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This paper proposes a variance upper bound based interval Kalman filter that enhances the interval Kalman filter based on
the same principle proposed by Tran et al. (2017) for uncertain discrete time linear models. The systems under consideration
are subject to bounded parameter uncertainties not only in the state and observation matrices, but also in the covariance
matrices of the Gaussian noises. By using the spectral decomposition of a symmetric matrix and by optimizing the gain
matrix of the proposed filter, we lower the minimal upper bound on the state estimation error covariance for all admissible
uncertainties. This paper contributes with an improved algorithm that provides a less conservative error covariance upper
bound than the approach proposed by Tran et al. (2017). The state estimates are determined using interval analysis in order
to enclose the set of all possible solutions of the classical Kalman filter consistent with the uncertainties.
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1. Introduction

Set-membership (SM) methods have expanded
considerably in recent years and they have reached
a maturity allowing consideration of many applications
(Jaulin et al., 2001a; 2001b; Ribot et al., 2007; Tran,
2017; Cayero et al., 2019). The past years have seen
considerable progress in the way of formulating problems
in this context as well as optimized handling various types
of sets. Interval analysis, introduced by Moore (1966),
operates on box-shaped sets and is particularly relevant
for dealing with nonlinear systems. It has been used
for nonlinear estimation, and several algorithms have
been proposed (for more details, see Jaulin et al., 2001b;
Ribot et al., 2007; Kieffer et al., 1999). Other estimation
approaches dedicated to linear models include ellipsoid
shaped methods (Lesecq et al., 2003), or parallelotope and
zonotope based methods (Ingimundarson et al., 2009).

In contrast to stochastic estimation approaches (see,
e.g., Chabir et al., 2018), SM estimation advantageously
provides guaranteed results meaning that the obtained
sets are guaranteed to include all the solutions consistent
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with the bounded uncertainties. However, SM estimation
does not bring any information about the probability
distribution inside the sets and it is often criticized for the
overestimation of the results.

This paper is motivated by the idea that stochastic
and SM approaches have specific advantages and that they
complement each other more than they compete.

In the stochastic estimation framework, the
experimental conditions about noise and disturbances are
usually properly modeled through appropriate probability
distributions. However, other sources of uncertainty are
not well-suited to stochastic modeling and are better
represented with bounded uncertainties. This is the
case with parameter uncertainties that generally arise
from design tolerances and from ageing. Therefore,
combining stochastic and bounded uncertainties opens
new perspectives for modeling complex systems more
accurately.

Motivated by the above facts, we consider the
filtering problem for discrete time linear models
with bounded parameter uncertainties and Gaussian
measurement noise. In the work of Chen et al. (1997), the
classical Kalman filter (Kalman, 1960) has been extended
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to this type of uncertain systems. The authors propose to
bypass a singularity problem by using the upper bound
on the interval matrix to be inverted. This method
hence leads to a solution that is not guaranteed, i.e., the
solution set may not include all the classical Kalman
filter solutions consistent with the bounded uncertainties
represented in the system. In the work of Xiong et al.
(2013), an improved interval Kalman filter (iIKF) has
been proposed that solves the interval matrix inversion
problem with the set inversion algorithm called SIVIA (set
inversion via interval analysis) and constraint satisfaction
problems (CSPs) (Jaulin et al., 2001b). Nevertheless, this
algorithm demands high computational time if there exist
large uncertainties affecting the considered system (Tran
et al., 2016). The minimum upper bound of variance
interval Kalman filter (UBIKF) has been presented by
Tran et al. (2017) with two main goals: minimizing
the upper bound on the estimation error covariance and
enclosing the set of possible solutions of the filtering
problem for interval linear systems. Since the gain matrix
handled by the UBIKF is a point matrix, this approach
encloses all the estimates consistent with the parameter
uncertainties in a much less conservative manner than the
iIKF.

Our contribution consists in proposing an improved
minimum upper bound for the variance interval Kalman
filter (iUBIKF) using the spectral decomposition of a
symmetric matrix that provides a less conservative error
covariance upper bound than the UBIKF. The iUBIKF
also provides interval estimates that are guaranteed to
enclose all the optimal estimates consistent with the
parameter uncertainties. In this respect, the iUBIKF
differs from the joint zonotopic and Gaussian Kalman
filter proposed by Combastel (2015) for discrete linear
time varying (LTV) systems simultaneously subject to
bounded disturbances and Gaussian noises. This latter
indeed uses a criterion combining the minimization of the
estimate variance and the minimization of the size of the
zonotope bounding the support of the estimate bounded
imprecision.

