
Int. J. Appl. Math. Comput. Sci., 2021, Vol. 31, No. 2, 337–351
DOI: 10.34768/amcs-2021-0023

MINIMAL STATE AUTOMATA FOR DETECTING A β GLOBIN GENE
MUTATION

DEVI FITRI FERDANIA a,∗, IRAWATI a, HANNI GARMINIA a , AKHMALOKA b ,
KEMAL AZIEZ RACHMANSYAH a

aAlgebra Research Group
Bandung Institute of Technology

Jl. Ganesha No.10, Jawa Barat, Bandung, Indonesia
e-mail: ferdania.fitri@gmail.com,

fitriferdania@students.itb.ac.id

bBiochemistry Research Group
Bandung Institute of Technology

Jl. Ganesha No.10, Jawa Barat, Bandung, Indonesia

Beta-thalassemia is an autosomal recessive blood disorder characterized by abnormalities in the synthesis of β globin.
Together with α globin, it is a subunit of globin protein, called hemoglobin, located inside our red blood cells to deliver
oxygen from the lungs to all of the tissues throughout our body. Thereby, individuals with β-thalassemia will often feel limp
due to a lack of oxygen dissolved in their blood. In this paper, a finite state automaton to detect and classify β globin gene
mutations using its DNA sequence is constructed. Finite state automata have a close connection to an algebraic structure,
that is, a monoid. Together with the theory of the syntactic monoid, we present a methodology to minimize the number of
the internal states of an automaton to have minimal state automata. Therefore, a minimal state automaton can be constructed
to detect β globin gene mutation causing the β-thalassemia disease. We have developed a MATLAB program to conduct
the appropriate simulations.

Keywords: minimal state automata, syntactic monoid, β-thalassemia, biological sequences.

1. Introduction

Beta globin is a subunit of hemoglobin, a globin
protein. Along with α globin, it is located inside
the red blood cells with the purpose for delivering
oxygen from the lungs to all other tissues throughout the
body. β-thalassemia syndromes are a group of hereditary
blood disorders characterized by a reduction in beta
globin chain synthesis, resulting in reduced hemoglobin
in red blood cells (RBCs), which in turn decreases
RBC production (Galanello and Origa, 2010). These
disorders are caused by a mutation(s) on the β globin
gene exon 1. More than 200 different β-thalassemia
mutations have now been characterized worldwide, but
only approximately 20 are common in South-East Asia
(Sunthornwat et al., 2011; Lie-Injo et al., 1989). The
World Health Organization (WHO) stated that the carriers

∗Corresponding author

of this disorder are roughly more than 250 million
people worldwide, which is equal to 4.5% of the global
population. Based on this increasing prevalence, proper
diagnosis of the mutation and severity classification for
β-thalassemia must be provided with the most appropriate
treatment (Wahidayat et al., 2018). Thalassemia carrier
inspection is very effective for suppressing the number
of individuals with the β-thalassemia disease. This
inspection involves hematological examination, followed
by mutation location detection (Handayani and Onggo,
2014). Methods for classifying and analyzing patterns
in nucleotide sequences (contained in DNA) have an
important role in the mutation location detection stage.

DNA (deoxyribonucleic acid) is a biomolecule
composed of four nucleotides (bases): adenine (A),
cytosine (C), guanine (G), and thymine (T). DNA also
contains the living organism’s genetic code. In recent

ferdania.fitri@gmail.com
fitriferdania@students.itb.ac.id

338 D.F. Ferdania et al.

decades, contemporary molecular biology and computer
science have enriched each other for the need to develop
solutions for efficient data analysis (Papiez, 2019; Zok
et al., 2020). Husna et al. (2017) proposed sequencing
methods to detect point mutations on the β globin
gene, by stretching out a given β globin gene and
comparing it to a normal β globin gene. Their method
can seek point mutations from a one-by-one nucleotide
comparison. However, since the β globin gene has a
length of 800–1500 nucleotides, this method is not quite
efficient for large scale use. Searls and Murphy (1995)
constructed a finite transducer to simulate a mechanism of
a single base mutation. It motivated Mazumdar and Raha
(2008) to improve and also apply the model on the Fragile
X Syndrome disease.

Mehdi and Khan (2016) proposed a method for
analyzing DNA patterns using finite automata, Mealy, and
Moore machines. Their model can find 3–4 patterns of
nucleotides in different machines. Each machine will
have a task to find a pattern. But by combining those
machines to find several different patterns, it becomes a
very complex tool and not that efficient. Lastly, another
method to detect point mutations on the β globin gene
is greatly explained by Sunthornwat et al. (2011). They
constructed finite state automata to find a five base pattern,
which is assumed to be the optimal size for reliably
detecting if a mutation is or is not present in a given
β globin gene. However, similar to Mehdi and Khan’s
(2016) idea, each constructed automaton could only find
one single pattern. Despite the shortcomings mentioned
before, using automata to detect patterns in genes is
still a very good idea because the automaton is one
of the simplest models of computation (Straubing and
Weil, 2012).

A finite-state automaton is an abstract model of
computing devices (Reddy and Dawud, 2015). In formal
language theory, finite automata are known as abstract
machines that can recognize, accept, and generate a lot of
words over a set of languages. In the development of this
machine, finite automata play an important role in many
fields. Nevertheless, there might be many outputs of finite
automata with different internal states constructed for a
single problem. From all of those automata, there is an
automaton that has a minimal number of internal states.
Therefore, it is better to find the automata with the least
number of internal states, which can reduce the number of
algorithms and solve the problem more efficiently.

Many aspects of finite state automata have strong
relationships with pure mathematics such as the algebraic
structure, graph theory, logical thinking, algorithm theory,
and category theory. During the past few decades,
both theories have enriched each other. One of those
useful relationships is the construction of a monoid when
an automaton is given and vice versa. A monoid is
an algebraic structure of a set together with its single

associative binary operation and an identity element
(Howie, 1976). Finite state automata have many common
properties with monoids. Pin (2019) explained the
relationship between monoids and automata through a
transition monoid. Furthermore, Klima and Polak (2016)
developed the concepts of a syntactic monoids structure in
a regular language. Straubing and Weil (2012) proposed
the relationship between syntactic monoid and automata.

This paper aims to introduce the minimization of
finite state automata with an algebraic approach using
a syntactic monoid and applying the method to find
point mutations in the β globin gene that cause the
beta-thalassemia disease. The benefit of the method could
be used to create a severity clustering of individuals with
β-thalassemia based on the type of mutation found by the
minimal state automata. Since it is a novel approach, in
this paper, the method is applied to only six specific point
mutations to make it easier for us to explain the steps of
automata construction.

The paper is organized as follows. The next section
will introduce the definition of finite state automata and
semigroup theory. Section 3 describes the relationship
between monoids and automata. Section 4 presents the
methodology to minimize the number of internal states of
an automaton by using its relationship to syntactic monoid
structure. Section 5 will describe the development of
the finite state automaton to detect and classify β globin
gene mutations using its biological sequences. Next, with
the method described in Section 4, the minimization to
produce an efficient algorithm will be done and simulated
with the MATLAB program. Finally, a summary of the
results and explanation of some open problems for future
research will be conveyed in the last section.

2. Definitions

We assume that the reader is familiar with the basic
notions of formal language theory and some of the basic
notions in algebra. For convenience, we describe some
of the important definitions and propositions in automata
theory and semigroup theory.

2.1. Finite state automata. Formal language theory
has developed a concept about words and languages. A
language is a set of words whose letters are taken from
some alphabets. As one of the popular types of sequential
machines with output that can process a language, a finite
state automaton can model a device that can be in one of
finitely many states, receive a discrete sequence (called
words) of inputs, and then change its state accordingly
from one to another.

