AN INTERVAL KALMAN FILTER ENHANCED BY LOWERING THE COVARIANCE MATRIX UPPER BOUND

Tuan Anh TRAN ${ }^{a}$, Carine JAUBERTHIE ${ }^{a, *}$, Louise TRAVE-MASSUYÉS ${ }^{a}$, Quoc Hung LU ${ }^{a}$

${ }^{a}$ LAAS-CNRS
University of Toulouse
7 avenue du Colonel Roche, Toulouse, 31400, France
e-mail: \{tatran, cjaubert, louise, qhlu\}@laas.fr

Abstract

This paper proposes a variance upper bound based interval Kalman filter that enhances the interval Kalman filter based on the same principle proposed by Tran et al. (2017) for uncertain discrete time linear models. The systems under consideration are subject to bounded parameter uncertainties not only in the state and observation matrices, but also in the covariance matrices of the Gaussian noises. By using the spectral decomposition of a symmetric matrix and by optimizing the gain matrix of the proposed filter, we lower the minimal upper bound on the state estimation error covariance for all admissible uncertainties. This paper contributes with an improved algorithm that provides a less conservative error covariance upper bound than the approach proposed by Tran et al. (2017). The state estimates are determined using interval analysis in order to enclose the set of all possible solutions of the classical Kalman filter consistent with the uncertainties.

Keywords: uncertain linear systems, Kalman filter, interval analysis, estimation, covariance matrix.

1. Introduction

Set-membership (SM) methods have expanded considerably in recent years and they have reached a maturity allowing consideration of many applications (Jaulin et al., 2001a; 2001b; Ribot et al., 2007; Tran, 2017; Cayero et al., 2019). The past years have seen considerable progress in the way of formulating problems in this context as well as optimized handling various types of sets. Interval analysis, introduced by Moore (1966), operates on box-shaped sets and is particularly relevant for dealing with nonlinear systems. It has been used for nonlinear estimation, and several algorithms have been proposed (for more details, see Jaulin et al., 2001b; Ribot et al., 2007; Kieffer et al., 1999). Other estimation approaches dedicated to linear models include ellipsoid shaped methods (Lesecq et al., 2003), or parallelotope and zonotope based methods (Ingimundarson et al., 2009).

In contrast to stochastic estimation approaches (see, e.g., Chabir et al., 2018), SM estimation advantageously provides guaranteed results meaning that the obtained sets are guaranteed to include all the solutions consistent

[^0]with the bounded uncertainties. However, SM estimation does not bring any information about the probability distribution inside the sets and it is often criticized for the overestimation of the results.

This paper is motivated by the idea that stochastic and SM approaches have specific advantages and that they complement each other more than they compete.

In the stochastic estimation framework, the experimental conditions about noise and disturbances are usually properly modeled through appropriate probability distributions. However, other sources of uncertainty are not well-suited to stochastic modeling and are better represented with bounded uncertainties. This is the case with parameter uncertainties that generally arise from design tolerances and from ageing. Therefore, combining stochastic and bounded uncertainties opens new perspectives for modeling complex systems more accurately.

Motivated by the above facts, we consider the filtering problem for discrete time linear models with bounded parameter uncertainties and Gaussian measurement noise. In the work of Chen et al. (1997), the classical Kalman filter (Kalman, 1960) has been extended
to this type of uncertain systems. The authors propose to bypass a singularity problem by using the upper bound on the interval matrix to be inverted. This method hence leads to a solution that is not guaranteed, i.e., the solution set may not include all the classical Kalman filter solutions consistent with the bounded uncertainties represented in the system. In the work of Xiong et al. (2013), an improved interval Kalman filter (iIKF) has been proposed that solves the interval matrix inversion problem with the set inversion algorithm called SIVIA (set inversion via interval analysis) and constraint satisfaction problems (CSPs) (Jaulin et al., 2001b). Nevertheless, this algorithm demands high computational time if there exist large uncertainties affecting the considered system (Tran et al., 2016). The minimum upper bound of variance interval Kalman filter (UBIKF) has been presented by Tran et al. (2017) with two main goals: minimizing the upper bound on the estimation error covariance and enclosing the set of possible solutions of the filtering problem for interval linear systems. Since the gain matrix handled by the UBIKF is a point matrix, this approach encloses all the estimates consistent with the parameter uncertainties in a much less conservative manner than the iIKF.

Our contribution consists in proposing an improved minimum upper bound for the variance interval Kalman filter (iUBIKF) using the spectral decomposition of a symmetric matrix that provides a less conservative error covariance upper bound than the UBIKF. The iUBIKF also provides interval estimates that are guaranteed to enclose all the optimal estimates consistent with the parameter uncertainties. In this respect, the iUBIKF differs from the joint zonotopic and Gaussian Kalman filter proposed by Combastel (2015) for discrete linear time varying (LTV) systems simultaneously subject to bounded disturbances and Gaussian noises. This latter indeed uses a criterion combining the minimization of the estimate variance and the minimization of the size of the zonotope bounding the support of the estimate bounded imprecision.

This paper is organized as follows. The problem is formulated in Section 2. Sections 3 and 4 review the main notions of interval analysis and matrix inequalities that are necessary for the development of the new algorithm. Then the new interval Kalman filter is derived in Section 5, followed by the application of the two filters, the UBIKF and the iUBIKF, to an academic numerical example and to a case study of a two-wheeled vehicle in Section 6. In that section a comparative analysis is made. Section 7 concludes the paper.

2. Problem formulation

We consider linear discrete-time dynamic systems represented by a state and an observation equation subject
to noises similar to the standard Kalman model (Kalman, 1960):

$$
\left\{\begin{array}{l}
\mathbf{x}_{k+1}=A_{k} \mathbf{x}_{k}+B_{k} \mathbf{u}_{k}+\mathbf{w}_{k} \tag{1}\\
\mathbf{y}_{k}=C_{k} \mathbf{x}_{k}+\mathbf{v}_{k}, \quad k \in \mathbb{N}
\end{array}\right.
$$

where $\mathbf{x}_{k} \in \mathbb{R}^{n_{x}}, \mathbf{y}_{k} \in \mathbb{R}^{n_{y}}$ and $\mathbf{u}_{k} \in \mathbb{R}^{n_{u}}$ denote state, measurement and input vectors, respectively. The matrices A_{k}, B_{k}, C_{k} are time-varying parameters, while $\left\{\mathbf{w}_{k}\right\}$ and $\left\{\mathbf{v}_{k}\right\}$ are independent centered Gaussian white noise sequences, with positive definite covariance matrices Q_{k} and R_{k} :

$$
\begin{aligned}
E\left\{\mathbf{w}_{k}, \mathbf{w}_{l}\right\} & =Q_{k} \delta_{k l}, \\
E\left\{\mathbf{v}_{k}, \mathbf{v}_{l}\right\} & =R_{k} \delta_{k l}, \\
E\left\{\mathbf{w}_{k}, \mathbf{v}_{l}\right\} & =E\left\{\mathbf{w}_{k}, \mathbf{x}_{0}\right\} \\
& =E\left\{\mathbf{v}_{k}, \mathbf{x}_{0}\right\}=0,
\end{aligned}
$$