This paper is organized as follows. The problem is
formulated in Section 2. Sections 3 and 4 review the main
notions of interval analysis and matrix inequalities that are
necessary for the development of the new algorithm. Then
the new interval Kalman filter is derived in Section 5,
followed by the application of the two filters, the UBIKF
and the iUBIKF, to an academic numerical example and
to a case study of a two-wheeled vehicle in Section 6.
In that section a comparative analysis is made. Section 7
concludes the paper.

2. Problem formulation

We consider linear discrete-time dynamic systems
represented by a state and an observation equation subject

to noises similar to the standard Kalman model (Kalman,
1960): {

xk+1 = Akxk +Bkuk +wk,

yk = Ckxk + vk, k ∈ N,
(1)

where xk ∈ R
nx , yk ∈ R

ny and uk ∈ R
nu

denote state, measurement and input vectors, respectively.
The matrices Ak, Bk, Ck are time-varying parameters,
while {wk} and {vk} are independent centered Gaussian
white noise sequences, with positive definite covariance
matrices Qk and Rk:

E{wk,wl} = Qkδkl,

E{vk,vl} = Rkδkl,

E{wk,vl} = E{wk,x0}
= E{vk,x0} = 0,

∀(k, l) ∈ N
2, where δkl is the Kronecker symbol.

Based on the motivations reported in Introduction,
we propose to combine two modeling paradigms:
measurement and system noises are modeled in a
stochastic framework but parameters are assumed
uncertain and this uncertainty is bounded. This is
achieved by assuming that the matrices Ak, Bk, Ck, Qk

and Rk of (1) are interval matrices, as defined in the
following section, containing all possible values of each
parameter. Since it is impossible to solve directly the
Kalman filtering problem due to parameter uncertainties,
our goal is to obtain an upper bound P+

k such that

E
[
(x̂+

k − xk)(x̂
+
k − xk)

T
] � P+

k (2)

for the set of all models with parameters bounded by the
interval matrices. The envelope enclosing the set of state
estimates corresponding to the gain K is then computed.

In the next section, the basic concepts of interval
analysis are introduced.

3. Interval analysis

Interval analysis operates on intervals instead of real
numbers (Moore, 1959; Jaulin et al., 2001b). Obtaining
guaranteed results from floating point algorithms was the
first motivation. It was then extended to verified numerics
(Moore, 1966).

A guaranteed result first means that the result set
encloses the exact solution. Second, it also means that the
algorithm is able to decide on the existence of a solution
in a finite time or a finite number of iterations.

3.1. Main concepts. A real interval [p] = [p, p] is a
closed and connected subset of R, where p and p represent
the lower and upper bounds of [p], respectively. The ra-
dius of an interval [p] is defined by rad([p]) = (p− p)/2,
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and its midpoint by mid([p]) = (p+ p)/2. If w([p]) = 0,
then [p] is degenerated and reduced to a real number.
The set of all real intervals of R is denoted by IR.
Real arithmetic operations have been extended to intervals
(Moore, 1966):

◦ ∈ {+,−, ∗, /},
[p1] ◦ [p2] = {x ◦ y | x ∈ [p1], y ∈ [p2]}.

The following property is useful to describe a quantity in
terms of its nominal value and a bounded uncertainty.

Property 1. (More et al., 2009) Given a real value x
belonging to an interval [x], there exists a real value α ∈
[−1, 1] such that x = mid([x]) + αrad([x]) .

An interval vector (or box) [α] is a vector with
interval components. It may equivalently be seen as a
Cartesian product of scalar intervals:

[α] = [α1]× [α2]× . . .× [αn].

An interval matrix is a matrix with interval components.
The set of n-dimensional real interval vectors is denoted
by IR

n and the set of n × m real interval matrices is
denoted by IR

n×m. The midpointmid(·) (resp. the radius
rad(·)) of an interval vector (resp. an interval matrix) is a
vector (resp. a matrix) composed of the midpoints (resp.
the radii) of its interval components. Classical operations
for interval vectors (resp. interval matrices) are direct
extensions of the same operations for real vectors (resp.
real matrices) (Moore, 1966). In order to simplify the
notation, the midpoint and the radius of a matrix [M ] are
respectively denoted by Mm and Mr.

Using Property 1 for matrices, the following result is
is obtained.