Definition 1. (Finite state automata (Mazumdar and
Raha, 2008)) An automaton is a quintuple A =
〈Q,Σk, δ, a, F 〉, whereQ is a non-empty set called the set

Minimal state automata for detecting a β globin gene mutation 339

of internal states, Σk is the input alphabet, δ is a function
from Q × Σk → Q called the transition function, a is a
given element ofQ called the initial state, and F is a given
subset of Q called the set of final states of an automaton.
Moreover, A = 〈Q,Σk, δ, a, F 〉 is called a finite state
automaton if the set Q is finite.

For a finite state automaton A = 〈Q,Σk, δ, a, F 〉,
the function δ is usually defined in a table of transition
that shows δ(qi, σi) and visualized by a transition graph,
called the Moore graph. Consider the transition function
δ : Q× Σk → Q. The domain of δ can be extended from
Q× Σk to Q× Σ∗

k by the following:

1. δ(q, ε) = q, ∀q ∈ Q,

2. δ(q, xσ) = δ(δ(q, x), σ), ∀q ∈ Q, ∀σ ∈ Σk,
∀x ∈ Σ∗

k,

The above conditions occur so that the automata
constructed by extending the definition of the transition
function domain can maintain their structure. Consider
the following proposition.

Proposition 1. (Mazumdar and Raha, 2008) The transi-
tion function δ of Definition 1 is extended from Q×Σk to
Q×Σ∗

k if and only if the following conditions are satisfied:

1. δ(q, ε) = q, ∀q ∈ Q,

2. δ(q, σx) = δ(δ(q, σ), x), ∀q ∈ Q, ∀σ ∈ Σk, ∀x ∈
Σ∗

k.

Proof. Let δ be the extended transition function
from Q × Σk to Q × Σ∗

k. Then δ(q, ε) = q, and
δ(q, σx) = δ(δ(q, x), σ), ∀q ∈ Q, ∀σ ∈ Σk, ∀x ∈ Σ∗

k.

Let x = σ0σ1σ2 . . . σn, for n ∈ {0, 1, 2, . . .}. Then

δ(q, σx) = δ(q, σ(σ0σ1σ2 . . . σn))

= δ(δ(q, (σσ0σ1σ2 . . . σn−1)), σn)

= δ(δ(δ(q, (σσ0σ1σ2 . . . σn−2)), σn−1), σn)

= . . .

= δ(δ(δ(. . . (δ(q, σ), σ0), . . .), σn−1), σn)

= δ(δ(q, σ), σσ0σ1σ2 . . . σn)

= δ(δ(q, σ), x)

�

Corollary 1. The transition function δ is extended from
Q× Σk to Q × Σ∗

k if and only if the following conditions
are satisfied:

1. δ(q, xy) = δ(δ(q, x), y), ∀q ∈ Q, ∀x, y ∈ Σ∗
k,

2. If δ(q, x) = δ(q, y) then δ(q, xz) = δ(q, yz), ∀q ∈
Q, ∀x, y, z ∈ Σ∗

k.

Proof. The steps for proving this corollary are the same
as the proof of the previous proposition. �

Based on the extended automata transition function
domain described above, the definition of an automaton
by inputting the alphabet in the form of words is
clear. However, this expansion can make the constructed
automata very large and ineffective. By proving the
proposition and corollary above, it is found that the
transition from a word x ∈ Σ∗

k can be broken down
into a transition of each element Σk that constructs x.
Consequently, even though the domain of the transition
function is changed to be wider on Σ∗

k, the automata are
still the same, namely, A = 〈Q,Σk, δ, a, F 〉. It does not
need to be written as 〈Q,Σ∗

k, δ, a, F 〉.

Definition 2. (Response function (Mazumdar and Raha,
2008)) The response function of a finite state automaton
A, denoted by rpA(x), is a function from Σ∗

k −→ Q,
defined by rpA(x) = δ(a, x).

There are two types of states that exist in an
automaton. That is whether the transition of words brings
the state to the final one or not.

Definition 3. (Accessible state (Mazumdar and Raha,
2008)) A state q ∈ Q of an automaton A is called
accessible if and only if there exists x ∈ Σ∗

k such that
q = rpA(x).

Then a non-accessible state of an automaton is
redundant. By omitting this type of state, a more efficient
automaton can be constructed.

Definition 4. (Connected sub-automaton (Mazumdar and
Raha, 2008)) A connected sub-automaton of a given
automaton A, denoted by AC , is defined by AC =
〈QC ,Σk, δ

C , a, FC〉, whereQC is the set of all accessible
states of Q, i.e., QC = {q ∈ Q|∃x ∈ Σ∗

k, such
that q = rpA(x)}, δC is the restriction of δ, that is,
QC × Σ∗

k −→ QC , and FC is a set of all accessible final
states, i.e., FC = F ∩ QC . A machine A is said to be
connected if and only if Q = QC .

Consider q ∈ F . An element of a final state can be
regarded as a terminal or an end point of an automaton.
If x ∈ Σ∗

k contains n element(s) of Σk and rpA(x) ∈ F ,
then n − 1 transition(s) before the internal state arrives
at the final state will respectively give zero output. The
transition will give unit output when the last transition
reaches the final state.

Definition 5. (Accepted word (Mazumdar and Raha,
2008)) Let A be a finite state automaton. A word x ∈ Σ∗

k

is said to be accepted by A if and only if rpA(x) ∈ F .

Moreover, let L be a language. If all of x ∈ L ⊆ Σ∗
k

satisfy rpA(x) ∈ F , then L is accepted by A.

340 D.F. Ferdania et al.

2.2. Semigroup theory. In algebraic structure theory,
a semigroup is a non-empty set M equipped with an
associative binary operator. When a semigroup contains
an identity element, its structure can be enlarged to
another structure, namely, a monoid, or formally as
follows.

Definition 6. (Monoid, Howie, 1976) A monoid is a pair
(M, ∗), where M is a non-empty set together with an
associative operator ∗ on M (that is, ∗ : M ×M → M ,
where (a, b) �→ a ∗ b , ∀a, b ∈M), and M has an identity
element ε over ∗ (that is, ε ∗ a = a = a ∗ ε, ∀a ∈M).

From a non-empty set, define an equivalence relation
(a relation that satisfies transitive, symmetry, and reflexive
properties). With a monoid structure, a compatible
equivalence relation is possible, as follows.

Definition 7. (Congruence relation on monoid (Howie,
1976)) Let (M, ∗) be a monoid. The equivalence relation
∼ overM is said to be a congruence relation if, for x, y ∈
M , x ∼ y and then a ∗ x ∗ b ∼ a ∗ y ∗ b for all a, b ∈M .

An equivalence relation is just a relation defined on
a set that satisfies reflexive, symmetric, and transitive
properties. If we have a congruence relation, it is an
equivalence relation defined on an algebraic structure (a
semigroup, monoid, group, ring, etc.) that preserved the
operation. Thus a congruence relation can be seen as an
equivalence relation defined on a algebraic structure that is
compatible with the structure. If ∼ a congruence relation
over a monoid (M, ∗), then every element in M can be
grouped into equivalence classes, i.e., [a] = {b ∈ M |a ∼
b} for a ∈M . This congruence relation induces a quotient
set M/ ∼= {[a]|a ∈ M}. Note that (M/ ∼, ∗) forms a
monoid structure with the same operation as (M, ∗), that
is,

∗ :M/ ∼ ×M/ ∼ −→M/ ∼,
[a] ∗ [b] = [a ∗ b].

Definition 8. (Monoid homomorphism (Straubing and
Wiel, 2012)) Let (M, ∗1) and (N, ∗2) be monoids. A
monoid homomorphismψ fromM toN is a map between
M and N that preserves the monoid operation, that is, for
m1,m2 ∈M , we have ψ(m1 ∗1m2) = ψ(m1)∗2ψ(m2).

Definition 9. (Language accepted by a monoid (Pin,
2019)) Let L ⊆ Σ∗

k be a language and ψ : Σ∗
k → M

be a monoid epimorphism (a surjective homomorphism).
Then L is accepted by a monoidM if there exists P ⊆M
such that L = ψ−1(P).

