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This paper considers the problem of fault-tolerant control (FTC) and fault reconstruction of actuator faults for linear pa-
rameter varying (LPV) descriptor systems with time delay. A polytopic sliding mode observer (PSMO) is synthesized to
achieve simultaneous reconstruction of LPV polytopic descriptor system states and actuator faults. Exploiting the recon-
structed actuator faults and state estimates, a fault-tolerant controller is designed to compensate the impact of actuator faults
on system performance by stabilizing the closed-loop LPV delayed descriptor system. Besides, the controller and PSMO
gains are obtained throughout the resolution of linear matrix inequalities (LMIs) using convex optimization techniques. The
developed PSMO could force the output estimation error to converge to zero in a finite time when the actuators faults are
bounded through the reinjection of the output estimation error via a nonlinear switching term. Simulation results applied to
a given numerical system are presented to highlight the superiority and effectiveness of the proposed approach.
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1. Introduction

Fault-tolerant control is known to be a control technique
combining diagnosis and control methods for the sake of
better stability and performance of a given system even
if faults raise. Fault diagnosis and isolation (FDI) on
the one hand and FTC on the other play, all together,
a significant role within any numerical system. In
fact, FDI provides sufficient information through filters,
observers, or residual generation to clearly identify the
faulty sensor, the actuator or any internal faults that
could occur within a given system (Chandra et al., 2016).
In their literature survey, Lopez-Estrada et al. (2019)
present various methodologies for observer synthesis
and fault-related strategies for convex systems under
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different representations: Takagi–Sugeno fuzzy models,
linear parameter varying (LPV) and quasi-LPV systems,
whereas the purpose of the FTC is to maintain sufficient
security and stability even if the system is faulty.

With the above in mind, fault tolerant control has
attracted much attention. Li and Wang (2020) investigated
the fault tolerant tracking consensus problem for a class
of leader-follower multi-agent systems. Stefanovski
and Juricic (2020) proposed a new formulation of the
FTC problem based on fault estimation in presence
of disturbances. Ben Zina and Chaabane (2019)
presented a method for designing a robust fault
tolerant tracking control technique for nonlinear uncertain
systems described by Takagi–Sugeno fuzzy models with
unmeasurable premise variables subject to sensor faults.
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Rabaoui et al. (2018; 2020) used new adaptive
proportional-integral (PI) and PID control algorithms in
order to ensure trajectory tracking despite the presence
of actuator faults and unknown inputs for LPV systems
based on an adaptive polytopic observer. The previously
listed literature and even other works were mainly based
on regular systems. This is to say, there are no algebraic
relations between system variables.

Furthermore, problems related to FTC of descriptor
systems, also called implicit systems or singular systems
or differential-algebraic equations (DAEs), have been
widely studied. In fact, Su et al. (2018) studied the
problem of optimal fault tolerant control for a class of
descriptor time-varying systems with nonlinear input. Jia
et al. (2019) designed a fault-tolerant preview controller
for a class of impulse controllable continuous time
descriptor systems with sensor faults.

Generally speaking, LPV descriptor systems could
approximate a highly complicated nonlinear singular
system using the polytopic representation. The purpose
of this approach is to represent the descriptor system as
an interpolation of simple local models (Hamdi et al.,
2012). The LPV descriptor system formulation can have
powerful analysis and design properties and is a suitable
way of representing real systems (Halalchi et al., 2011).
However, few studies have been concerned with LPV
approaches to the joint problems of state reconstruction
and fault diagnosis (FD) or fault estimation for descriptor
systems. In the work of Hamdi et al. (2019) the problem
of fault detection and reconstruction of actuator faults for
linear parameter varying descriptor systems is considered.
The results of Hamdi et al. (2012) are extended by Shi and
Patton (2014) to investigate an active fault tolerant control
scheme based on a proportional derivative extended state
observer for an LPV descriptor system.

Then, again, time-delay is another factor that can
degrade system performance; it is a built-in feature
in many engineering systems (Briat, 2015). The
presence of time-delay, along with faults, could easily
drive the system to the instability state. Therefore,
investigating FTC design of time-delay systems has
great practical and theoretical significance. Concerning
observer and FD design, very few works have been
devoted to descriptor LPV systems with time delay.
Hassanabadi et al. (2016) studied the problem of a robust
fault detection based on an unknown input observer
for LPV singular delayed systems in the presence of
disturbances and actuator faults. Hamdi et al. (2018)
presented the problem of robust fault detection of
delayed descriptor LPV systems including disturbances
and actuator faults. This presented FD method is based
on comparing the online real system behavior with the
results of estimation obtained with time delays by an
adaptive polytopic observer. Accordingly, several FTC
approaches have been developed for time-delay regular

systems (Chen and Saif, 2006). But few works are
focusing on FTC of polytopic LPV and time-delay
descriptor systems. The problem of robust fault tolerant
control for a class of singular systems subject to both
time-varying state-dependent nonlinear perturbation and
actuator saturation was investigated by Zhiqiang et
al. (2010). Observer based fault reconstruction and
fault-tolerant control for Takagi–Sugeno fuzzy descriptor
systems subject to time delays and external disturbances
were also studied (Jia et al., 2015).