$\forall(k, l) \in \mathbb{N}^{2}$, where $\delta_{k l}$ is the Kronecker symbol.
Based on the motivations reported in Introduction, we propose to combine two modeling paradigms: measurement and system noises are modeled in a stochastic framework but parameters are assumed uncertain and this uncertainty is bounded. This is achieved by assuming that the matrices $A_{k}, B_{k}, C_{k}, Q_{k}$ and R_{k} of (1) are interval matrices, as defined in the following section, containing all possible values of each parameter. Since it is impossible to solve directly the Kalman filtering problem due to parameter uncertainties, our goal is to obtain an upper bound \mathcal{P}_{k}^{+}such that

$$
\begin{equation*}
E\left[\left(\hat{\mathbf{x}}_{k}^{+}-\mathbf{x}_{k}\right)\left(\hat{\mathbf{x}}_{k}^{+}-\mathbf{x}_{k}\right)^{T}\right] \preceq \mathcal{P}_{k}^{+} \tag{2}
\end{equation*}
$$

for the set of all models with parameters bounded by the interval matrices. The envelope enclosing the set of state estimates corresponding to the gain K is then computed.

In the next section, the basic concepts of interval analysis are introduced.

3. Interval analysis

Interval analysis operates on intervals instead of real numbers (Moore, 1959; Jaulin et al., 2001b). Obtaining guaranteed results from floating point algorithms was the first motivation. It was then extended to verified numerics (Moore, 1966).

A guaranteed result first means that the result set encloses the exact solution. Second, it also means that the algorithm is able to decide on the existence of a solution in a finite time or a finite number of iterations.
3.1. Main concepts. A real interval $[p]=[\underline{p}, \bar{p}]$ is a closed and connected subset of \mathbb{R}, where p and $\bar{p} \overline{\text { represent }}$ the lower and upper bounds of $[p]$, respectively. The $r a-$ dius of an interval $[p]$ is defined by $\operatorname{rad}([p])=(\bar{p}-\underline{p}) / 2$,
and its midpoint by $\operatorname{mid}([p])=(\bar{p}+p) / 2$. If $w([p])=0$, then $[p]$ is degenerated and reduce \bar{d} to a real number. The set of all real intervals of \mathbb{R} is denoted by \mathbb{R}. Real arithmetic operations have been extended to intervals (Moore, 1966):

$$
\begin{aligned}
& \circ \in\{+,-, *, /\} \\
& \qquad\left[p_{1}\right] \circ\left[p_{2}\right]=\left\{x \circ y \mid x \in\left[p_{1}\right], y \in\left[p_{2}\right]\right\} .
\end{aligned}
$$

The following property is useful to describe a quantity in terms of its nominal value and a bounded uncertainty.

Property 1. (More et al., 2009) Given a real value x belonging to an interval $[x]$, there exists a real value $\alpha \in$ $[-1,1]$ such that $x=\operatorname{mid}([x])+\alpha \operatorname{rad}([x])$.

An interval vector (or box) $[\alpha]$ is a vector with interval components. It may equivalently be seen as a Cartesian product of scalar intervals:

$$
[\alpha]=\left[\alpha_{1}\right] \times\left[\alpha_{2}\right] \times \ldots \times\left[\alpha_{n}\right]
$$

An interval matrix is a matrix with interval components. The set of n-dimensional real interval vectors is denoted by \mathbb{R}^{n} and the set of $n \times m$ real interval matrices is denoted by $\mathbb{R}^{n \times m}$. The midpoint $\operatorname{mid}(\cdot)$ (resp. the radius $\operatorname{rad}(\cdot)$) of an interval vector (resp. an interval matrix) is a vector (resp. a matrix) composed of the midpoints (resp. the radii) of its interval components. Classical operations for interval vectors (resp. interval matrices) are direct extensions of the same operations for real vectors (resp. real matrices) (Moore, 1966). In order to simplify the notation, the midpoint and the radius of a matrix $[M]$ are respectively denoted by M_{m} and M_{r}.

Using Property 1 for matrices, the following result is is obtained.

Proposition 1. (Tran, 2017) Given an $m \times n$ real matrix M belonging to an interval matrix $[M]$, there exist $m n$ real values $\alpha^{i j} \in[-1,1]$ with $i \in\{1, \ldots, m\}$, $j \in\{1, \ldots, n\}$, such tha

$$
\begin{equation*}
M=M_{m}+\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha^{i j} M_{r}^{(i, j)}, \tag{3}
\end{equation*}
$$

where $M_{r}^{(i, j)}$ is an $m \times n$ matrix whose entry (i, j) is the radius of entry (i, j) of $[M]$, and the other elements are zero.

In the case of symmetric matrices, the following representation should be considered.

Proposition 2. (Tran, 2017) Given an $n \times n$ real symmetric matrix M belonging to a symmetric interval matrix

[^1]$[M]$, there exist $n(n+1) / 2$ real values $\alpha^{i j} \in[-1,1]$ such that
\[

$$
\begin{align*}
M= & M_{m}+\operatorname{diag}\left(M_{r}\right) \operatorname{diag}\left(\alpha^{i i}\right) \\
& +\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \alpha^{i j} M_{r}^{((i, j),(j, i))}, \tag{4}
\end{align*}
$$
\]

where $\operatorname{diag}\left(M_{r}\right)$ is a diagonal matrix containing the radii of diagonal elements of $[M], M_{r}^{((i, j),(j, i))}$ is a symmetric matrix whose (i, j) and (j, i) entries are the radii of entries (i, j) and (j, i) of $[M]$, and the other elements are zero. The matrix diag $\left(\alpha^{i i}\right)$ is diagonal and $\alpha^{i j} \in[-1,1]$, for all $1 \leq i \leq j \leq n$.
3.2. Inclusion function. Given a box $[\alpha]$ in \mathbb{R}^{n} and a function f from \mathbb{R}^{n} to \mathbb{R}^{m}, an inclusion function of f aims at getting a box containing the image of $[\alpha]$ by f. The range of f over $[\alpha]$ is given by

$$
f([\alpha])=\{f(x) \mid x \in[\alpha]\} .
$$

Then, the interval function $[f]$ from \mathbb{R}^{n} to $\mathbb{I} \mathbb{R}^{m}$ is an inclusion function for f if

$$
\forall[\alpha] \in \mathbb{R}^{n}, f([\alpha]) \subset[f]([\alpha]) .
$$

An inclusion function of f can be obtained by replacing each occurrence of a real variable by its corresponding interval and by replacing each standard function by its interval evaluation. Such a function is called the natural inclusion function. A function f generally has several inclusion functions, which depend on the syntax of f.