Proposition 1. (Tran, 2017) Given an m × n real ma-
trix M belonging to an interval matrix [M ], there ex-
ist mn real values αij ∈ [−1, 1] with i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}, such that1

M = Mm +

m∑
i=1

n∑
j=1

αijM (i,j)
r , (3)

where M
(i,j)
r is an m× n matrix whose entry (i, j) is the

radius of entry (i, j) of [M ], and the other elements are
zero.

In the case of symmetric matrices, the following
representation should be considered.

Proposition 2. (Tran, 2017) Given an n×n real symmet-
ric matrix M belonging to a symmetric interval matrix

1This expression is an expanded form of the Hadamard product.

[M ], there exist n(n+1)/2 real values αij ∈ [−1, 1] such
that

M =Mm + diag (Mr) diag
(
αii

)
+

n−1∑
i=1

n∑
j=i+1

αijM ((i,j),(j,i))
r ,

(4)

where diag (Mr) is a diagonal matrix containing the radii

of diagonal elements of [M ], M ((i,j),(j,i))
r is a symmetric

matrix whose (i, j) and (j, i) entries are the radii of en-
tries (i, j) and (j, i) of [M ], and the other elements are
zero. The matrix diag

(
αii

)
is diagonal and αij ∈ [−1, 1],

for all 1 ≤ i ≤ j ≤ n.

3.2. Inclusion function. Given a box [α] in IR
n and

a function f from IR
n to IR

m, an inclusion function of
f aims at getting a box containing the image of [α] by f .
The range of f over [α] is given by

f([α]) = {f(x) | x ∈ [α]}.
Then, the interval function [f ] from IR

n to IR
m is an in-

clusion function for f if

∀[α] ∈ IR
n, f([α]) ⊂ [f ]([α]).

An inclusion function of f can be obtained by replacing
each occurrence of a real variable by its corresponding
interval and by replacing each standard function by its
interval evaluation. Such a function is called the natu-
ral inclusion function. A function f generally has several
inclusion functions, which depend on the syntax of f .

4. Upper bounds of matrices

This section introduces two matrix inequalities used in the
proposed interval Kalman filter in order to bound the state
estimation error covariance.

Proposition 3. (Tran, 2017) Given two nonnull matrices
M,N with the same size and an arbitrary real number
β > 0, the following inequality holds:

MNT +NMT � β−1MMT + βNNT . (5)

Proposition 4. (Combastel, 2016) Let M be a symmetric
matrix and M = V DV T be its spectral decomposition,
where V is an orthogonal matrix and D is a diagonal
matrix. Let M+ = V |D|V T , where | · | is the element-
by-element absolute value operator. Then M+ 	 0 and
∀α ∈ [−1, 1], αM � M+.

The following proposition can be used to determine
an upper bound on the expression MPMT , where M ∈
[M ], [M ] ∈ IR

m×n and P ∈ R
n is a positive definite

symmetric matrix.
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Proposition 5. Given an m × n real matrix M belong-
ing to an interval matrix [M ] and a positive definite ma-
trix symmetric P of order n, there exists a positive definite
symmetric matrix S of order m such that MPMT � S.

The matrix S can be determined by using
Propositions 1 and 4.

Proof. By using Proposition 1 for M ∈ [M ] and then
expanding MPMT , we obtain

MPMT

= MmPMT
m +

m∑
i=1

n∑
j=1

(
αij

)2
M (i,j)

r P
(
M (i,j)

r

)T

+

m∑
i=1

n∑
j=1

αij
(
M(i,j)

m + (M(i,j)
m )T

)

+
1

2

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

k �=i∨l �=j

αijαkl
(
M

(k,l)
(i,j)

+ (M
(k,l)
(i,j))

T
)
,

(6)

where

M(i,j)
m = MmP

(
M (i,j)

r

)T

,

M
(k,l)
(i,j) = M (i,j)

r P
(
M (k,l)

r

)T

and αij ∈ [−1, 1].

Proposition 4 is then used to determine upper bounds
of the two symmetric parts of Eqn. (6), i.e., S

(i,j)
m for

M
(i,j)
m + (M

(i,j)
m )T and S

(k,l)
(i,j) for M

(k,l)
(i,j) + (M

(k,l)
(i,j))

T .