The sliding mode observer is employed in situations
including state estimation and fault detection since it
is insensitive to matched uncertainties, nonlinearity, or
disturbances. The main advantage of using sliding mode
observers over their linear counterparts is that, while
in sliding, they are insensitive to the matched unknown
inputs, they can be used to reconstruct disturbance and
faults. The reconstruction of these parameters have found
useful applications in fault diagnosis and fault tolerant
control.

Ben Brahim et al. (2015) considered robust
reconstruction of simultaneous actuator and sensor faults
for a class of uncertain Takagi–Sugeno nonlinear systems
with immeasurable premise variables. Shahnazi and Zhao
(2016) suggested a new method based on the adaptive
fuzzy proportional-derivative sliding mode observer to
estimate sensor faults and states simultaneously for a
class of uncertain nonlinear systems. Alwi et al. (2012)
proposed a new LPV based sliding mode observer scheme
for fault reconstruction. Chen et al. (2019) developed
a linear variable parameter SMO to estimate the state
vector and sensor faults, which can ensure asymptotic
stability of the state estimation errors. By using the
SMO, Gomez-Penate et al. (2019) present an FDI method
for stability analysis of the Takagi–Sugeno systems with
immeasurable premise variables. This method is robust to
disturbances, sensor noise, and uncertainty on the premise
variables. A sliding mode fuzzy observer for disturbance
and actuator fault estimation in the presence of bounded
uncertainties was designed for fuzzy systems (Gerland et
al., 2010). However, few results have been reported to
design a sliding mode observer for the descriptor case.
Chan et al. (2019) proposed two sliding mode observers in
a cascade to reconstruct a fault for a class of non-infinitely
observable descriptor systems. Ooi et al. (2017; 2015)
developed a sliding mode observer for a class of infinitely
unobservable descriptor systems used for state and fault
estimation.

The main contribution in this paper is to address
the problem of robust fault estimation and fault tolerant
control of delayed LPV descriptor systems including
disturbances. The system under consideration also
includes actuator faults. After converting the descriptor
system to a polytopic representation, a polytopic SMO is
constructed for simultaneous state and fault estimation of
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the system. The fault estimate is then used to construct a
fault-tolerant controller, which stabilizes the closed-loop
system. A sufficient condition which guarantees the
stability of the error reconstruction dynamics and the
existence of a polytopic SMO is provided. To the
best of our knowledge, the strategy based on the use
of SMO schemes for fault tolerant control of LPV
delayed descriptor systems presented here is innovative
and interesting. Such a method is much less mature and
has some fundamentally different advantages.

The remainder of this paper is organized as follows.
The system description and the problem statement are
given in Section 2. Then, the polytopic sliding mode
observer is proposed and analyzed, and the problem of
FTC design for polytopic LPV delayed descriptor systems
is formulated in Section 3. Finally and before concluding,
simulation results are provided to demonstrate the design
effectiveness in Section 4.

2. Problem formulation and preliminaries

Let us introduce a time delay LPV descriptor system,
affected by additive actuator faults and unknown inputs,
whose state space representation is given as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Eẋ(t) = A(θ(t))x(t) +Ad(θ(t))x(t − τd)

+B(θ(t))u(t) + F (θ(t))f(t) +Rd(t),

y(t) = Cx(t),

x(ξ) = φ(ξ),

(1)

where φ(ξ) is the initial state ∀ ξ ∈ [−τd, 0], x(t) ∈
R

n is the state vector, u(t) ∈ R
p (p ≤ n) is the input

vector, y(t) ∈ R
m is the output vector, d(t) ∈ R

q is the
disturbance of finite energy, f(t) ∈ R

k is the actuator
fault vector and θ(t) is a varying parameter vector. The
time delay τd is a time-varying differentiable function that
satisfies

0 ≤ τd ≤ τ, 0 ≤ τ̇d ≤ β < 1, (2)

E is a singular matrix with constant parameters satisfying
rank(E) = r < n. It is assumed that all parameters
θi(t), i = 1, . . . , l are bounded, measurable as in the work
of Rodrigues et al. (2013), and their values remain in the
domain of an hypercube such that (Fen, 1995)

θ(t) ∈ Γ = {θi | θi ≤ θi(t) ≤ θi}, ∀t ≥ 0, (3)

where θi and θi represent respectively the minimum
and maximum values of θi(t). These matrices
A(θ(t)), Ad(θ(t)), B(θ(t)), F (θ(t)) and R of the LPV
descriptor system (1) are with an affine parameter
dependence of θ(t).