4. Upper bounds of matrices

This section introduces two matrix inequalities used in the proposed interval Kalman filter in order to bound the state estimation error covariance.

Proposition 3. (Tran, 2017) Given two nonnull matrices M, N with the same size and an arbitrary real number $\beta>0$, the following inequality holds:

$$
\begin{equation*}
M N^{T}+N M^{T} \preceq \beta^{-1} M M^{T}+\beta N N^{T} \tag{5}
\end{equation*}
$$

Proposition 4. (Combastel, 2016) Let M be a symmetric matrix and $M=V D V^{T}$ be its spectral decomposition, where V is an orthogonal matrix and D is a diagonal matrix. Let $M^{+}=V|D| V^{T}$, where $|\cdot|$ is the element-by-element absolute value operator. Then $M^{+} \succeq 0$ and $\forall \alpha \in[-1,1], \alpha M \preceq M^{+}$.

The following proposition can be used to determine an upper bound on the expression $M P M^{T}$, where $M \in$ $[M],[M] \in \mathbb{R}^{m \times n}$ and $P \in \mathbb{R}^{n}$ is a positive definite symmetric matrix.

Proposition 5. Given an $m \times n$ real matrix M belonging to an interval matrix $[M]$ and a positive definite matrix symmetric P of order n, there exists a positive definite symmetric matrix S of order m such that $M P M^{T} \preceq S$.

The matrix S can be determined by using Propositions 1 and 4

Proof. By using Proposition 1 for $M \in[M]$ and then expanding $M P M^{T}$, we obtain

$$
\begin{align*}
& M P M^{T} \\
&= M_{m} P M_{m}^{T}+\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\alpha^{i j}\right)^{2} M_{r}^{(i, j)} P\left(M_{r}^{(i, j)}\right)^{T} \\
&+\sum_{i=1}^{m} \sum_{j=1}^{n} \alpha^{i j}\left(\mathbf{M}_{m}^{(i, j)}+\left(\mathbf{M}_{m}^{(i, j)}\right)^{T}\right) \\
&+\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{m} \sum_{\substack{l=1 \\
k \neq i \vee l \neq j}}^{n} \alpha^{i j} \alpha^{k l}\left(\mathbf{M}_{(i, j)}^{(k, l)}\right. \\
&\left.+\left(\mathbf{M}_{(i, j)}^{(k, l)}\right)^{T}\right) \tag{6}
\end{align*}
$$

where

$$
\begin{gathered}
\mathbf{M}_{m}^{(i, j)}=M_{m} P\left(M_{r}^{(i, j)}\right)^{T}, \\
\mathbf{M}_{(i, j)}^{(k, l)}=M_{r}^{(i, j)} P\left(M_{r}^{(k, l)}\right)^{T}
\end{gathered}
$$

and $\alpha^{i j} \in[-1,1]$.
Proposition 4 is then used to determine upper bounds of the two symmetric parts of Eqn. (6), i.e., $S_{m}^{(i, j)}$ for $\mathbf{M}_{m}^{(i, j)}+\left(\mathbf{M}_{m}^{(i, j)}\right)^{T}$ and $S_{(i, j)}^{(k, l)}$ for $\mathbf{M}_{(i, j)}^{(k, l)}+\left(\mathbf{M}_{(i, j)}^{(k, l)}\right)^{T}$. The upper bound S of $M P M^{T}$ can be written as follows:

$$
\begin{align*}
S= & M_{m} P M_{m}^{T}+\sum_{i=1}^{m} \sum_{j=1}^{n} M_{r}^{(i, j)} P\left(M_{r}^{(i, j)}\right)^{T} \\
& +\sum_{i=1}^{m} \sum_{j=1}^{n} S_{m}^{(i, j)}+\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{m} \sum_{\substack{l=1 \\
k \neq i \mathrm{~V} l \neq j}}^{n} S_{(i, j)}^{(k, l)}, \tag{7}
\end{align*}
$$

where S is symmetric and positive definite.
Similarly, a positive definite upper bound of an interval symmetric matrix can be computed.

Proposition 6. Given a symmetric matrix M belonging to an interval symmetric matrix $[M] \in \mathbb{R}^{n}$, there exists a positive definite symmetric matrix M^{+}of order n such that $M \preceq M^{+}$. The matrix M^{+}can be determined using Propositions 2 and 4

Proof. A symmetric matrix $M \in[M]$ can be decomposed using Proposition 2 Proposition4 4 is then applied for each term of the double sum in Eqn. (4) to determine an upper bound M^{+}on M :

$$
\begin{align*}
M^{+}= & M_{m}+\operatorname{diag}\left(M_{r}\right) \\
& +\sum_{i=1}^{n-1} \sum_{j=i+1}^{n}\left(M_{r}^{((i, j),(j, i))}\right)^{+} \tag{8}
\end{align*}
$$

where $\left(M_{r}^{((i, j),(j, i))}\right)^{+}$is the upper bound on $\alpha^{i j} M_{r}^{((i, j),(j, i))}$ given by Proposition[4.

5. From the Kalman filter to the interval Kalman filter

5.1. Kalman filter. Given the system (1), the conventional Kalman filter (KF) provides the minimum variance estimate $\hat{\mathbf{x}}_{k \mid k}$ of \mathbf{x}_{k} and the associated covariance matrix $P_{k \mid k}$.

Kalman equations (Kalman, 1960) are determined using mathematical curve-fitting functions of data points from a least-squares approximation (Welch and Bishop, 2001) or probabilistic methods such as the likelihood function to maximize the conditional probability of the state estimate from incoming measurements (Masreliez and Martin, 1977). We consider the following notation:

- $\hat{\mathbf{x}}_{k+1 \mid k} \in \mathbb{R}^{n}$ is the a priori state estimate vector at time $k+1$ given a state estimate at time k,
- $\hat{\mathbf{x}}_{k \mid k} \in \mathbb{R}^{n}$ is the a posteriori state estimate vector at time k given observations at time k,
- $P_{k+1 \mid k} \in \mathbb{R}^{n \times n}$ is the a priori error covariance matrix,
- $P_{k \mid k} \in \mathbb{R}^{n \times n}$ is the a posteriori error covariance matrix.