The upper bound S of MPMT can be written as follows:

S =MmPMT
m +

m∑
i=1

n∑
j=1

M (i,j)
r P

(
M (i,j)

r

)T

+

m∑
i=1

n∑
j=1

S(i,j)
m +

1

2

m∑
i=1

n∑
j=1

m∑
k=1

n∑
l=1

k �=i∨l �=j

S
(k,l)
(i,j) ,

(7)

where S is symmetric and positive definite. �

Similarly, a positive definite upper bound of an
interval symmetric matrix can be computed.

Proposition 6. Given a symmetric matrix M belonging
to an interval symmetric matrix [M ] ∈ IR

n, there exists
a positive definite symmetric matrix M+ of order n such
that M � M+. The matrix M+ can be determined using
Propositions 2 and 4.

Proof. A symmetric matrixM ∈ [M ] can be decomposed
using Proposition 2. Proposition 4 is then applied for each
term of the double sum in Eqn. (4) to determine an upper
bound M+ on M :

M+ = Mm + diag (Mr)

+

n−1∑
i=1

n∑
j=i+1

(
M ((i,j),(j,i))

r

)+

,
(8)

where
(
M

((i,j),(j,i))
r

)+
is the upper bound on

αijM
((i,j),(j,i))
r given by Proposition 4. �

5. From the Kalman filter to the interval
Kalman filter

5.1. Kalman filter. Given the system (1), the
conventional Kalman filter (KF) provides the minimum
variance estimate x̂k|k of xk and the associated covariance
matrix Pk|k.

Kalman equations (Kalman, 1960) are determined
using mathematical curve-fitting functions of data points
from a least-squares approximation (Welch and Bishop,
2001) or probabilistic methods such as the likelihood
function to maximize the conditional probability of the
state estimate from incoming measurements (Masreliez
and Martin, 1977). We consider the following notation:

• x̂k+1|k ∈ R
n is the a priori state estimate vector at

time k + 1 given a state estimate at time k,

• x̂k|k ∈ R
n is the a posteriori state estimate vector at

time k given observations at time k,

• Pk+1|k ∈ R
n×n is the a priori error covariance

matrix,

• Pk|k ∈ R
n×n is the a posteriori error covariance

matrix.

Also, P·|· defines the precision of the state estimate:

Pl|k = E
(
(x̂l|k − xl)(x̂l|k − xl)

T
)
, (9)

l = k or k + 1. We assume that P0|0 = P0 ∈ IR
n×n and

x0|0 = x0 ∈ IR
n.

The Kalman filtering algorithm contains two steps
for each iteration: a prediction step and a correction step
(Kalman, 1960).

If we consider the algorithm as an operatorK, we can
write

(x̂k|k, Pk|k)
= K(Ak, Bk, Ck,x0, P0,u[1...k−1],y[1...k−1]).

In the following, the point time-varying matrices
Ak, Bk, Ck, Qk and Rk are constrained to belong to the
interval matrices [A], [B], [C], [Q], and [R], respectively.
In other words, their parameters can vary within some
specified bounds.
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5.2. Interval Kalman filter. Bounded uncertainties
can occur not only through the interval matrices
[A], [B], [C], [D], [Q] and [R], but also through
x0|0, P0|0,uk,yk due to deterministic measurement errors
and instrument imprecisions. Since it is impossible
to solve directly the Kalman filtering problem due to
parameter uncertainties, our goal is to obtain an upper
bound P+

k|k on the state estimation error covariance:

E
[
(x̂k|k − xk)(x̂k|k − xk)

T
] � P+

k|k. (10)

In this section, an interval Kalman filter, called the
improved minimum upper bound of variance interval
Kalman filter (iUBIKF), is proposed. This algorithm is
developed from the interval Kalman filter introduced by
Tran et al. (2017) in order to reduce the overestimation of
the state estimation error covariance. The iUBIKF can be
designed in two steps: prediction and correction.

5.2.1. Prediction step. In the prediction step, the
interval state estimate from the previous time step and
the transition model are used to predict the state at the
current time step. This step is performed similarly as in
the original Kalman algorithm (Kalman, 1960), using the
natural interval extension, as follows:[

x̂k|k−1

]
= [A]

[
x̂k−1|k−1

]
+ [B]uk. (11)

For any Ak ∈ [A] and Qk ∈ [Q], the a priori covariance
matrix Pk|k−1 is computed as

Pk|k−1 = AkP
+
k−1|k−1A

T
k +Qk, (12)

where P+
k−1|k−1 is the upper bound on the a posteriori

covariance matrix at time k − 1. In order to determine
an upper bound P+

k|k−1 on Pk|k−1, i.e., Pk|k−1 �
P+
k|k−1, Proposition 5 and 6 are respectively applied to

AkP
+
k−1|k−1A

T
k and Qk, Ak ∈ [A] and Qk ∈ [Q]:

P+
k|k−1 = P+

k +Q+
k , (13)

where AkP
+
k−1|k−1A

T
k � P+

k and Qk � Q+
k .