The LPV descriptor system (1) with bounded
parameters can be represented by a polytopic
form where the vertices Si of the polytope

(Rodrigues et al., 2015) are defined such that
Si =

[
Ai Adi Bi Fi R C

]
, ∀ i ∈ [1, . . . , h]

where h = 2l. The polytopic coordinates are denoted by
ρ(θ(t)) and vary within the convex set Ω:

Ω =
{
ρ(θ(t)) ∈ R

h, ρi(θ(t)) ≥ 0

and∀i = 1, . . . , h,

h∑

i=1

ρi(θ(t)) = 1
}
. (4)

Consequently, the system (1) can be rewritten through a
polytopic LPV descriptor representation:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Eẋ(t) =
h∑

i=1

ρi(θ(t)) [Aix(t) +Biu(t)

+Adix(t− τd) + Fif(t) +Rd(t)] ,

y(t) = Cx(t),

(5)

where Ai ∈ R
n×n, Adi ∈ R

n×n, Bi ∈ R
n×p, Fi ∈

R
n×p, R ∈ R

n×q and C ∈ R
m×n are time invariant

matrices defined for the i-th vertex of the polytope.
The concern of this paper is to seek a control law to

ensure the closed-loop stability of the system (5) as well
as actuator fault estimation. For this purpose, state and
fault estimates will be used to minimize fault influence on
system stability.

3. Design and analysis of active fault
tolerant control for a delayed LPV
descriptor system

In this section, a polytopic sliding mode observer for
a delayed LPV descriptor system will be designed.
The convergence of the unknown input observer will
be analyzed. For instance, the following structural
assumptions are required for the design of the observer:

Assumption 1. (Yeu et al., 2005) We assume that

rank(CFi) = rank(Fi) = p

and p+ q ≤ m, ∀i = 1, . . . , h.

Assumption 2. (Dai, 1989) The matrix triple (E,Ai, C)
is R-observable, for all i = 1, . . . , h, i.e.,

rank

[
sE −Ai

C

]

= n, ∀s ∈ C, (6)

where C denotes the complex plane.

Assumption 3. (Dai, 1989) The matrix triple (E,Ai, C)
is impulse-observable, for all i = 1, . . . , h, i.e.,

rank

⎡

⎣
E Ai

0 E
0 C

⎤

⎦ = n+ rank(E). (7)

Assumption 4. (Rodrigues et al., 2015) The fault f(t)
satisfies ‖f(t)‖ ≤ α1, where α1 is a non-negative real
number.
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3.1. LPV sliding mode observer design. Consider the
following polytopic sliding mode observer (PSMO) with
time delay:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ż(t) =
h∑

i=1

ρi(θ(t)) [Niz(t) +Ndiz(t− τd)

+Giu(t) + Liy(t) + Ldiy(t− τd) + Υϑ(t)] ,

x̂(t) = z(t) + T2y(t).

(8)

with the initial condition z(ξ) = φ(ξ), ∀ ξ ∈
[−τd, 0], where z(t) ∈ R

n is the observer state
vector, x̂(t) ∈ R

n is the estimated state vector and
ϑ(t) represents a discontinuous switched component to
induce a sliding motion (Edwards et al., 2000). The
gain matrix Υ ∈ R

n×m is the feedforward injection
map. Ni, Ndi, Gi, Li, Ldi and T2 are unknown matrices
of appropriate dimensions to be determined. The
feedforward compensation signal ϑ(t) is a discontinuous
function such that (Yeu et al., 2005)

ϑ(t) = −ψ ey(t)

‖ey(t)‖ , ey(t) �= 0, (9)

where ψ is a positive real number and ey(t) is the
output estimation error. The term ϑ(t)) is designed to
be discontinuous with respect to the sliding surface S =
{ey : Cex = 0} to force the trajectories of ey(t) onto S
in finite time.

Let us define the following state estimation error
ex(t) from (5) and (8):

ex(t) = x(t) − x̂(t) = (In − T2C)x(t) − z(t). (10)

Moreover, for

rank

[
E
C

]

= n

there exist nonsingular matrices T1 ∈ R
n×n and T2 ∈

R
n×m such that (Hamdi et al., 2019)

T1E + T2C = In. (11)

Consequently, the error dynamics are given by

ėx(t) = T1Eẋ(t)− ż(t). (12)

Then, the above error equation (12) is differentiable for
t > 0, and the time-derivative satisfies the following
differential-delay equation:

ėx(t) =

h∑

i=1

ρi(θ(t))
[
Niex(t) +Ndiex(t− τd)

+ (T1Ai − LiC −NiT1E)x(t) + T1Rd(t)

+ (T1Adi − LdiC −NdiT1E)x(t − τd)