3. Relationship between monoids and
automata

Let A = 〈Q,Σk, δ, a, F 〉 be a finite state automaton. It
will involve two important sets (an internal state and input

alphabet set) and a transition function. Consider Σ∗
k to

be a set of all possible strings composed of the elements
of Σk. Define a binary operation ∗ as a concatenation
operator on Σ∗

k. For any words x, y ∈ Σ∗
k, x ∗ y form

a new word xy. A non-commutative free monoid is a
non-commutative monoid that has a generating set. The
following is an important fact about Σ∗

k.

Proposition 2. (Pal et al., 2016) The pair (Σ∗
k, ∗) is a

non-commutative free monoid.

Proof. It is straightforward (see Pal et al., 2016). �

The dual form of an automaton in the form of a
monoid will be constructed. It must be a structure that can
represent the whole activities of an automaton. Therefore,
an automaton can be viewed in two different ways, as an
automaton itself and as a monoid.

For all x ∈ Σ∗
k, consider the following mapping:

τ : Σ∗
k −→ QQ,

x �−→ τx,

whereQQ is a set of all possible maps fromQ toQ. Thus,

τx :Q −→ Q,

q �−→ δ(q, x)

for all q ∈ Q and δ is the transition function of
A. It is easy to prove that Im(τ) ⊆ QQ, together
with a composition operator ◦, form a monoid structure.
Thus, (Im(τ), ◦) can represent all of the automata’s
characteristics (the transition function, internal state, and
final state).

Definition 10. (Transition monoid (Planting, 2013)) Let
A = 〈Q,Σ∗

k, δ, a, F 〉 be a finite state automaton. Then the
transition monoidM(A) over A is

M(A) = {τx ∈ QQ|x ∈ Σ∗
k}.

One of the important things about a finite state
automaton is the processed object, that is, a language.
The relationship between the acceptance of a language on
automata and its transition monoid is as follows.

Proposition 3. Let L ⊆ Σ∗
k be a language. If an automa-

ton A = 〈Q,Σ∗
k, δ, a, F 〉 accepts L, then its transition

monoid M(A) also accepts L.

Proof. Let L be accepted by a finite state automaton A
and τ : Σ∗

k → M(A) be the a monoid epimorphism that
maps a word in Σ∗

k to a transition monoid M(A). For
any word u ∈ Σ∗

k, there is a relation on Q, denoted by
τ(u), and defined by (p, q) ∈ τ(u) if there exists p, q ∈ Q
such that δ(p, u) = q. Then u is accepted by A if and
only if (a, q) ∈ τ(u), where q ∈ F . For convenience, if
there exist p, q ∈ Q such that δ(p, u) = q, then we write
τ(u)(p,q) = 1 and zero otherwise. Define

Minimal state automata for detecting a β globin gene mutation 341

P = {ϕ ∈M(A)|ϕ(a,q) = 1},
ϕ : Q → Q. Note that L = τ−1(P). Then, conclude that
τ accepts L, also M(A) will accept L. �

Proposition 4. Let L ⊆ Σ∗
k be a language. If a monoid

(M, ∗) accepts L, then an automaton induced by (M, ∗)
also accepts L.

Proof. Let L be accepted by a finite monoid (M, ∗).
There exists a monoid homomorphism ψ : Σ∗

k → M
and P ⊆ M such that ψ−1(P) = L. Choose A =
〈M,Σ∗

k, δ, 1M , P 〉 with 1M as the identity element of M
and ∀m ∈ M , σ ∈ Σ∗

k. We must have δ(m,σ) = m ∗
ψ(σ). Note that, for any x ∈ L, x is accepted by A if and
only if δ(1M , x) ∈ P . Therefore, δ(1M , x) = ψ(x) ∈ P ,
so u ∈ ψ−1(P), which means A accepts L. �

Then a finite state automaton and its transition
monoid can be viewed as dual forms of each other’s
structure. If we have a finite state automaton, then
it is possible to construct a monoid structure as a
transition monoid and vice versa. The advantages
of this relationship are the congruence relation over a
monoid, the homomorphism between two monoids, the
construction of a monoid quotient over a congruence
relation, the isomorphic form of a monoid, and other
structures that arise from the algebraic point of view
can be observed in automata theory. This concept will
make it easier to enlarge finite state automata concepts,
such as that of the equivalence relation on automata, or
moreover the concept of congruence relation on automata,
the concept of the homomorphism between two automata,
the concept of two isomorphic automata, etc.

4. Minimal automaton

Let L be a subset of a free monoid M (a monoid that has
a generating set). Define the left quotient of L by v ∈ M
as the set

v−1L = {u ∈M |vu ∈ L},
and the right quotient of L by v ∈M as the set

Lv−1 = {u ∈M |uv ∈ L}.
The left and right quotients above are said to be syntactic
quotients. Each induces an equivalence relation on M ,
called a syntactic relation.

Definition 11. (Syntactic relation (Pin, 2019)) Let L be
a subset of a monoid M . Then, respectively, the right
syntactic relation and the left syntactic relation are

∼L= {(s, t) ∈M ×M |Ls−1 = Lt−1},
L ∼= {(s, t) ∈M ×M |s−1L = t−1L}.

From both relations above, define a congruence
syntactic relation over a monoid, that is, when the right
and left syntactic relations are satisfied.

Definition 12. (Syntactic congruence (Hetzl, 2017)) Let
L be a subset of a free monoid M . Then, the syntactic
congruence relation over M , denoted by ≡L, is the right
and left syntactic relation on L, that is, (s ≡L t ⇐⇒
∀x, y ∈M(xsy ∈ L ⇐⇒ xty ∈ L)).

Thus, it is possible to define a quotient monoid
M/ ≡L, which will be called as syntactic monoid.

Definition 13. (Syntactic monoid) Let M be a monoid
and L be a language. Define a syntactic relation ≡L as
in Definition 12. A syntactic monoid M(L) is a quotient
monoidM/ ≡L with operation: for any equivalence class
[s]L and [t]L, it satisfies [s]L ∗ [t]L = [s ∗ t]L.

Consider the following proposition, which will be
closely related to automata theory.

Proposition 5. Let L be a language. A syntactic monoid
M(L) is the smallest monoid that accepts the languageL.

Proof. Let M(L) accept L. For any monoid N that
accepts L, M(L) is a quotient of a submonoid N . Then
M(L) is smaller than N . Because it can be applied for
any monoid N , then M(L) is the smallest monoid that
accepts the language L. �

From Proposition 5 we conclude that a syntactic
monoid can be viewed as the simplest monoid that accepts
a language L. Previously, we found that the transition
monoid can be seen as a dual form of a finite state
automaton. We found that the syntactic monoid is the
smallest monoid that accepts L. Thus, the construction
of a transition monoid from an automaton based on a
syntactic monoid is feasible. It will be the foundation of
the minimal state automata concepts.

Let A = 〈Q,Σ∗
k, δ, a, F 〉 be a connected finite state

automaton (see Definition 4) with L being a language
accepted by A. In algebra, partition of a non-empty
set can be done by collecting the same objects into
equivalence classes. Consider the transition monoid
M(A). Two functions are said to be the same function
if for all q ∈ Q they satisfy

τu(q) = τv(q),
δ(q, u) = δ(q, v).

Because A is a connected automaton, then there exists y ∈
Σ∗

k such that (τu ◦ τy)(q) ∈ F and (τv ◦ τy)(q) ∈ F . This
can be written as

δ(q, uy) ∈ F ⇐⇒ δ(δ(q, u), y) ∈ F ⇐⇒ uy ∈ L

and

342 D.F. Ferdania et al.

δ(q, vy) ∈ F ⇐⇒ δ(δ(q, v), y) ∈ F ⇐⇒ vy ∈ L.

