiopt(t), i = 1, 2

U-temperature
Mean of CV 1

opt(t)
D-temperature

Mean of CV 2
opt(t)

Scheme 1 [4,10] 34.8127◦C 20.1817◦C
Scheme 2 7 54.2228◦C 33.4350◦C

the U/D-temperature, respectively, can be determined
by LOO cross-validation at each ϕ(t). In Scheme 2,
however, since kiopt(t), i = 1, 2, are fixed as 7, only
one local model at query ϕ(t) is created for each output
and the model must be used without consideration of the
LOO generalization error. Consequently, the mean values
of CV 1

opt(t) and CV 2
opt(t) for the U/D-temperature using

Scheme 1 are superior to those of Scheme 2. Therefore,
the necessity of local model selection is verified.

4.4. Comparison with the classical local modelling
algorithm. In the MLL-RVM, the RVM is utilized
for local modelling. To verify its effectiveness, the
linearly weighted average (LWA) local modelling method
is introduced here for comparison. Based on the
LWA, the local modelling method is designed as (taking
U-temperature y1(t+ 1), for example)

ŷ1(t+ 1) =

k∑

m=1

w(tm)y1(tm),

k∑

m=1

w(tm) = 1,

(33)

where ŷ1(t + 1) is the model output at time t, y1(tm)
andw(tm) are the measured output and the corresponding
weight of the m-th neighbour in the ‘local training set’,
respectively. k is the size of neighbours and w(tm) =
1/k.

Table 4 illustrates the prediction errors of
the U/D-temperature by using different local
modelling algorithms. The definition of MaxAE
and MinAE are defined as maxi∈Nts |ŷ(i)− y(i)| and
mini∈Nts |ŷ(i)− y(i)|. Obviously, the performance of
the MLL-RVM is superior to that of MLL-LWA for the
U-temperature, and the MAE of the MLL-RVM is 5.67◦C,
improving approximately by 7% compared with that of
the MLL-RVM (6.00◦). For the D-Temperature, the MAE
of MLL-RVM is 3.84◦C, also improving approximately
7% compared with that of the MLL-LWA (4.16◦C).
Furthermore, MaxAE and MinAE, key indexes to verify
the maximum and minimum error of each sampling
point throughout the whole test set, respectively, are also
improved.

Table 4. Prediction errors of the U/D-temperature with different
local modelling algorithms.

Criterion U-temperature D-temperature

MLL-
LWA

MLL-
LWA

MLL-
RVM

MLL-
RVM

MAE 6.00◦C 5.67◦C 4.16◦C 3.84◦C
MaxAE 44.86◦C 41.78◦C 25.97◦C 24.42◦C
MinAE 2.02◦C 0.04◦C 0.02◦C 0.01◦C

5. Conclusions

In this work, focusing on the online modelling of the
gasification process in a UGI gasifier in the fixed-bed
intermittent gasification industry, a combination of an
improved lazy learning method and a correlation vector
machine (MLL-RVM) was proposed to study the problem.
For the gasification process expressed as a class of
automated nonlinear MIMO systems in terms of the
U/D-temperature, there are some factors that make it very
difficult to build a model from first principles. Based on
the above, two improved technologies based on classical
lazy learning are developed in the MLL-RVM, including a
novel neighbour selection method based on the proposed
dynamic cost function and the introduction of the RVM
for establishing the local model. Furthermore, the
leave-one-out cross-validation technique is used for local
model validation and selection, by which the modelling
performance is further improved. The MLL-RVM is
successfully applied to a set of data collected from a
practical UGI gasifier in a large chemical group of China.
By comparison with the standard local weighted average
(LWA) algorithm, the effectiveness of the MLL-RVM is
verified.

In the future, we will design a controller to control
the U-temperature and D-temperature based on the
established data model in the simulation platform. For
the established model of this paper, data driven control
approach can be used. Specifically, the data driven control
methods design the controller only using the input and
output data of the controlled plant, and do not employ any
model parameters of the control plant. As a typical data
driven method, the model free adaptive control (MFAC)
method can be used for the temperature control of the
UGI gasification process, and the corresponding detailed
works are described by Liu et al. (2020), where the
controlled model is an offline and global model. Unlike
Liu et al. (2020), the model in this manuscript is a local
and online model, and it has more adaptivity during the
controller design process. Consequently, modelling and
control for the UGI gasification process can be realized.
Furthermore, based on the control performance, one can
make a prediction for the gasification process and realize
improvement of crude gas production.
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Fig. 6. U-temperature: profile of k1
opt(t) and CV 1

opt(t) at sam-
pling point t by using two weight setting scenarios of
the MLL-RVM: Scenario 1 with k̄1

opt(t) = 7.0903◦C
(a), Scenario 2 with k̄1

opt(t) = 6.6756◦C. CV 1
opt(t)

(b), CV
1
opt(t) = 34.8127 for Scenario 1, CV

1
opt(t) =

48.5130 for Scenario 2 (c).
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