+ (T1Bi −Gi)u(t) + T1Fif(t)−Υϑ(t)
]

(13)

if the following conditions are satisfied ∀ i = 1, . . . , h:

T1Ai − LiC −NiT1E = 0, (14)

T1Adi − LdiC −NdiT1E = 0, (15)

T1Bi −Gi = 0, (16)

T1R = 0. (17)

The substitution of (11) into (14) and (15) yields

Ni = T1Ai +KiC, (18)

Ndi = T1Adi +KdiC, (19)

where

Ki = NiT2 − Li, (20)

Kdi = NdiT2 − Ldi. (21)

Then, estimation error dynamics can be minimized as

ėx(t) =

h∑

i=1

ρi(θ(t))[Niex(t) +Ndiex(t− τd)

+ T1Fif(t)−Υϑ(t)]. (22)

Thereby, the dynamics of the output reconstruction error
ey(t) are

ėy(t) =

h∑

i=1

ρi(θ(t))[CNiey(t) + CT1Fif(t)

+ CNdiey(t− τd)− CΥϑ(t)].

(23)

Up to this level, to design gain matrices T1 and T2
such that the constraints (11) and (17) are simultaneously
satisfied, an augmented matrix equation composed of
these tow constraints is as follows:

[
T1 T2

]
[
E R
C 0

]

=
[
In 0

]
. (24)

A solution
[
T1 T2

]
exists if (Rodrigues et al., 2015)

rank

[
E R
C 0

]

= n+ rank(R) (25)

Then, a particular solution of (24) using the generalized
inverse matrix denoted by (·)+ is given by

[
T1 T2

]
=

[
In 0

]
[
E R
C 0

]+

. (26)

Therefore, the equation of ideal sliding mode may be
obtained from conditions such as ey(t) = 0, ey(t− τd) =
0 and ėy(t) = 0, ėy(t − τd) = 0. In (23), ϑ(t) acts as an
input signal. Therefore, the virtual equivalent feedforward
signal (Yeu et al., 2005) may be described for eachCΥ �=
0 as

ϑ(t) =
h∑

i=1

ρi(θ(t))(CΥ)−1[CT1Fif(t)]. (27)
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Consider the feedforward compensation signal (9),
where ψ is a positive real number with

ψ ≥ α1

CΥ
‖CT1‖ ‖

h∑

i=1

ρi(θ(t))Fi‖. (28)

Up to this level, it is worth determining the matrix Υ and
the signal ϑ(t) such that the stability of the LPV sliding
mode observer with the time delay (8) is preserved. To
study stability, Υ and ϑ(t) can be interpreted as the control
input distribution and the input of the reconstruction error
system, respectively.

3.1.1. Stability analysis.

Theorem 1. Given scalars τ > 0, σ γ and 0 ≤ β ≤
1, the exponential stability of the estimation error system
(22) for any time-varying delay τd such that 0 ≤ τd ≤
τ, 0 ≤ τ̇d ≤ β < 1 is guaranteed in the mean square
sense, if there exist symmetric positive definite matrices
Q,X and matrices Wi = QKi, Wdi = QKdi such that,
∀ i ∈ [1, . . . , h], the following LMI holds:

⎡

⎢
⎢
⎣

Δi ∗ ∗ ∗
(T1Fi)

T
Q − 1

β Ip ∗ ∗
NT

diQ 0 Xτd ∗
−ΥTQ 0 0 −Im

⎤

⎥
⎥
⎦ < σI, (29)

where

Δi = (T1Ai)
TQ+Q(T1Ai) + (WiC)

T

+ (WiC) + γ2In,

NT
diQ = (T1Adi)

TQ+ CTWT
di.

Proof. Let V (ex(t)) be a Lyapunov−Krasovskii
functional of the following form:

V (ex(t)) = eTx (t)Qex(t) +
∫ t

t−τd
eTx (s)Xex(s) ds,

(30)
where Q > 0 and X > 0. By differentiating V (ex(t))
along the trajectory of Eqn. (22), we obtain

V̇ (ex(t), ϑ(t))X

=

h∑

i=1

ρi(θ(t)){eTx (t)[eTx (t− τd)N
T
diQex(t)

+NT
i Q+QNi +X ]ex(t)

− (1− τ̇d)e
T
x (t− τd)Xex(t− τd)

+ eTx (t)QNdiex(t− τd)

+ 2eTx (t)QT1Fif(t)− 2eTx (t)QΥϑ(t)}.