Then uy ∈ L ⇐⇒ vy ∈ L. In the same way, there exists
x ∈ Σ∗

k such that (τx ◦ τu)(q) ∈ F and (τx ◦ τv)(q) ∈ F .
It can be written as

δ(q, xu) ∈ F ⇐⇒ δ(δ(q, x), u) ∈ F ⇐⇒ xu ∈ L

and

δ(q, xv) ∈ F ⇐⇒ δ(δ(q, x), v) ∈ F ⇐⇒ xv ∈ L.

Then xu ∈ L ⇐⇒ xv ∈ L. These are, respectively, the
right and the left syntactic relation on Σ∗

k. Thus, we have
the following.

Proposition 6. Let L ⊆ Σ∗
k, u, v ∈ Σ∗

k, A =
〈Q,Σ∗

k, δ, a, F 〉 be a connected finite state automaton,
and M(A) be transition monoid of A. Then τu = τv if
and only if ∀x, y ∈ Σ∗

k satisfy

xuy ∈ L ⇐⇒ xvy ∈ L.

Assume that

τu = τv ⇐⇒ u ≡L v

From the previous part, it is known that a syntactic
monoid M(A)/ ≡L is the smallest monoid that accepts
a language L. Furthermore, observe the automata that
correspond to the transition monoid in the form of a
syntactic monoid. Let u, v ∈ Σ∗

k satisfy τu = τv . Then
there exist some u ≡L v such that xuy ∈ L ⇐⇒
xvy ∈ L. This means u and v are related through the
left and right syntactic relation. Because they satisfy the
right syntactic relation, for y ∈ Σ∗

k consider

vy ∈ L ⇐⇒ δ(a, vy) ∈ F ⇐⇒ δ(δ(a, v), y) ∈ F

and

δ(δ(a, u), y) ∈ F ⇐⇒ δ(a, uy) ∈ F ⇐⇒ uy ∈ F.

Since A is a connected automaton, let p = δ(a, v) and
q = δ(a, u). These two equations above will be equivalent
if δ(p, y) ∈ F ⇐⇒ δ(q, y) ∈ F .

Definition 14. (Equivalence relation on an internal state)
Let A = 〈Q,Σk, δ, a, F 〉 be a connected finite state
automaton and p, q ∈ Q. Then ∀y ∈ Σ∗

k,

p ≡ q ⇐⇒ (δ(p, y) ∈ F ⇐⇒ δ(q, y) ∈ F).

Consequently, a finite state automaton that
corresponds to a transition monoid M(A)/ ≡L will
have the smallest number of internal states.

Proposition 7. A syntactic monoid over a languageL is a
transition monoid of the minimal automaton that accepts
L.

Proof. Let A = 〈Q,Σk, δ, a, F 〉 be a connected finite
state automaton that acceptsLwithM(A) be its transition
monoid. Choose Amin = 〈QL,Σk, δL, aL, FL〉, where
QL = Q/ ≡, δL : QL × Σ∗

k → QL with δL([q]≡, x) =
[δ(q, x)]≡, aL = [a]≡, and FL = {[q]≡|q ∈ F}. Thus
M(Amin), the transition monoid of Amin, is M(A)/ ≡L.
For any words x ∈ L ⊆ Σ∗

k. Note that

rpAmin(x) = δL([a]≡, x) = [δ(a, x)].

Since A is connected, then rpA(x) = δ(a, x) ∈ F .
Therefore rpAmin(x) ∈ FL. This means that L is
accepted by Amin.

For any B = 〈Q′,Σk, δ
′, a′, F ′〉, an arbitrary finite

state automata accepting L, let u, v ∈ Σ∗
k. Since

it is already proven that u ≡L v ⇐⇒ ∀x ∈
Σ∗

k, δ(a
′, u) ≡ δ(a′, v), the index of ≡L (the number

of equivalence classes of ≡L) is no more than |Q′|,
because the equivalence relation ≡ partitions Q′. As this
is satisfied for an arbitrary finite state automaton B, the
cardinality of QL = Q/ ≡ must reach the minimum
over another set of internal state from the other finite state
automata that accept L. Thus Amin is a minimal state
automaton. �

A minimal state automaton that corresponds to the
transition monoid in the form of syntactic monoid has
been constructed. However, another problem arises. How
to construct equivalence classes on Q such that we have
QL? The following lemma will help us to construct an
algorithm for the equivalence classes of Q. Let ≡m from
≡ defined as a modulo equivalence relation. Define the
number of alphabets on a word x by lg(x). For any
p, q ∈ Q, p ≡m q if and only if for all v ∈ Σ∗

k with
lg(v) ≤ m, (δ(p, v) ∈ F ⇐⇒ δ(q, v) ∈ F).

Lemma 1. Let p, q ∈ Q. Then p ≡ q if and only if
p ≡m q for m = |Q| − 2.

Proof. For some m, let the equivalence relations ≡m and
≡m+1 coincide. Next, claim that ≡m and ≡ coincide.
Suppose that there are two states p �≡ q and they are
distinguished only by words with a length greater than
m. Choose w = uv, where lg(v) = m + 1 such
that δ(p, u) = p′ and δ(q, u) = q′ is not an equivalent
modulo m + 1, p′ �≡m+1 q′. Nevertheless, this means
that p′ �≡m q′, p′ and q′ being distinguished by a word v′

with lg(v′) ≤ m. Thus p and q are distinguished by uv′

with lg(uv′) < lg(w). The process is then repeated until
a word with a length less than m + 1 is found and then
we have a contradiction. Therefore, the shortest word that
distinguishes p, q must be less than or equal to m, thus
≡m coincides with ≡.

Let ≡m+1 do not coincide with ≡m, then ≡m+1 has
a larger number of class than ≡m. From Proposition 7, the
number of index ≡ does not exceed |Q|, thus, for m = 0,
≡0 has two classes. Therefore, the sequence {≡m}m≥2

will stabilize when m reaches |Q| − 2. �

Minimal state automata for detecting a β globin gene mutation 343

From Lemma 1, we can partition Q from ≡0 first,
which is an element of Q that needs v ∈ Σ∗

k with lg(v) =
0 such that the transition reaches the final state. From
≡0, we will have two equivalence classes, i.e., the final
state and non-final state classes. Then, do the refinement
to the class through ≡1 by collecting the internal state in
each previous class, which, if transitioned by one element
of Σk, the internal state will fall in the same equivalence
class. Next, refine the ≡2 classes and so on until we get
the equivalence classes of ≡m which can no longer be
partitioned by ≡m+1. Then, QL is defined clearly and
the automaton Amin = 〈QL,Σk, δL, aL, FL〉 is a minimal
state automaton.

5. Detecting and classifying β globin gene
mutations

In the genes or chromosomes of a living creature, an
alteration in either the structure or the number of genes
or chromosomes caused by a chemical or physical agent
called a mutagen is possible (Pal et al., 2016). A gene
mutation is an alteration in the DNA sequence such that
the sequence differs from what can be found in most
people. Mutations have various types, which are the
recombination, deletion, addition, or substitution of a
DNA sequence (or a DNA sub-sequence).

Beta-thalassemia is an autosomal genetic blood
disorder characterized by anomalies in the synthesis of
the β-globin chain to produce hemoglobin. There are
many types of mutations associated with β-thalassemia.
However, only a small number of common mutation are
usually found in South-East Asia. This paper will focus
on three classification types of mutations:

1. Transcription mutation (missense mutation).
The point mutation of this type arises from an error in
the transcription process, which occurs when adenine
is replaced by guanine on the β globin chain. The
mutation causes a permanent change and forms a new
DNA strand.

2. Nonfunctional mRNA (nonsense mutation).
In the gene, there is a codon that can a stop protein
synthesis, called stop codon. It is possible that
the stop one replaces another codon which led to
termination of the whole process of protein synthesis
before it is completed. This is called a nonfunctional
mRNA mutation.