Also, $P_{. \mid}$. defines the precision of the state estimate:

$$
\begin{equation*}
P_{l \mid k}=E\left(\left(\hat{\mathbf{x}}_{l \mid k}-\mathbf{x}_{l}\right)\left(\hat{\mathbf{x}}_{l \mid k}-\mathbf{x}_{l}\right)^{T}\right), \tag{9}
\end{equation*}
$$

$l=k$ or $k+1$. We assume that $P_{0 \mid 0}=P_{0} \in \mathbb{R}^{n \times n}$ and $\mathbf{x}_{0 \mid 0}=\mathbf{x}_{0} \in \mathbb{R}^{n}$.

The Kalman filtering algorithm contains two steps for each iteration: a prediction step and a correction step (Kalman, 1960).

If we consider the algorithm as an operator \mathcal{K}, we can write

$$
\begin{aligned}
& \left(\hat{\mathbf{x}}_{k \mid k}, P_{k \mid k}\right) \\
& \quad=\mathcal{K}\left(A_{k}, B_{k}, C_{k}, \mathbf{x}_{0}, P_{0}, \mathbf{u}_{[1 \ldots k-1]}, \mathbf{y}_{[1 \ldots k-1]}\right)
\end{aligned}
$$

In the following, the point time-varying matrices $A_{k}, B_{k}, C_{k}, Q_{k}$ and R_{k} are constrained to belong to the interval matrices $[A],[B],[C],[Q]$, and $[R]$, respectively. In other words, their parameters can vary within some specified bounds.
5.2. Interval Kalman filter. Bounded uncertainties can occur not only through the interval matrices $[A],[B],[C],[D],[Q]$ and $[R]$, but also through $\mathbf{x}_{0 \mid 0}, P_{0 \mid 0}, \mathbf{u}_{k}, \mathbf{y}_{k}$ due to deterministic measurement errors and instrument imprecisions. Since it is impossible to solve directly the Kalman filtering problem due to parameter uncertainties, our goal is to obtain an upper bound $P_{k \mid k}^{+}$on the state estimation error covariance:

$$
\begin{equation*}
E\left[\left(\hat{\mathbf{x}}_{k \mid k}-\mathbf{x}_{k}\right)\left(\hat{\mathbf{x}}_{k \mid k}-\mathbf{x}_{k}\right)^{T}\right] \preceq P_{k \mid k}^{+} . \tag{10}
\end{equation*}
$$

In this section, an interval Kalman filter, called the improved minimum upper bound of variance interval Kalman filter (iUBIKF), is proposed. This algorithm is developed from the interval Kalman filter introduced by Tran et al. (2017) in order to reduce the overestimation of the state estimation error covariance. The iUBIKF can be designed in two steps: prediction and correction.
5.2.1. Prediction step. In the prediction step, the interval state estimate from the previous time step and the transition model are used to predict the state at the current time step. This step is performed similarly as in the original Kalman algorithm (Kalman, 1960), using the natural interval extension, as follows:

$$
\begin{equation*}
\left[\hat{\mathbf{x}}_{k \mid k-1}\right]=[A]\left[\hat{\mathbf{x}}_{k-1 \mid k-1}\right]+[B] \mathbf{u}_{k} . \tag{11}
\end{equation*}
$$

For any $A_{k} \in[A]$ and $Q_{k} \in[Q]$, the a priori covariance matrix $P_{k \mid k-1}$ is computed as

$$
\begin{equation*}
P_{k \mid k-1}=A_{k} P_{k-1 \mid k-1}^{+} A_{k}^{T}+Q_{k} \tag{12}
\end{equation*}
$$

where $P_{k-1 \mid k-1}^{+}$is the upper bound on the a posteriori covariance matrix at time $k-1$. In order to determine an upper bound $P_{k \mid k-1}^{+}$on $P_{k \mid k-1}$, i.e., $P_{k \mid k-1} \preceq$ $P_{k \mid k-1}^{+}$, Proposition 5 and 6 are respectively applied to $A_{k} P_{k-1 \mid k-1}^{+} A_{k}^{T}$ and $Q_{k}, A_{k} \in[A]$ and $Q_{k} \in[Q]:$

$$
\begin{equation*}
P_{k \mid k-1}^{+}=P_{k}^{+}+Q_{k}^{+} \tag{13}
\end{equation*}
$$

where $A_{k} P_{k-1 \mid k-1}^{+} A_{k}^{T} \preceq P_{k}^{+}$and $Q_{k} \preceq Q_{k}^{+}$.
5.2.2. Correction step. The state estimate at time step k is computed by the natural interval extension of (Kalman, 1960)

$$
\begin{equation*}
\left[\hat{\mathbf{x}}_{k \mid k}\right]=\left[\hat{\mathbf{x}}_{k \mid k-1}\right]+K_{k}\left(y_{k}-\left[C_{k}\right]\left[\hat{\mathbf{x}}_{k \mid k-1}\right]\right), \tag{14}
\end{equation*}
$$

given $\hat{\mathbf{x}}_{k}^{-} \in\left[\hat{\mathbf{x}}_{k}\right]^{-}$and $C_{k} \in\left[C_{k}\right]$. In order to reduce the effect of the dependency problem ((Jaulin et al., 2001b)), Eqn. (14) is rearranged as follows:

$$
\begin{equation*}
\left[\hat{\mathbf{x}}_{k \mid k}\right]=\left(I-K_{k}\left[C_{k}\right]\right)\left[\hat{\mathbf{x}}_{k \mid k-1}\right]+K_{k} y_{k} \tag{15}
\end{equation*}
$$

The box $\left[\hat{\mathbf{x}}_{k \mid k}\right]$ encloses all possible values of $\hat{\mathbf{x}}_{k \mid k}$.