(31)

Using the fact that τ̇d ≤ β < 1 and writing Xτd =
(1− β)X , we obtain

V̇ (e(t)) ≤
h∑

i=1

ρi(θ(t)){eTx (t− τd)N
T
diQex(t)

+ eTx (t)[+N
T
i Q+QNi +X ]ex(t)

+ eTx (t)QNdiex(t− τd)

− eTx (t− τd)Xτdex(t− τd)

+ 2eTx (t)QT1Fif(t)− 2eTx (t)QΥϑ(t)}.
(32)

If ‖f(t)‖ ≤ α1, then

V̇ (e(t))

≤
h∑

i=1

ρi(θ(t)){eTx (t− τd)N
T
diQex(t)

+ eTx (t)[N
T
i Q+QNi +X ]ex(t)

+ eTx (t)QNdiex(t− τd) + 2α1

∥
∥eTx (t)QT1Fi

∥
∥

− eTx (t− τd)Xτdex(t− τd)− 2eTx (t)QΥϑ(t)}.

(33)

For any positive scalar σ, the following inequality
could be written:

2α1

∥
∥eT (t)Q(T 1Fi)

∥
∥

≤ σ−1α2
1

∥
∥eT (t)Q(T 1Fi)

∥
∥2 + σ.

It follows that

V̇ (e(t)) ≤
h∑

i=1

ρi(θ(t)){eTx (t− τd)N
T
diQex(t)

+ eTx (t)[N
T
i Q+QNi +X ]ex(t)

− ϑT (t)ΥTQex(t)

+ eTx (t)QNdiex(t− τd)

+ σ − eTx (t)QΥϑ(t)

− eTx (t− τd)Xτdex(t− τd)

+ σ−1α2
1

∥
∥eTx (t)QT1Fi

∥
∥2}.

(34)

By taking β = σ−1α2
1, we can obtain

V̇ (e(t)) ≤
h∑

i=1

ρi(θ(t)){eTx (t− τd)N
T
diQex(t)

+ eTx (t)[N
T
i Q+QNi +X ]ex(t)

− eTx (t)QΥϑ(t)

+ eTx (t)QNdiex(t− τd)

− eTx (t− τd)Xτdex(t− τd)

− ϑT (t)ΥTQex(t) + σ

+ βeTx (t)QT1Fi(T1Fi)
T
Qex(t)}.

(35)
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For ||ϑ(t)|| ≤ γ ||ex(t)||, the state estimation error
converges asymptotically to zero and the gain from ϑ(t)
to ex(t) is bounded by γ if

V̇ (ex(t))− ϑT (t)ϑ(t) + γ2eTx (t)ex(t) < 0.

Then

V̇ (e(t))

≤
h∑

i=1

ρi(θ(t)){eTx (t− τd)N
T
diQex(t)

+ eTx (t)[N
T
i Q+QNi +X ]ex(t)− ϑT (t)ϑ(t)

+ eTx (t)QNdiex(t− τd)− ϑT (t)ΥTQex(t)

− eTx (t− τd)Xτdex(t− τd) + σ − eTx (t)QΥϑ(t)

+ βeTx (t)QT1Fi(T1Fi)
T
Qex(t)

+ γ2eTx (t)ex(t)} < 0.

(36)

The previous inequality can be written as ∀ i = 1, . . . , h:

V̇ (ex(t)) <

h∑

i=1

ρi(θ(t))ē
T (t)Ξiē(t) + σ} < 0, (37)

with

ē(t) =

⎡

⎣
ex(t)

e(t− τd)
ϑ(t)

⎤

⎦ ,

Ξi =

⎡

⎣
Πi ∗ ∗
NT

diQ Xτd 0
−ΥTQ 0 −Im

⎤

⎦ ,

where

Πi = NT
i Q+Q(Ni) +X

+ βQ(T1Fi)(T1Fi)
TQ+ γ2In.

Then, for
∑h

i=1 ρi(θ(t)) = 1 and ρi(θ(t)) ≥ 0,
V̇ (ex(t)) < 0 if ∀ i ∈ [1, . . . , h]

Ξi < −σI. (38)

To obtain an equivalent constraint LMI, we assume Wi =
QKi and Wdi = QKdi. Based on (11), (14), (15) and by
using the Schur complement, the inequality (38) becomes

⎡

⎢
⎢
⎣

Δi ∗ ∗ ∗
(T1Fi)

T
Q − 1

β Ip ∗ ∗
NT

diQ 0 Xτd ∗
−ΥTQ 0 0 −Im

⎤

⎥
⎥
⎦ < −σI, (39)

where

Δi = (T1Ai)
TQ+Q(T1Ai) + (WiC)

T

+ (WiC) + γ2In

NT
diQ = (T1Adi)

TQ+ CTWT
di,

which means that ex(t) and e(t − τd) converge to zeros
according to the Lyapunov–Krasovskii stability theory in
the presence of a fault and signal ϑ(t). By choosing Υ =
Q−1CT (Yeu et al., 2005), the inequality (39) being linear
in Q and Wi, it can be solved via a numerical approach
within the LMI framework. �

3.1.2. Actuator fault reconstruction. Estimating
actuator faults is based on the equivalent output injection
concept. Then, for the sliding motion, ey(t) = 0 and
ėy(t) = 0 hold and under the stability condition of the
error dynamics, Eqn. (23) can be rewritten as

0 =

h∑

i=1

ρi(θ(t))
[
CT1Fif(t)− CΥϑ(t)

]
, (40)

which is equivalent to

h∑

i=1

ρi(θ(t))
[
CT1Fif(t)

]
=

h∑

i=1

ρi(θ(t))
[
CΥϑ(t)

]
.