3. mRNA processing mutation.
The base sequence on mRNA consists of 2 types
of sequences. One of them is an intron, which
transcribes and then excises from mRNA before
it is translated into a protein. This mutation
makes an intron cut before the transcription process

is fulfilled. Splicing the intron can produce
untranslated sequences in the transcription process.

Table 1 shows a normal DNA sequence of the β
globin gene with an ATG in row 3 as the start codon and
an TAA in row 22 as the stop codon. The bold face and
underlined letters are the points where mutations usually
occurred.

5.1. Method. A biological sequence is a chain of
alphabetical characters describing a biological molecular
object, such as DNA, RNA, and protein. For DNA, the
alphabets used are usually A for adenine, C for cytosine,
G for guanine, and T for thymine. Thus, the β globin gene
can be shown as a sequence of A, T , G, and C nucleotides.
This fact can help the construction of the mathematical
model, by choosing Σ4 = {A, T,G,C} and Σ∗

4 as a set
of all possible combinations of nucleotides contained in
Σ4. It is already proven in Proposition 2 that Σ∗

4 forms
a free monoid. Thus the examined DNA strand will be
depicted as a language L ⊆ Σ∗

4. The application of finite
state automata to search for the particular sub-sequences
of DNA will be discussed in this section.

Start with the construction of automata to detect a
one point mutation. It is done to simplify the explanation
of constructing an automaton to search for a particular
motif. Furthermore, the main idea of this method is to
detect a single point mutation and will be applied to other
cases, i.e., for two, six, and more point mutations. Next
is the explanation on how to construct an automaton to
detect two point mutations. The aim is to help explain
the procedure of minimizing an automaton based on the
concept built in the previous section. In the same way, it
will be applied to other cases, i.e., for six and more point
mutations. Consider the steps to construct our finite state
automata:

Step 1. Define an optimal size pattern.
Sunthornwat et al. (2011) defined an optimal search
pattern for mutation as the smallest length pattern of
DNA sequences that occurs exactly once in abnormal
DNA. Thus, an optimal size pattern can determine
whether or not the mutation exists. This particular pattern
is very important for the mathematical model because the

Algorithm 1. Minimal automaton for detecting a β globin
gene mutation.
Step 1. Define an optimal size pattern.

Step 2. Construct the automata graph to seek the
optimal-size pattern.

Step 3. Minimize the constructed automata.

Step 4. Write a new transition table and its graph.

Step 5. Construct the MATLAB code to simulate finite
state automata.

344 D.F. Ferdania et al.

Table 1. Normal beta globin gene.
1 CCTAAGCCAG TGCCAGAAGA GCCAAGGACA GGTACGGCTG TCATCACTTA

51 GACCTCACCC TGTGGAGCCA CACCCTAGGG TTGGCCAATC TACTCCCAGG
101 AGCAGGGAGG GCAGGAGCCA GGGCTGGGC ATG AAA AGT CAG GGC AGA

1 2 3 4 5 6

149 GCC ATC TAT TGC TTA CAT TTG CTT CTG ACA CAA CTG TGT TCA CTA
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

193 GCA ACC TCA AAC AGA CAC CAT GGT GCA CTG ACT CCT GAG GAG AAG
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

238 TCT GCG GTT ACT GCC CTG TGG GGC AAG GTG AAC GTG GAT GAA GTT
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

283 GGT GGT GAG GCC CTG GGC AGG TTG GTA TCA AGG TTA CAA GAC AGG
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

328 TTT AAG GAG ACC AAT AGA AAC TGG GCA TGT GGA GAC AGA GAA GAC
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

373 TCT TGG GTT TCT GAT AGG CAC TGT CTC TCT CTG CCT ATT GGT CTA
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

418 TTT TCC CAC CCT TTG GCT CCT GGT GGT CTA CCC AGT TGG ACC CAG
97 98 99 100 101 9 102 103 104 105 106 107 108 109 110 111

463 AGG TTC TTT GAG TCC TTT TGG GGA TCT GTC CAC TCC TGT TGC TGT
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126

508 TAT GGG CAA CCC TAA GGT GAA GGC TCA TGC CAA CAA AGT GCT CGG
127 128 129 120 131

553 TGC CTT TAG TGA TGG CCT GGC TCA CCT GGA CAA CCT CAA GGG CAC
598 CTT TGC CAC ACT GAG TGA GCT GCA CTG TGA CAA GGT GCA CGT GGA
643 TCC TGA GAA CTT CAG GGT GAG TCT ATG GGA CCC TTG ATG TTT TTC
688 CCG GGC TTC TTT TCT ATG GTT AAG TTC ATG TCA TAG GAA GGG GAG
733 AAG TAA CAG GGT ACA GTT TAG AAT GGG AAA CAG ACG AAT GAT TGC
778 ATC AG

sought type of mutation is just a point or base mutation.
This makes it very difficult to determine whether or not
a mutation occurs in a long chain of the β globin gene if
the optimal size pattern was not defined beforehand.

The algorithm to search for the optimal size pattern
is initialized from a pattern of three nucleotides. Then, it
systematically searches for patterns of increasing length
that contain mutation until it terminates

• successfully by finding the pattern that occurs exactly
once in an abnormal code and does not occur in the
normal code,

• unsuccessfully by searching an abnormal code
without finding the search pattern,

• unsuccessfully by reaching a maximum size of the
search pattern (usually 6–9 bases).

This paper is focused on the first point, in which the
pattern is discovered. Then, the unique pattern will be
used to construct the finite state automata. For example,
to find an optimal size pattern for a transcription mutation
(from adenine to guanine), the process with three bases

that contain the point mutation will be initialized; those
are ATG, TGA, and GAA. Next, the pattern ATG, TGA,
and GAA in the samples that are known to be positive for
β-thalassemia will be searched for. Henceforth, the search
process for a larger pattern size, that is, four bases, i.e.,
ATGA, TGAA, CATG, etc., five bases, and six bases, will
be performed.

The results show that, for the three and four bases
pattern, there are many occurrences of each pattern in both
abnormal and normal codes. Therefore, the three and four
bases patterns are not suitable to identify and determine
the occurrences of a transcription mutation. Meanwhile,
for the five bases pattern, there will exist one occurrence
of the pattern (ATGAA) if the mutation is present in
abnormal genes but not in normal ones. Otherwise, for the
other samples, ATGAA will occur in the normal genes.
But this only happened for a few samples. With the six
bases pattern, on the other hand, the CATGAA pattern
occurs only once in abnormal code and does not occur
in normal one. Evidently, the six bases pattern is the
optimal size pattern for a transcription mutation. Thus,
we can conclude that CATGAA can be used to determine
the occurrences of a transcription mutation.

Minimal state automata for detecting a β globin gene mutation 345

As observed by Sunthornwat et al. (2011) and
with some modifications by the authors, Table 2 shows
the optimal size pattern for the common β-thalassemia
mutation.

Step 2. Construct the automata graph to search for the
optimal size pattern.
Construct the automata graph which can describe the
pattern on each transition. The following part will
describe how to construct the automata to search for one,
two, and six point mutations. The procedure can be
applied to other types of point mutation that can cause
β-thalassemia.

For seeking the GCTAG patterns, let A be a finite
state automaton that will be created. Let q0 be the initial
state of A. Also, q0 will be transitioned to the state q1
when A comes across ‘G’ and transitioned back to q0
(which can actually be considered as no transition) if ‘C’,
‘T’, or ‘A’ is discovered. From q1, it will be transitioned
to the state q2 when ‘C’ appears, then transitioned back
to q0 when ‘A’ or ‘T’ turns up, and back again to q1
when ‘G’ appears. Proceeding in the same way, from q2,
the transition to state q3 will happen when A discovers
‘T’, back to q0 with ‘A’, ‘C’, or ‘G’. Therefore, to
search for the GCTAG pattern, we need at least six states
{q0, q1, q2, q3, q4, q5}.