The gain matrix K_{k} is determined as follows. The expression of the error covariance matrix after the correction step, for any $C_{k} \in\left[C_{k}\right], R_{k} \in[R]$, is

$$
\begin{align*}
P_{k \mid k}= & \left(I-K_{k} C_{k}\right) P_{k \mid k-1}^{+}\left(I-K_{k} C_{k}\right)^{T} \\
& +K_{k} R_{k} K_{k}^{T} . \tag{16}
\end{align*}
$$

An upper bound on $P_{k} \mid k$ can be obtained by using Proposition 1 for the matrix C_{k}, and then developing Eqn. (16):

$$
\begin{align*}
& P_{k \mid k} \\
&=\left(I-K_{k} C_{m}\right) P_{k \mid k-1}^{+}\left(I-K_{k} C_{m}\right)^{T} \\
&+\sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} M^{(i, j)}+\left(M^{(i, j)}\right)^{T} \\
&+\sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}}\left(\alpha^{i j}\right)^{2} K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} K_{k}^{T} \\
&+\frac{1}{2} \sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} \sum_{m=1}^{n_{y}} \sum_{\substack{l=1 \\
m \neq i \wedge l \neq j}}^{n_{x}} K_{k}\left(N_{(m, l)}^{(i, j)}\right. \\
&\left.+\left(N_{(m, l)}^{(i, j)}\right)^{T}\right) K_{k}^{T}+K_{k} R_{k} K_{k}^{T} \tag{17}
\end{align*}
$$

where

$$
\begin{aligned}
& M^{(i, j)}=\alpha^{i j}\left(K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(K_{k} C_{m}-I\right)^{T}\right) \\
& N_{(m, l)}^{(i, j)}=\alpha^{i j} \alpha^{m l} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(m, l)}\right)^{T}
\end{aligned}
$$

The term $M^{(i, j)}$ can be rewritten as
$M^{(i, j)}=\left(\alpha^{i j} K_{k} C_{r}^{(i, j)} \sqrt{P_{k \mid k-1}^{+}}\right)\left(\left(K_{k} C_{m}-I\right) \sqrt{P_{k \mid k-1}^{+}}\right)^{T}$.
Proposition 3 is then applied to $M^{(i, j)}+\left(M^{(i, j)}\right)^{T}$ with $\beta=1$. This yields

$$
\begin{align*}
M^{(i, j)} & +\left(M^{(i, j)}\right)^{T} \\
\preceq & K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} K_{k}^{T} \tag{18}\\
& +\left(I-K_{k} C_{m}\right) P_{k \mid k-1}^{+}\left(I-K_{k} C_{m}\right)^{T} .
\end{align*}
$$

Upper bounds $S_{(i, j)}^{(m, l)}$ on the terms $N_{(m, l)}^{(i, j)}+\left(N_{(m, l)}^{(i, j)}\right)^{T}$ are given by Proposition 4

Therefore, the following expression is obtained for
an upper bound $P_{k \mid k}^{+}$on $P_{k \mid k}$:

$$
\begin{align*}
& P_{k \mid k} \\
& \preceq\left(n_{0}+1\right)\left(I-K_{k} C_{m}\right) P_{k \mid k-1}^{+}\left(I-K_{k} C_{m}\right)^{T} \\
& \quad+2 \sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} K_{k}^{T} \\
& \quad+\frac{1}{2} \sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} \sum_{m=1}^{n_{y}} \sum_{\substack{l=1 \\
m \neq i \wedge l \neq j}}^{n_{x}} K_{k} S_{(i, j)}^{(m, l)} K_{k}^{T} \tag{19}\\
& \quad+K_{k} R_{k}^{+} K_{k}^{T} \\
& =P_{k \mid k}^{+},
\end{align*}
$$

where n_{0} is the number of interval elements of the matrix $[C]$, i.e., $n_{0}=n_{y} \times n_{x}$. The matrix $R_{k}^{+} \succeq R_{k}$ is determined by Proposition 6.

Having the expression of $P_{k \mid k}^{+}$as a function of K_{k}, we look for K_{k} that minimizes the trace of $P_{k \mid k}^{+}$. The first and second derivatives of $\operatorname{tr}\left(\mathrm{P}_{\mathrm{k} \mid \mathrm{k}}^{+}\right)$with respect to K_{k} are

$$
\begin{aligned}
\frac{\mathrm{d} \operatorname{tr}\left(P_{k \mid k}^{+}\right)}{\mathrm{d} K_{k}}= & -2\left(n_{0}+1\right) P_{k \mid k-1}^{+} C_{m}^{T} \\
& +2\left(n_{0}+1\right) K_{k} C_{m} P_{k \mid k-1}^{+} C_{m}^{T} \\
& +4 \sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} K_{k} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} \\
& +\sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} \sum_{m=1}^{n_{0}} \sum_{l=1}^{n_{x}} K_{k} S_{(i, j)}^{(m, l)} \\
+ & 2 K_{k} R_{k}^{+}, \\
\frac{\mathrm{d}^{2} \operatorname{tr}\left(P_{k \mid k}^{+}\right)}{\mathrm{d} K_{k}^{2}}= & 2\left(n_{0}+1\right) C_{m} P_{k \mid k-1}^{+} C_{m}^{T} \\
& +4 \sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} \\
& +\sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} \sum_{m=1}^{n_{y}} \sum_{l=1}^{n_{x}} S_{(i, j)}^{(m, l)} \\
& +2 R_{k}^{+} .
\end{aligned}
$$

The second derivative is always positive definite, which guarantees the existence of a minimum value for $\operatorname{tr}\left(\mathrm{P}_{\mathrm{k} \mid \mathrm{k}}^{+}\right)$, and K_{k} is obtained from the first derivative:

$$
\begin{equation*}
K_{k}=\left(n_{0}+1\right) P_{k \mid k-1}^{+} C_{m}^{T} S_{k}^{-1} \tag{20}
\end{equation*}
$$

```
Algorithm 1. iUBIKF algorithm.
Require: \(\left[\hat{\mathbf{x}}_{0 \mid 0}\right], P_{0 \mid 0}^{+},[A],[B],[C],[Q],[R], \mathbf{y}_{k}, \mathbf{u}_{k}, A_{k}\),
    \(Q_{k}, R_{k}, k=1,2, \ldots\)
Ensure: \(\left[\hat{\mathbf{x}}_{k \mid k}\right], P_{k \mid k}^{+}\)
        for \(k=1,2, \ldots\) do
            Prediction step:
\[
\begin{aligned}
{\left[\hat{\mathbf{x}}_{k \mid k-1}\right] } & =[A]\left[\hat{\mathbf{x}}_{k-1 \mid k-1}\right]+[B] \mathbf{u}_{k} \\
P_{k \mid k-1} & =A_{k} P_{k-1 \mid k-1}^{+} A_{k}^{T}+Q_{k} \\
P_{k \mid k-1}^{+} & \succeq P_{k \mid k-1}(\text { Props. } 5 \text { and } 6)
\end{aligned}
\]
```