(41)
An alternative approach (Edwards et al., 2000) is to
replace the discontinuous component ϑ(t) in (9) by the
continuous approximation

ϑδ(t) = −ψ ey(t)

‖ey(t)‖+ δ
, (42)

where δ is a small positive scalar chosen to remove
chattering in the sliding motion. By substituting (28) in
(42) we obtain

ϑδ(t) ≈ −
h∑

i=1

ρi(θ(t))α1
‖T1‖ ‖Fi‖

‖Υ‖
ey(t)

‖ey(t)‖+ δ
. (43)

Since rank(CT1Fi) = p, it follows from (41) that
actuator faults can be reconstructed by

f̂(t) ≈
h∑

i=1

ρi(θ(t))(CT1Fi)
+CΥϑδ(t). (44)

3.2. Design of fault tolerant controllers based
on the PSMO with time delay. In this part, fault
tolerant controllers (FTCs) will be synthesized by using
reconstructed fault information provided by the PSMO
with time delay such that the closed-loop polytopic
descriptor time delay system (5) is stable. Foremost, the
following assumption is made.

Assumption 5. We assume that

rank(BiFi) = rank(Bi), ∀i = 1, . . . , h.

Assumption 5 provides controllable conditions for the
described control systems, and Assumption 4 guarantees
the actuator fault f(t) to be constrained in a given
compensation range.
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Lemma 1. (Tabatabaeipour and Bak, 2013) Under As-
sumption 5, there exist a matrix B‡

i ∈ R
p×n such that

(I −BiB
‡
i )Fi = 0. (45)

Afterwards, in order to compensate for the fault
effect on the delayed polytopic descriptor system (1) such
that the faulty system is as close as possible to the pre-fault
system, a state-feedback based FTC law is constructed as
follows:

u(t) = un(t) + uf (t), (46)

where un(t) is the state-feedback controller in a fault-free
condition, and uf (t) is an additional controller, which is
used to compensate the effect of the fault. Moreover,

un(t) = −
h∑

i=1

ρi(θ(t))Γix̂(t), (47)

uf (t) = −
h∑

i=1

ρi(θ(t))B
‡
i Fif̂(t), (48)

whereΓi ∈ R
p×n, ∀i = 1, . . . , h are the feedback gains

matrices to be found.

Then, substituting (46) into (5), we obtain

Eẋ(t)

=
h∑

i=1

ρi(θ(t)) [Aix(t) +Adix(t− τd) + Fif(t)

−BiΓix̂(t)−BiB
‡
iFif̂(t) +Rd(t)

]

=

h∑

i=1

ρi(θ(t)) [Aix(t) +Adix(t− τd)−BiΓix̂(t)

−Fif̂(t) + Fif(t) +Rd(t)
]

=

h∑

i=1

ρi(θ(t)) [(Ai −BiΓi)x(t) +Adix(t− τd)

+BiΓiex(t)) + Fief(t) +Rd(t)]

=
h∑

i=1

ρi(θ(t)) [(Ai −BiΓi)x(t) +Adix(t− τd)

+�(t)] ,

(49)

where �(t) = BiΓiex(t)) + Fief (t) +Rd(t) and
ef(t) = f(t) − f̂(t). Here �(t) can be considered
an external disturbance, and the boundedness of ex(t)
and ef (t) can be guaranteed based on Theorem 1 and
Assumption 4, respectively. Accordingly, to design
feedback gain matrices Γi ∈ R

p×n, ∀i = 1, . . . , h such
that the closed-loop LPV delayed descriptor system (49)
is stable, the following theorem is provided.