Accordingly, from q0, if the process ended up at q1
on the next state, this indicates that the automaton has read
‘G’, if by any chance it went to q2, the strand has made a
‘GC’ pattern, and so on. This means it will only end up at
q5 if the pattern the automaton read is exactly ‘GCTAG’.
Therefore, q5 is a final state. Finally, define an automaton
A = {{q0, q1, q2, q3, q4, q5}, {A, T,G,C}, δ1, q0, {q5}},
where δ1 is a transition function described in Table 3. Its
Moore graph is shown in Fig. 1.

Next, we proceed in the same way for the
GTAAG pattern to detect a non-functional mRNA
mutation. Let B be a finite state automaton that
will be constructed. Then, define an automaton B
= {{q6, q7, q8, q9, q10, q11}, {A, T,G,C}, δ2, q6, {q11}},
where δ2 is a transition function described in Table
4. Figure 2 shows the Moore graph of B =
{{q6, q7, q8, q9, q10, q11}, {A, T,G,C}, δ2, q6, {q11}}.

Combine A and B in one finite state automaton
in order to make it simpler and run them together.
Assume the first automaton, A, starts from q0 and will
be transitioned to q1 if A read ‘G’. Meanwhile, the same
conditions apply to the second automaton, which is B,
from q6; it will be transitioned to q7 when B read ‘G’.
Then we can delete q6 and q7, since respectively, q0
can represent q6 and q1 can represent q7. From q1, it
must be transitioned to q2 when the automaton read ‘C’,
transitioned to q8 when the automaton reads ‘T’, back to
q1 when the automaton read ‘G’, and back to q0 when
the automaton reads ‘A’. Then, repeat the same transition

Fig. 1. Automaton A for seeking the GCTAG pattern.

Fig. 2. Automaton B for seeking the GTAAG pattern.

Table 2. Optimal size patterns.
Types of Point Normal Abnormal
mutation mutation pattern pattern

Transcription (A-G) CATAAA CATGAA
mutation

Nonfunctional (A-T) GCAAG GCTAG
mRNA (G-A) GTGAG GTAAG

(C-A) TACCC TAACC
mRNA Processing (G-C) TGGTA TGCTA

mutation (G-T) AGGTTG AGTTTG

rules to each state.
For convenience, assume that q8 = q6,

q9 = q7, q10 = q8, q11 = q9. Then we have C
= {{q0, q1, q2, q3, q4, q5, q6, q7, q8, q9}, {A, T,G,C}, δ
, q0, {q5, q9}} as a finite state automaton to detect GCTAG
and GTAAG simultaneously. The Moore graph of C is
shown by Fig. 3(b) and its transition in Table 5.

In the same way, generalize the method to construct
an automaton to detect six point mutations as mentioned
in Table 2, called D. Its transition is shown in Table
6. Because the Moore graph of D in Fig. 3(a) is too
complicated to visualize, the main idea of its transition
function is shown in Fig. 3(c).

Step 3. Minimize the constructed automata.
The concept of the minimal automaton has already been
constructed in the previous section. In association with
the concept of an algebraic structure, namely, a monoid,
or more specifically a syntactic monoid, an equivalence

346 D.F. Ferdania et al.

(a)

(b) (c)

Fig. 3. Automaton D for seeking six point mutations (a), automaton C for seeking the GCTAG and GTAAG patterns (b), main transition
of D in a simple visualization graph (c).

Table 3. Transition table of A.
δ A C G T

q0 q0 q0 q1 q0
q1 q0 q2 q1 q0
q2 q0 q0 q1 q3
q3 q4 q0 q1 q0
q4 q0 q0 q5 q0
q5 q5 q5 q5 q5

Table 4. Transition table of B.
δ A C G T

q6 q6 q6 q7 q6
q7 q6 q6 q7 q8
q8 q9 q6 q7 q6
q9 q10 q6 q7 q6
q10 q6 q6 q11 q6
q11 q11 q11 q11 q11

relation on the set of the internal state of an automaton
such that we can minimize the number of its internal state
has been found, but it still accepts the same language. By
an important concept of Lemma 1, the following steps are
obtained to minimize the constructed automata.

For convenience and effectiveness of writing, we will
describe the steps for minimizing C (an automaton that
detects two patterns) and, in the same way, for minimizing
D (an automaton that detects six patterns). Separation

starts from 0-equivalence first. Because the final state
in the previously constructed automaton is {q5, q9}, then
q5 and q9 are combined in one equivalence class, while
the other internal states are combined in the different
equivalence classes. Then the following will be obtained:

P0 = {{q0, q1, q2, q3, q4, q6, q7, q8}, {q5, q9}}.
Check each equivalence class to re-partition the
equivalence class P0 above. The method to re-partition
P0 is by looking into whether each transition in the same
equivalence class falls in internal states with the same
class. If the equivalence class is different, and so then
separate the internal state from the others.

For each element of the input alphabet, the transitions
of q5 and q9 always fall in the same class, and so then
{q5, q9} cannot be partitioned any more.

Consider the set {q0, q1, q2, q3, q4, q6, q7, q8}.
Because δ(q4, G) = q5 and δ(q8, G) = q9, a separation of
{q4, q8} into another different class must be done. Note
that q4 and q8 are equivalent because all of the transitions
for the same input alphabets fall in the same equivalence
class. Then the following will be obtained:

P1 = {{q0, q1, q2, q3, q6, q7}, {q4, q8}, {q5, q9}}.
In the same method, {q0, q1, q2, q3, q6, q7} must be
re-partitioned. The other equivalence classes do not
need to be reviewed because they are already equivalent.
Note that it was only the appearance of q4 and q8
that needed to be looked into in the transition table

Minimal state automata for detecting a β globin gene mutation 347

Table 5. Transition table of C.
δ A C G T

q0 q0 q0 q1 q0
q1 q0 q2 q1 q6
q2 q0 q0 q1 q3
q3 q4 q0 q1 q0
q4 q0 q0 q5 q0
q5 q5 q5 q5 q5
q6 q7 q0 q1 q0
q7 q8 q0 q1 q0
q8 q0 q0 q9 q0
q9 q9 q9 q9 q9

of {q0, q1, q2, q3, q6, q7}. Because δ(q3, A) = q4 and
δ(q7, A) = q8, the separation of q3 and q7 into different
equivalence class must be done. Because q3 and q7 are
equivalent, then {q3, q7} cannot be partitioned anymore.
Hence, the following will be obtained:

P2 = {{q0, q1, q2, q6}, {q3, q7}, {q4, q8}, {q5, q9}}
In the same method, q2 and q6 must be separated from
{q0, q1, q2, q6}. However, note that q2 and q6 are not
equivalent, because δ(q2, A) = q0, while δ(q6, A) = q7.
Then the following will be obtained:

P3 = {{q0, q1}, {q2}, {q6},
{q3, q7}, {q4, q8}, {q5, q9}}.

In the same way,

P4 = {{q0}, {q1}, {q2}, {q6},
{q3, q7}, {q4, q8}, {q5, q9}}

and

P5 = {{q0}, {q1}, {q2}, {q6},
{q3, q7}, {q4, q8}, {q5, q9}} = P4.

Because P5 = P4, the reduction of internal states of the
previously constructed automata is successful, from ten
internal states to seven internal states. With the same
method, minimization of D results from 31 internal states
to 22 internal states. Based on the previous section, this
reduction method will ensure that the results are minimal
automata that will still accept the same language.

Step 4. Write a new transition table and the graph of the
constructed minimal automata.
For the previous method, a new transition table and
new graph for C are shown, respectively in Table 7 and
Fig. 4(a). A new transition table and graph for D are,
respectively, showed in Table 8 and Fig. 4(b).

Step 5. Write MATLAB code to simulate finite state au-
tomata.