3: Correction step

$$
\begin{aligned}
& R_{k}^{+} \succeq R_{k} \text { (Prop. } 5 \text { and } 6 \text {), } \\
& K_{k}=\left(n_{0}+1\right) P_{k \mid k-1}^{+} C_{m}^{T} S_{k}^{-1}, \\
& S_{k}=\left(n_{0}+1\right) \operatorname{mid}([C]) P_{k \mid k-1}^{+} \operatorname{mid}([C])^{T} \\
&+2 \sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} \\
&+\frac{1}{2} \sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} \sum_{m=1}^{n_{y}} \sum_{l=1}^{n_{x}} S_{(i, j)}^{(m, l)} \\
&+R_{k}^{+} . \\
& P_{k \mid k}^{+}=\left(n_{0}+1\right)\left(I-K_{k} \operatorname{mid}([C])\right) P_{k \mid k-1}^{+} . \\
& {\left[\hat{\mathbf{x}}_{k \mid k}\right]=}\left(I-K_{k}\left[C_{k}\right]\right)\left[\hat{\mathbf{x}}_{k \mid k-1}\right]+K_{k} y_{k} . \\
& \text { end for }
\end{aligned}
$$

where

$$
\begin{align*}
S_{k}= & \left(n_{0}+1\right) C_{m} P_{k \mid k-1}^{+} C_{m}^{T} \\
& +2 \sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} C_{r}^{(i, j)} P_{k \mid k-1}^{+}\left(C_{r}^{(i, j)}\right)^{T} \tag{21}\\
& +\frac{1}{2} \sum_{i=1}^{n_{y}} \sum_{j=1}^{n_{x}} \sum_{m=1}^{n_{y}} \sum_{l=1}^{n_{x}} S_{(i, j)}^{(m, l)}+R_{k}^{+} .
\end{align*}
$$

The expression for the covariance matrix bound $P_{k|k|}^{+}$is obtained from Eqn. (19) using K_{k} as given in Eqn. (20):

$$
\begin{equation*}
P_{k \mid k}^{+}=\left(n_{0}+1\right)\left(I-K_{k} C_{m}\right) P_{k \mid k-1}^{+} \tag{22}
\end{equation*}
$$

The algorithm steps are summarized in Algorithm 1.

6. Case studies

This section applies the proposed filter (iUBIKF) to two systems. The first one is an academic example that is used to compare the estimation results with the previous filter UBIKF and to show how the upper bound on the
covariance matrix is less conservative. The second is a case study of a two-wheeled vehicle used to compare the iUBIKF results with those of the interval observer of Raka and Combastel (2013).
6.1. Academic example. Consider an uncertain system described by the following equations:

$$
\left\{\begin{array}{l}
\mathbf{x}_{k+1}=A_{k} \mathbf{x}_{k}+\mathbf{w}_{k}, \tag{23}\\
\mathbf{y}_{k}=C_{k} \mathbf{x}_{k}+\mathbf{v}_{k}, \quad k \in \mathbb{N} .
\end{array}\right.
$$

Both $\left\{w_{k}\right\}$ and $\left\{v_{k}\right\}$ are independent centered Gaussian white noise sequences with covariance matrices Q_{k} and R_{k}, respectively.

We assume that A_{k}, C_{k}, Q_{k} and R_{k} are respectively bounded by the interval matrices $[A],[C],[Q]$ and $[R]$ defined as

$$
\left.\begin{array}{c}
{[A]=\left(\begin{array}{cc}
{[2.55,2.65]} & {[-1.43-1.37]} \\
{[6.57,6.83]} & {[-3.47,-3.33]} \\
{[-0.77,-0.73]} & {[0.29,0.31]} \\
{[0.26,0.28]} \\
{[2.55,2.65]} \\
{[0.09,0.11]}
\end{array}\right),} \\
{[C]=\left(\begin{array}{cc}
{[-8.24,-7.76]} & {[-4.12,-3.88]} \\
{[-2.06,-1.94]} & {[-2.06,-1.94]} \\
{[-0.41,-0.39]} & {[15.52,16.48]}
\end{array}\right.} \\
{[1.94,2.06]} \\
{[-6.18,-5.82],} \\
{[6.79,7.21]}
\end{array}\right),
$$

First, we compare the results provided by the original UBIKF presented by Tran et al. (2017) and by our improved filter (iUBIKF). The efficiency of the filtering algorithms is evaluated via a set of criteria. One of them is the upper bound of the root mean square error $\overline{\text { RMSE }}$ defined as

$$
\begin{align*}
\overline{\mathrm{RMSE}}= & \sup \left(\frac { 1 } { L } \sum _ { k = 1 } ^ { L } \left(\mathbf{x}_{k}-\left[\hat{\mathbf{x}}_{k \mid k}\right]^{T}\right.\right. \tag{24}\\
& \left.\cdot\left(\mathbf{x}_{k}-\left[\hat{\mathbf{x}}_{k \mid k}\right]\right)\right)^{\frac{1}{2}}
\end{align*}
$$

In Eqn. (24), L represents the number of iterations, $\left[\hat{\mathbf{x}}_{k \mid k}\right]$ is the interval estimate. Additionally, we propose to compute the percentage of time steps O where the
confidence interval $\left[I_{c_{k}}\right]$, defined as

$$
\begin{align*}
{\left[I_{c_{k}}\right]=} & {\left[\hat{\mathbf{x}}_{k \mid k}\right] } \\
& +\left[-3 \sqrt{\operatorname{diag}\left(P_{k \mid k}^{+}\right)}, 3 \sqrt{\operatorname{diag}\left(P_{k \mid k}^{+}\right)}\right] \tag{25}
\end{align*}
$$

contains the actual state, where $\operatorname{diag}(M)$ is the vector of diagonal elements of matrix M. This index allows one to determine the confidence degree of the state envelopes.

The simulations are run on the time stage $[0,1000]$ with the toolbox Intlab of Matlab (Rump, 1999). The comparison of the two filtering algorithms based on the indexes $\overline{\mathrm{RMSE}}, O$ and the execution time is shown in Table 1 . The 3σ confidence intervals $\left[I_{c_{k}}\right.$] (cf. Eqn. (25)) given by the two filters (Figs. 1-3) enclose the actual states at any time step ($O=100 \%$). However, the confidence intervals on it are tighter since the iUBIKF provides a better upper bound of the state estimation error covariance.

Figures $1 \sqrt[3]{3}$ provide the three components of the actual state and the 3σ confidence intervals $\left[I_{c_{k}}\right]$ (noted as CI in the figures' internal caption) given by the UBIKF and the iUBIKF.