Theorem 2. Suppose that Theorem 1 holds. The closed-
loop LPV delayed descriptor system (49) is stable if there
exist positive definite symmetric matrices X1, P1 and Q2

such that ∀ i ∈ [1, . . . , h], the following LMI holds:

XT
1 E

T = EX1 ≥ 0, (50)
[

Ψi X1Adi

AT
diX1 −X1τd

]

< 0, (51)

where

Ψi = X1Ai
T +AiX1 − UT

i Bi
T −BiUi +Q2 + P1

and
Ui = ΓiX1

Proof. Let V1(x(t)) be a Lyapunov–Krasovskii
functional of the following form:

V1(x(t)) = xT (t)ETX1ex(t)

+

∫ t

t−τd

xT (s)Q2x(s) ds, (52)

where Q2 > 0 and X1 > 0. By differentiating V1(x(t))
along the last equation of (49), we obtain

V̇1(x(t))

=
h∑

i=1

ρi(θ(t)){xT (t)[X1(Ai −BiΓi)
T

+ (Ai −BiΓi)X1 +Q2]x(t)

+ xT (t− τd)A
T
diX1x(t)

+ xT (t)X1Adix(t− τd) + 2xT (t)X1�(t)

− (1− τ̇d)x
T (t− τd)Q2x(t− τd)}.

(53)

According to the proof of Theorem 1, by using the fact
that τ̇d ≤ β < 1 and by noting X1τd = (1 − β)X1, (53)
becomes

V̇1(x(t))

≤
h∑

i=1

ρi(θ(t)){xT (t)[X1(Ai −BiΓi)
T

+ (Ai −BiΓi)X1 +Q2]x(t)

+ xT (t− τd)A
T
diX1x(t)

+ xT (t)X1Adix(t− τd)

− xT (t− τd)X1τdx(t− τd)

+ 2xT (t)X1�(t)}.

(54)

For a symmetric positive definite matrix P1, we have
(Zhang et al., 2009)

2xT (t)X1�(t) ≤ xT (t)P1x(t) + δ1, (55)
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where δ1 = ‖�(t)‖2λmax(X
T
1 P

−1
1 X1). The yields

V̇1(x(t))

<

h∑

i=1

ρi(θ(t)){xT (t)[X1(Ai −BiΓi)
T

+ (Ai − BiΓi)X1 +Q2]x(t)

+ xT (t− τd)A
T
diX1x(t)

+ xT (t)X1Adix(t− τd)

− xT (t− τd)X1τdx(t− τd)

+ xT (t)P1x(t) + δ1}

(56)

which leads to the following expression:

V̇1(x(t)) <
h∑

i=1

ρi(θ(t))ζ
T (t)Λiζ(t) + δ1}, (57)

with

Λi =

[
Ψi X1Adi

AT
diX1 −X1τd

]

,

ζ(t) =

[
x(t)

x(t− τd

]

,

where

Ψi = X1Ai
T +AiX1 − UT

i Bi
T −BiUi +Q2 + P1

with Ui = ΓiX1.
If Λi < 0, then there exists a scalar ε such that

V̇1(x(t)) < −ε‖ζ(t)‖2 + δ1. It follows that V̇1(x(t)) < 0

for ε‖ζ(t)‖2 > δ1, which means that ζ(t) converges

to a small set ξ =
{
ζ(t)/‖ζ‖2 ≤ δ1/ε

}
according to

the Lyapunov–Krasovskii stability theory. Moreover,
controller gain matrices can be computed as Γi =
UiX

−1
1 , ∀ i ∈ [1, . . . , h] �

4. Simulation example

Consider the time delay system characterized by the
following LPV descriptor model:
⎧
⎪⎨

⎪⎩

Eẋ(t) = A(θ(t))x(t) +Ad(θ(t))x(t − τd)

+B(θ(t))u(t) + F (θ(t))f(t) +Rd(t),

y(t) = Cx(t),
(58)

such that

E =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎤

⎥
⎥
⎦ ,

C =

⎡

⎣
1 0 0 0
0 0 1 0
0 1 0 1

⎤

⎦ ,

A(θ(t)) =

⎡

⎢
⎢
⎣

0 1 0 0
−2 −3 0 −θ1(t) + 1
1 1 −2 + θ2(t) 0
−1 −1 1 −5

⎤

⎥
⎥
⎦ ,

Ad(θ(t)) =

⎡

⎢
⎢
⎣

−1 0 2 0
0 −1 0 0
0 0 −3− θ1(t) 0
0 0 0 −θ2(t)− 2

⎤

⎥
⎥
⎦ ,

F (θ(t)) = B(θ(t)) =

⎡

⎢
⎢
⎣

1
0.5 + θ1(t)

0
0

⎤

⎥
⎥
⎦ ,

R =

⎡

⎢
⎢
⎣

0
1.2
0.8
0

⎤

⎥
⎥
⎦ ,

where the parameter varying vector is given by θ(t) =
[
θ1(t) θ2(t)

]T
. These time-varying parameters vary

according to

θ1(t) ∈
[ −0.7, 0.5

]
, θ2(t) ∈

[ −1.2, 1
]
.