The MATLAB code can be constructed to simulate the
finite state automata obtained above and to summarize the
conclusions from the automata. The program contains two
functions. The first one is to simulate the automata, while
the other one runs through the DNA sequences to find the
start the codon ATG, numbering every three nucleotides
from start codon to have codon number, and then search
for six patterns simultaneously by using the first program.
When the automata reach the single final state, the pattern
found is then recognized.

5.2. Results and a discussion. There are 15 samples of
the β globin gene to examine, consisting of nine samples
(samples numbered from 1 to 9) of the abnormal β globin
gene (patients are from Indonesia and Thailand) and six
samples of the normal β globin gene (sample numbered
10–15). Table 9 shows the results obtained from all 15
samples when processed in the MATLAB program. Based
on the results in Table 9, the MATLAB program relying
on the constructed automaton has been successfully tested
regarding whether normal or abnormal β globin gene
chain. Thus, there are no ‘false positives’ and no ‘false
negatives’ from the automata model, and the mutation
on the given β globin gene chain can be detected and
classified.

The “Severity class” column in Table 9 is a division
of samples into three classes. Samples with no mutation
patterns are classified into the normal class, which means
the β globin gene may be normal, but further inspection
is needed to check for other mutation patterns. The
mild class is for samples with a transcription mutation
or non-functional mRNA or mRNA processing mutation
patterns, or two of them, or all three. Samples in the severe
class have all three mutation patterns in them with the
possibility to have a deletion or addition mutation because
of the feasibility of a shift in the gene. The shift possibility
can be seen from the unusual position of the mutations.

Let us consider the time complexity of this method.
Suppose that there are m patterns to be found and the
length of the DNA sequence is n. The complexity of
minimal state automaton isO(n), because it does not need
to check for every pattern in each step and there is no
operation needed. This is better than in the case of both
earlier finite state automata and single pattern-searching
algorithms such as regexp in MATLAB or the classical
built-in search method. This is because they will search
for the pattern from the beginning of a text until the
end, then for the second pattern this will start again
from the beginning, and so on. So they will have O(n)
complexity for each pattern and their complexities are
O(mn). For multiple pattern-searching algorithms, e.g.,
the AC algorithm and the Commentz-Walter algorithm,
our method’s complexity is on par with them, as those
methods’ complexities are O(n), too.

The problem with most of the above algorithms,

348 D.F. Ferdania et al.

Table 6. Transition table of D.
δ A C G T δ A C G T

q0 q16 q10 q1 q22 q16 q16 q10 q17 q22
q1 q16 q2 q1 q6 q17 q16 q10 q1 q18
q2 q11 q10 q1 q3 q18 q16 q10 q1 q19
q3 q4 q10 q1 q22 q19 q16 q10 q1 q20
q4 q16 q10 q5 q22 q20 q16 q10 q21 q22
q5 q5 q5 q5 q5 q21 q21 q21 q21 q21
q6 q7 q10 q1 q22 q22 q27 q10 q23 q22
q7 q8 q10 q1 q22 q23 q16 q24 q1 q22
q8 q16 q10 q9 q22 q24 q16 q10 q1 q25
q9 q9 q9 q9 q9 q25 q26 q10 q1 q22
q10 q11 q10 q1 q22 q26 q26 q26 q26 q26
q11 q16 q10 q17 q12 q27 q28 q10 q1 q22
q12 q16 q10 q13 q22 q28 q16 q29 q1 q22
q13 q14 q10 q1 q22 q29 q16 q30 q1 q22
q14 q15 q10 q1 q22 q30 q30 q30 q30 q30
q15 q15 q15 q15 q15

(a) (b)

Fig. 4. Minimal automata for seeking two patterns (a), for seeking six patterns (b).

including minimal state automata, is their pre-processing
complexity. It is arguable whether this is a major problem
in detecting the β globin gene mutation because the
patterns are known beforehand, hence the pre-processing
can be done way before the detection.

Lastly, minimal state automata also have fewer
internal states compared to the usual finite state automata.
This will make the transition table and the Moore graph
simpler and more efficient to implement in actual cases.

6. Conclusions and future

The concept of the relationship between automata and
algebraic structures in the form of a monoid was
constructed. Given an automaton A = 〈Q,Σk, δ, a, F 〉,
its dual form is a transition monoid M(A), that is,

M(A) = {τx ∈ QQ|x ∈ Σ∗
k},

where τ : Σ∗
k −→ QQ. The transition monoid will

maintain the important characteristics of an automaton,
which is the relationship between the set of internal states,
the set of the input alphabet, and its transition function.
Given an automaton structure, it can be seen from the
perspective of a monoid, and vice versa.

Through this relationship, the concept of automata
with the least number of internal states, i.e., a minimal
state automaton, was also developed. Minimal automata
are obtained by reducing the number of internal states
through equivalence relations. The relation is induced by a
congruence syntactic one. It has already been proven that
the syntactic monoid is a transition monoid of a minimal
state automaton.

Last, a finite state automaton to detect and classify
mutations on β globin gene was constructed. To simulate
it, a MATLAB program to test 15 (positive and negative)

Minimal state automata for detecting a β globin gene mutation 349

Table 7. Transition table of a minimal automaton C for seeking
two point mutations.

δ A C G T

d0 d0 d0 d1 d0
d1 d0 d2 d1 d6
d2 d0 d0 d1 d3
d3 d4 d0 d1 d0
d4 d0 d0 d5 d0
d5 d5 d5 d5 d5
d6 d3 d0 d1 d0

Table 8. Transition table of minimal automata for seeking six
point mutations.

δ A C G T

d0 d16 d10 d1 d21
d1 d16 d2 d1 d6
d2 d16 d10 d1 d3
d3 d4 d10 d1 d21
d4 d16 d10 d5 d21
d5 d5 d5 d5 d5
d6 d3 d10 d1 d21
d7 d16 d5 d1 d21
d8 d16 d7 d1 d21
d9 d8 d10 d1 d21
d10 d11 d10 d1 d21
d11 d16 d10 d1 d12
d12 d16 d10 d13 d21
d13 d14 d10 d1 d21
d14 d5 d10 d1 d21
d15 d16 d10 d1 d14
d16 d16 d10 d17 d21
d17 d16 d10 d1 d18
d18 d16 d10 d1 d19
d19 d16 d10 d1 d4
d20 d16 d15 d1 d21
d21 d9 d10 d20 d21

β-thalassemia samples was successfully run. Actually,
this program is not restricted to the β globin gene cases.

The benefits of this method are, first, the fact that
severity clustering of individuals with β-thalassemia can
be developed based on the number and type of mutation
that has been found. Severity clustering is needed to
make a proper diagnosis and to determine the most
appropriate treatment. Also, the proposed method comes
from an algebraic structure, namely, a monoid. The dual
relationship between finite state automata and transition
monoids makes it easier to enlarge many concepts in
finite state automata from an algebraic point of view.
For example, the concept of the homomorphism of two
automata, the isomorphism between two automata, the
automata quotient, and many others that arise from an
algebraic point of view.

For further research, there are many aspects that
can be developed. First, the model created in this paper
is limited to six types of mutations. Thus, for more
comprehensive results on analyzing the β-thalassemia
disease, this model can be developed in the same way
for other types of mutations that cause β-thalassemia.
Second, the manual process of minimalizing the internal
states may not be a problem, but an algorithm
to automatically do that surely helps, especially in
large-scale use. Through the algorithm described in
the previous section, a MATLAB program can be made
to ease the process of separation of internal states into
equivalence classes. Lastly, this paper was written from
the perspective of a mathematician, so the aspects of
biology were not really a emphasized. For further
research, this model can be analyzed from both biological
and medical perspectives to obtain better conclusions.

Acknowledgment

This research was fully funded by P3MI ITB (a research
and community service program of ITB). Some parts
of this research were attended by Elvin J. Moore (see
References), especially with regard to sharing some
normal and abnormal β globin gene DNA samples from
Thailand and the MATLAB algorithm which makes it
easy for the authors to develop and enlarge the model.