Let us now compare the estimation error covariance upper bounds given by the two filters with reference to the conventional Kalman filter. To do so, the original Kalman filter (Kalman, 1960) is applied to a set of 1000 models $\left\{A_{k}, C_{k}, Q_{k}, R_{k}\right\}$, where the matrices A_{k}, C_{k}, Q_{k} and R_{k} are uniformly sampled from the interval matrices $\left[A_{k}\right],\left[C_{k}\right],\left[Q_{k}\right]$ and $\left[R_{k}\right]$, respectively. The maximum diagonal elements of the covariance matrices generated for this set of models by the Kalman filter are compared with the diagonal elements of the covariance upper bound given by the UBIKF and the iUBIKF in Figs. 4 6

As shown in the three figures, the iUBIKF provides a less conservative upper bound on the covariance matrix than the UBIKF, which is quite close to the maximal value obtained by the conventional Kalman filter run on the set of sampled models.
6.2. Case study from the automotive domain. The second example comes from the automotive domain. It is based on the continuous-time nonlinear model

Table 1. UBIKF and iUBIKF comparative evaluation.

		UBIKF	iUBIKF
x_{1}	$\overline{\mathrm{RMSE}}$	3.64	3.55
	$O(\%)$	100	100
x_{2}	$\overline{\mathrm{RMSE}}$	3.60	3.49
	$O(\%)$	100	100
x_{3}	$\overline{\mathrm{RMSE}}$	2.88	2.83
	$O(\%)$	100	100
Time (s)		15	30

Fig. 1. Actual x_{1} state component and the 3σ confidence intervals [$I_{c_{k}}$] obtained by the UBIKF and the iUBIKF.

Fig. 2. Actual x_{2} state component and the 3σ confidence intervals [$I_{c_{k}}$] obtained by the UBIKF and the iUBIKF.

Fig. 3. Actual x_{3} state component and the 3σ confidence intervals [$I_{c_{k}}$] obtained by the UBIKF and the iUBIKF.
of the dynamics of a two-wheeled vehicle that has been linearized and discretized to be suitable for the UBIKF/iUBIKF. The resulting state space model has two states: x_{1} is the angular speed of the slideslip angle and x_{2} is the acceleration of the vehicle yaw. We compare
the iUBIKF estimates with those of the interval observer proposed by Raka and Combastel (2013).

The interval matrices $[A],[C],[Q]$ and $[R]$ bounding A_{k}, C_{k}, Q_{k}, and R_{k}, respectively, are the following:

$$
\begin{gathered}
{[A]=\left(\begin{array}{cc}
{[0.6439,1.1814]} & {[-0.0131,0.1023]} \\
{[-0.2393,-0.1006]} & {[0.8516,0.9646]}
\end{array}\right),} \\
{[C]=\left(\begin{array}{cc}
{[-2.3594,-1.1150]} & {[0.0211,1.9326]} \\
{[0.0849,1.9151]} & {[-0.6333,0.6333]} \\
{[-3.7331,-3.7123]} & {[-2.1423,-1.5307]} \\
{[-0.0702,0.0702]} & {[0.8322,1.1678]}
\end{array}\right),}
\end{gathered}
$$

$$
[Q]=[0.0000,0.0501] I_{n_{x}}, \quad n_{x}=2
$$

$$
[R]=[0.0000,0.0501] I_{n_{y}}, \quad n_{y}=4
$$

The performance comparison of the three filtering algorithms UBIKF, iUBIKF and the interval observer of Raka and Combastel (2013) is given in Table 2,

Figure 7 shows the evolution of the state estimates produced by the UBIKF, the iUBIKF, i.e., $\left[\hat{x}_{1}\right]$ and $\left[\hat{x}_{2}\right]$, and the interval observer., i.e., $\left[x_{1}\right]$ and $\left[x_{2}\right]$.

As indicated by the $\overline{\text { RMSE }}$ in Table 2 and by the graphs in Fig. 7 the interval observer bounds are far wider than the estimation bounds of the iUBIKF and the UBIKF, those of the iUBIKF being the tightest. On the other hand, the computation time is higher and may limit some applications.

7. Conclusion

An improved minimum upper bound of variance interval Kalman filter (iUBIKF) which provides a lower error covariance upper bound was proposed. This filter allows bounding the set of all possible state estimates given by the Kalman filter for any admissible parameter uncertainties. Through a number of simulations, the advantages of the iUBIKF with respect to previous versions and to other proposals of the literature are exhibited.

The proposed iUBIKF is intended for systems of moderate dimensions as it has not been optimized for larger ones. For example, square root filtering algorithms

Table 2. Comparative evaluation of the UBIKF, the iUBIKF, and an interval observer.

		UBIKF	iUBIKF	Int. obs
x_{1}	$\overline{\text { RMSE }}$	0.17585	0.051212	1.1276
x_{2}	$\overline{\text { RMSE }}$	0.291	0.080989	1.1274
Time (s)		2.3916	7.6362	0.40902

are known as viable alternatives to the conventional Kalman filter that inherently involves unstable numerics. Updating the iUBIKF in this direction can be seen as a nice perspective for future work.

This work shows that the integration of statistical and bounded uncertainties in the same model can be successfully achieved, which opens wide perspectives from a practical point of view.

Acknowledgment

The authors are grateful to Françoise Le Gall for her constructive comments and recommendations, which have improved the readability and quality of the paper.

References

Cayero, J., Rotondo, D., Morcego, B. and Puig, V. (2019). Optimal state observation using quadratic boundedness: Application to UAV disturbance estimation, International Journal of Applied Mathematics and Computer Science 29(1): 99-109, DOI: 10.2478/amcs-2019-0008.
Chabir, K., Rhouma, T., Keller, J.Y. and Sauter, D. (2018). State filtering for networked control systems subject to switching disturbances, International Journal of Applied Mathematics and Computer Science 28(3): 473-482, DOI: 10.2478/amcs-2018-0036.

Chen, G., Wang, J. and Shieh, L.S. (1997). Interval Kalman filtering, IEEE Transactions on Aerospace and Electronic Systems 33(1): 250-259.
Combastel, C. (2015). Merging Kalman filtering and zonotopic state bounding for robust fault detection under noisy environment, Proceedings of the 9th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Paris, France, pp. 289-295.
Combastel, C. (2016). An Extended Zonotopic and Gaussian Kalman Filter (EZGKF) merging set-membership and stochastic paradigms: Toward non-linear filtering and fault detection, Annual Reviews in Control 42: 232-243.
Ingimundarson, A., Manuel Bravo, J., Puig, V., Alamo, T. and Guerra, P. (2009). Robust fault detection using zonotope-based set-membership consistency test, International Journal of Adaptive Control And Signal Processing 23(4): 311-330.
Jaulin, L., Braems, I., Kieffer, M. and Walter, E. (2001a). Nonlinear state estimation using forward-backward propagation of intervals in an algorithm, in W. Krämer and J.W. von Gudenberg (Eds), Scientific Computing, Validated Numerics, Interval Methods, Springer US, New York, pp. 191-204..
Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001b). Applied Interval Analysis with Examples in Parameter and State Estimation, Robust Control and Robotics, Springer, London.