Since there are two parameters, four subsystems are
defined, each of them at the vertices of the parameter
space. Then, the LPV descriptor model with time delay
τd, a disturbance d(t) and an additive actuator fault signal
f(t) is defined as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Eẋ(t) =
4∑

i=1

ρi(θ(t)) [Aix(t) +Adix(t− τd)

+Biu(t) + Fif(t) +Rd(t)] ,

y(t) = Cx(t).
(59)

The weighting functions ρi(θ(t)) are defined as
combinations of θj , ∀ j = 1, 2 (Rodrigues et al., 2015)
as follows:

ρ1(θ(t)) =
θ1(t)− θ1
θ̄1 − θ1

θ2(t)− θ2
θ̄2 − θ2

,

ρ2(θ(t)) =
θ1(t)− θ1
θ̄1 − θ1

θ̄2 − θ2(t)

θ̄2 − θ2
,

ρ3(θ(t)) =
θ̄1 − θ1(t)

θ̄1 − θ1

θ2(t)− θ2
θ̄2 − θ2

,

ρ4(θ(t)) =
θ̄1 − θ1(t)

θ̄1 − θ1

θ̄2 − θ2(t)

θ̄2 − θ2
.

The input data u(t) are depicted as shown in Fig. 1, the
input d(t) is a Gaussian distributed random signal with
zero mean and unit variance and the additive actuator fault
signals affecting the polytopic LPV descriptor system
with time delay are defined by

f(t) =

⎧
⎨

⎩

−0.045t+ 1.125, ∀t ∈ [10, 20s] ,

0.9(1 + sin(0.1t)), ∀t ∈ [30, 45s] .
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Fig. 1. Input u(t).

4.1. Delayed PSMO design. The proposed delayed
PSMO (8) is designed by solving the LMIs from
Theorem 1 and the controller gain matrices Γi are
computed by solving the LMIs from Theorem 2. The
parameter values are chosen as δ = 0.1, β = 0.5, σ = 0.1.
For Υ = Q−1C, the positive definite symmetric matrix Q
and gain matrices of the proposed observer are calculated
by using the MATLAB LMI toolbox. The simulation
result for the actuator fault estimation of the delayed LPV
descriptor is depicted as shown in Fig. 2.

Figure 2 highlights the ability of the sliding mode
polytopic observer with time delay to provide good
estimation of actuator faults despite the presence of
disturbance. It can be noticed that the incipient fault that
occurred in the time interval [10 s, 20 s] can be detected
and isolated directly based on its estimated values as they
start to decrease in the system. Besides, then varying
actuator fault can be precisely reconstructed.

4.2. Fault tolerant controller design. By solving
the inequalities (50) and (51) in Theorem 2 using the
MATLAB LMI toolbox, the following feedback gain
matrices Γi, ∀i = 1, . . . , h are obtained:

Γ1 = Γ2 =
[
45.23 −24.63 −14.66 −14.81

]
,

Γ3 = Γ4 =
[
42.34 −21.95 −13.73 −14.29

]
.

Based on the real-time information and the
reconstructed time-varying actuator fault, system output
responses with the feedback FTC are shown in Figs. 3–5.

Figures 3–5 illustrate a comparison of the responses
of the LPV delayed descriptor model without an actuator
fault, the responses of the faulty system without FTC, and
finally its responses in faulty case with a state-feedback
based FTC law. Undoubtedly, the proposed strategy
is robust concerning the actuator additive fault f(t).
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Fig. 2. Actuator fault f(t) and its estimate f̂(t).

It can be observed that the feedback FTC scheme
provides good results in the presence of time delays and
external disturbances. It achieves also more accurate
reconstruction of time-varying actuator faults.

Furthermore, simulation results prove that the
proposed PSMO based fault reconstruction and FTC
schemes are effective for polytopic descriptor systems
subject to time delay and external disturbances. Another
benefit is the simplicity of gain matrices calculation based
on Theorems 1 and 2, which makes it possible for the
PSMO when it comes to the practical implementation.
Finally and despite the presence of time delay and actuator
faults which make system unstable, active FTC for LPV
descriptor systems with time delay based on the PSMO
proposed in this paper, allows us controlling the system
safely. This presented method allows to both estimate the
fault and to synthesize an FTC control law for time-delay
LPV descriptor systems, which has not been done before
to the best of our knowledge.

5. Conclusion

This paper studied the problem of fault estimation and
fault tolerant control for LPV descriptor systems with time
delay described by a polytopic model. The intended active
fault tolerant control requires simultaneous estimations
of the state and fault, obtained by a designed polytopic
sliding mode observer. This observer can simultaneously
reconstruct time varying actuator faults and state variables
as accurately as possible. The stability analysis made
with the Lyapunov–Krasovskii theory was performed in
the case of a delayed polytopic sliding mode observer
and feedback fault tolerant control law design. Sufficient
stability conditions were given in terms of LMIs. Finally,
an application to an LPV descriptor system subject to time
delays and external disturbances with an additive actuator
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fault was presented to illustrate the effectiveness of the
proposed approaches.
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