References
Galanello, R. and Origa, R. (2010). Beta thalassemia, Or-

phanet Journal of Rare Diseases 5(11): 1–15, DOI:
10.1186/1750-1172-5-11.

Handayani, N.S.N. and Onggo, A.T. (2014). Identifikasi mutasi
gen β-globin ekson 1 pada pembawa thalassemia, Biogen-
esis Jurnal Ilmiah Biologi 2(1): 63–69.

Hetzl, S. (2017). Automata and formal languages, Technical re-
port, Vienna University of Technology, Vienna.

Howie, J.M. (1976). An Introduction to Semigroup Theory,
Academic Press Inc., New York.

Husna, N., Sanka, I., Arif, A.A., Putri, C., Leonard, E., and
Nur Handayani, N.S. (2017). Prevalence and distribution
of thalassemia trait screening, Journal of Medical Science
49(3): 106–113, DOI: 10.19106/JMedSci004903201702.

Klima, O. and Polak, L. (2016). Syntactic structures of regular
languages, Theoretical Computer Science 800: 125–141,
DOI: 10.1016/j.tcs.2019.10.020.

Lie-Injo, L., Cai, S., Wahidijat, I., Moeslichan, S., Lim,
M., Evangelista, L., Doherty, M. and Kan, Y. (1989).
Beta-thalassemia mutations in Indonesia and their linkage
to beta-haplotypes, American Journal of Human Genetics
45(6): 971–975.

Mazumdar, D. and Raha, S. (2008). Finite state machine for
mutation, Advanced Modeling and Optimization 10(2):
241–265.

350 D.F. Ferdania et al.

Table 9. Simulation results.
Sample Start Simulation Base Codon Severity

no. codon results position position class

1 base found
number nonfunctional mRNA 261,288,447 44,53,106 mild

130 mRNA processing mutation 302, 306, 741 57,59,204
2 base found

number transcription mutation 133 2
130 nonfunctional mRNA 264,450 45,107 mild

mRNA processing mutation 305,309 58,60
3 base found

number transcription mutation 133 2
130 nonfunctional mRNA 263,290,449 44,53,106 mild

mRNA processing mutation 304, 308 58,59
4 base found

number transcription mutation 133 2
130 nonfunctional mRNA 263,290,449 44,53,106 mild

mRNA processing mutation 304, 309 58,60
5 base found

number transcription mutation 134 2
131 nonfunctional mRNA 264,291,450 44,54,106 mild

mRNA processing mutation 305, 309 58,60
6 base found

number transcription mutation 134 11
101 nonfunctional mRNA 264,291,450 54,63,116 severe

mRNA processing mutation 302, 309 67,69
7 base found

number transcription mutation 132 11
100 nonfunctional mRNA 262,289,448 56,63,116 severe

mRNA processing mutation 303, 307 68,69
8 base found

number transcription mutation 131 2
129 nonfunctional mRNA 261 44 mild

mRNA processing mutation 302 58
9 base found

number nonfunctional mRNA 261,447 53,115 severe
101 mRNA processing mutation 302,306 67,69

10 130 not found – – normal
11 130 not found – – normal
12 129 not found – – normal
13 131 not found – – normal
14 130 not found – – normal
15 129 not found – – normal

Mehdi, M. and Khan, A. (2016). DNA pattern analysis
using Fa, Mealy, and Moore machines, International Jour-
nal of Computer Science and Information Security 14(8):
235–243.

Pal, J., Mazumdar, D. and Raha, S. (2016). An algebra for
biological sequences, International Journal for Computa-
tional Biology 5(2): 28–40.

Papiez, A., Badie C. and Polanska, J. (2019). Machine learning
techniques combined with dose profiles indicate radiation

response biomarkers, International Journal of Applied
Mathematics and Computer Science 29(1): 169–178, DOI:
10.2478/amcs-2019-0013.

Pin, J.E. (2019). Mathematical foundations of automata, Techni-
cal report, Paris Diderot University, Paris.

Planting, A. (2013). From Automata to Monoids and
Back Again, PhD thesis, Radboud University Nijmegen,
Nijmegen.

Minimal state automata for detecting a β globin gene mutation 351

Reddy, P.S. and Dawud, M. (2015). Application of semigroup,
Global Journal of Science Frontier Research 15(3): 16–26.

Searls, D.B. and Murphy, K.P. (1995). Automata theoretic
models of mutation and alignment, Proceedings of the In-
ternational Conference on Intelligent Systems in Molecular
Biology, Cambridge, UK, pp. 341–349.

Straubing, H. and Weil, P. (2012). An introduction to finite
automata and their connection to logic, in D. D’Souza and
P. Shankar (Eds), Modern Applications of Automata The-
ory, World Scientific, Singapore, pp. 3–43.

Sunthornwat, R., Moore, E.J. and Temtanapat, Y. (2011).
Detecting and classifying mutations in genetic code with
an application to beta-thalassemia, Science Asia 37: 51–61,
DOI: 10.2306/scienceasia1513-1874.2011.37.051.

Wahidayat, P.A., Sastroasmoro, S., Fucharoen, S., Setianingsih,
I. and Putriasih, S.A. (2018). Applicability of
a clinical scoring criteria for disease severity of
β-thalassemia/hemoglobin E in Indonesia, Med-
ical Journal of Indonesia 27(1): 26–32, DOI:
10.13181/mji.v27i1.1779.

Zok, T., Badura, J., Swat, S., Figurski, K., Popenda, M. and
Antczak, M. (2020). New models and algorithms for RNA
pseudoknot order assignment, International Journal of Ap-
plied Mathematics and Computer Science 30(2): 315–324,
DOI: 10.34768/amcs-2020-0024.

Devi Fitri Ferdania holds a BSc in mathematics
from Institut Teknologi Bandung (2020). She is
interested in algebra and computer science. To-
gether with Prof. Irawati, she did her first re-
search on the application of algebra in the field
of computer science and biology to complete his
undergraduate final project. She has also par-
ticipated in various international competitions,
such as the Interdisciplinary Contest in Model-
ing (ICM, 2020), organized by the Consortium

for Mathematics and Its Applications (COMAP), and her team received
an honorable mention.

Irawati is a professor at the Algebra Research
Group in the Faculty of Mathematics and Natural
Sciences at Institut Teknologi Bandung (ITB). In
2006–2014, she was the head of the Algebra Re-
search Group at ITB. Irawati has 39 international
publications on various topics in algebra. Her re-
search interests are in ring and module theories.

Hanni Garminia is a lecturer in mathemat-
ics. She is a member of the Algebra Research
Group in the Faculty of Mathematics and Natu-
ral Sciences at Institut Teknologi Bandung (ITB).
Garminia has 24 international publications on
various topics in algebra. She holds a research
interest in module theory.

Akhmaloka is a professor of molecular genet-
ics in Biochemistry Research Group, Faculty of
Mathematics and Natural Sciences. Akhmaloka
and his group have published more than 80 pa-
pers in reputable journals concerning biochem-
istry and molecular biology of thermophilic mi-
croorganisms and thermostable enzymes. His re-
search has been focused on molecular biology of
thermostable enzymes since 1995.

Kemal Aziez Rachmansyah obtained his BSc
degree in mathematics from Institut Teknologi
Bandung in 2020. His undergraduate thesis is
about upper bounds for the expansion rate in fi-
nite and connected graphs. Mathematical analy-
sis, discrete geometry, and differential geometry
are his main research areas. Being in the top 10%
of all the participant worldwide, his team won the
Meritorious Winner title in the Interdisciplinary
Contest in Modeling in 2019.

Received: 3 June 2020
Revised: 2 October 2020
Re-revised: 8 January 2021
Accepted: 7 February 2021

	Introduction
	Definitions
	Finite state automata
	Semigroup theory

	Relationship between monoids and automata
	Minimal automaton
	Detecting and classifying β globin genemutations
	Method
	Results and a discussion

	Conclusions and future

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