Kalman, R.E. (1960). A new approach to linear filtering and prediction problems, Journal of Basic Engineering 82(Series D): 35-45.

Fig. 4. $P_{k \mid k}^{11}$ for the UBIKF, the iUBIKF and $\max \left(P_{k \mid k}^{11}\right)$ for the conventional Kalman filter.

Fig. 5. $P_{k \mid k}^{22}$ for the UBIKF, the iUBIKF and $\max \left(P_{k \mid k}^{22}\right)$ for the conventional Kalman filter.

Fig. 6. $P_{k \mid k}^{33}$ for the UBIKF, the iUBIKF and $\max \left(P_{k \mid k}^{33}\right)$ for the conventional Kalman filter.

Kieffer, M., Jaulin, L., Walter, E. and Meizel, D. (1999). Guaranteed mobile robot tracking using interval analysis, Proceedings of the Workshop on Application of Interval Analysis to System and Control, Girona, Spain, pp. 347-360.
Lesecq, S., Barraud, A. and Dinh, K. (2003). Numerical accurate computations for ellipsoidal state bounding, Proceedings

Fig. 7. Estimation results for the UBIKF, the iUBKF and the interval observer for the two-wheeled vehicle model: the angular speed of the slideslip angle x_{1} (top) and the acceleration of the vehicle yaw x_{2} (bottom).
of the Mediterranean Conference on Control and Automation (MED'03), Rhodes, Greece.
Masreliez, C. and Martin, R. (1977). Robust Bayesian estimation for the linear model and robustifying the Kalman filter, IEEE Transactions on Automatic Control 22(3): 361-371.

Moore, R.E. (1959). Automatic error analysis in digital computation, Technical report LMSD-48421, Lockheed Missiles and Space Co, Palo Alto.

Moore, R.E. (1966). Interval Analysis, Prentice-Hall, Englewood Cliffs.
Moore, R., Kearfott, R. and Cloud, M. (2009). Introduction to Interval Analysis, Society for Industrial and Applied Mathematics, Philadelphia.
Raka, S.-A. and Combastel, C. (2013). Fault detection based on robust adaptive thresholds: A dynamic interval approach, Annual Reviews in Control 37(1): 119-128.

Ribot, P., Jauberthie, C. and Trave-Massuyés, L. (2007). State estimation by interval analysis for a nonlinear differential aerospace model, Proceedings of the European Control Conference, Kos, Greece, pp. 4839-4844.
Rump, S.M. (1999). INTLAB-INTerval LABoratory, in T. Csendes (Ed.), Developments in Reliable Computing, Kluwer Academic Publishers, Dordrecht, pp. 77-104.

Tran, T.A. (2017). Cadre unifié pour la modélisation des incertitudes tatistiques et bornés: application à la détection et isolation de défauts dans les systémes dynamiques incertains par estimation PhD thesis, Université Toulouse 3-Paul Sabatier, Toulouse, WWW. theses.fr/2017TO U30292.
Tran, T.A., Jauberthie, C., Le Gall, F. and Travé-Massuyès, L. (2017). Interval Kalman filter enhanced by positive definite upper bounds, Proceedings of the 20th IFAC World Congress, Toulouse, France, pp. 1595-1600.

Tran, T. A., Le Gall, F., Jauberthie, C. and Travé-Massuyès, L. (2016). Two stochastic filters and their interval extensions, Proceedings of the 4th IFAC International Conference on Intelligent Control and Automation Sciences, Reims, France, pp. 49-54.
Welch, G. and Bishop, G. (2001). An introduction to the Kalman filter, SIGGRAPH, Los Angeles, USA, Course 8.
Xiong, J., Jauberthie, C., Travé-Massuyés, L. and Le Gall, F. (2013). Fault detection using interval Kalman filtering enhanced by constraint propagation, Proceedings of the IEEE 52nd Annual Conference on Decision and Control (CDC), Florence, Italy, pp. 490-495.

Tuan Anh Tran received his PhD degree in automatic control engineering from the Paul Sabatier University of Toulouse, France, in 2017. His research interests focus on filtering algorithms for nonlinear uncertain dynamic systems.

Carine Jauberthie has been an associate professor at the Paul Sabatier University of Toulouse (France) since 2005. She is a researcher at the LAAS-CNRS Laboratory in the Diagnosis and Supervisory Control (DISCO) Research Team. She obtained her PhD degree in 2002 in applied mathematics, specializing in control systems, from the University of Technology of Compiègne, France, at the ONERA Center of Lille in collaboration with the Laboratory of Applied Mathematics. Her research interests concern fault detection and diagnosis as well as the analysis of related properties, including identifiability and diagnosability of nonlinear dynamical systems with mixed uncertainties.

Louise Travé-Massuyés holds the position of the head researcher at the LAAS-CNRS Laboratory, Toulouse, France. She graduated in control engineering from the National Institute of Applied Science (INSA), Toulouse, in 1982 and received her PhD degree from INSA in 1984. Her main research interests are in dynamic systems diagnosis and supervision, with special focus on model-based and qualitative reasoning methods and data mining. She has been particularly active in establishing bridges between the diagnosis communities of artificial intelligence and automatic control. She has been responsible for several industrial and European projects, and has published more than 250 papers in scientific journals and international conference proceedings, as well as 20 book chapter contributions and 3 books. She is a member of the IFAC Safeprocess Technical Committee and the treasurer of the Society of Automatic Control, Industrial and Production Engineering. She also holds the chair for "synergistic transformations in model-based and data-based diagnosis" in the Artificial and Natural Intelligence Toulouse Institute (ANITI), France. She serves as an associate editor for the wellknown Artificial Intelligence journal.

Quoc-Hung Lu received his Bachelor's degree in mathematics from the Ho Chi Minh University of Sciences, Vietnam, in 2016, and then his Master's degree in applied mathematics from Paul Sabatier University Toulouse III in 2018. Currently he works as a PhD student at LAAS-CNRS (2018-2022). His research interests focus on Kalman filtering and extensions, FDI, active diagnosis, optimization and applied probability and statistics (in related research fields).

Received: 3 March 2020
Revised: 10 November 2020
Accepted: 30 December 2020

[^0]: *Corresponding author

[^1]: ${ }^{1}$ This expression is an expanded form of the Hadamard product.