5.2.2. Correction step. The state estimate at time
step k is computed by the natural interval extension of
(Kalman, 1960)[

x̂k|k
]
=

[
x̂k|k−1

]
+Kk

(
yk − [Ck]

[
x̂k|k−1

])
, (14)

given x̂−
k ∈ [x̂k]

− and Ck ∈ [Ck]. In order to reduce the
effect of the dependency problem ((Jaulin et al., 2001b)),
Eqn. (14) is rearranged as follows:[

x̂k|k
]
= (I −Kk [Ck])

[
x̂k|k−1

]
+Kkyk. (15)

The box
[
x̂k|k

]
encloses all possible values of x̂k|k .

The gain matrix Kk is determined as follows.
The expression of the error covariance matrix after the
correction step, for any Ck ∈ [Ck], Rk ∈ [R], is

Pk|k = (I −KkCk)P
+
k|k−1 (I −KkCk)

T

+KkRkK
T
k .

(16)

An upper bound on Pk|k can be obtained by using
Proposition 1 for the matrix Ck , and then developing
Eqn. (16):

Pk|k

= (I −KkCm)P+
k|k−1 (I −KkCm)

T

+

ny∑
i=1

nx∑
j=1

M (i,j) + (M (i,j))T

+

ny∑
i=1

nx∑
j=1

(
αij

)2
KkC

(i,j)
r P+

k|k−1

(
C(i,j)

r

)T

KT
k

+
1

2

ny∑
i=1

nx∑
j=1

ny∑
m=1

nx∑
l=1

m �=i∧l �=j

Kk

(
N

(i,j)
(m,l)

+ (N
(i,j)
(m,l))

T
)
KT

k +KkRkK
T
k ,

(17)

where

M (i,j) = αij
(
KkC

(i,j)
r P+

k|k−1 (KkCm − I)
T
)
,

N
(i,j)
(m,l) = αijαmlC(i,j)

r P+
k|k−1

(
C(m,l)

r

)T

.

The term M (i,j) can be rewritten as

M (i,j) =
(
αijKkC

(i,j)
r

√
P+
k|k−1

)(
(KkCm − I)

√
P+
k|k−1

)T

.

Proposition 3 is then applied to M (i,j) + (M (i,j))T with
β = 1. This yields

M (i,j) + (M (i,j))T

� KkC
(i,j)
r P+

k|k−1

(
C(i,j)

r

)T

KT
k

+ (I −KkCm)P+
k|k−1 (I −KkCm)

T
.

(18)

Upper bounds S(m,l)
(i,j) on the terms N (i,j)

(m,l)+(N
(i,j)
(m,l))

T are
given by Proposition 4.

Therefore, the following expression is obtained for
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an upper bound P+
k|k on Pk|k:

Pk|k

� (n0 + 1) (I −KkCm)P+
k|k−1 (I −KkCm)

T

+ 2

ny∑
i=1

nx∑
j=1

KkC
(i,j)
r P+

k|k−1

(
C(i,j)

r

)T

KT
k

+
1

2

ny∑
i=1

nx∑
j=1

ny∑
m=1

nx∑
l=1

m �=i∧l �=j

KkS
(m,l)
(i,j) KT

k

+KkR
+
k K

T
k

= P+
k|k,

(19)

where n0 is the number of interval elements of the matrix
[C], i.e., n0 = ny × nx. The matrix R+

k 	 Rk is
determined by Proposition 6.

Having the expression of P+
k|k as a function of Kk,

we look for Kk that minimizes the trace of P+
k|k. The first

and second derivatives of tr
(
P+
k|k

)
with respect to Kk are

d tr
(
P+
k|k

)
dKk

= −2(n0 + 1)P+
k|k−1C

T
m

+ 2(n0 + 1)KkCmP+
k|k−1C

T
m

+ 4

ny∑
i=1

nx∑
j=1

KkC
(i,j)
r P+

k|k−1

(
C(i,j)

r

)T

+

ny∑
i=1

nx∑
j=1

n0∑
m=1

nx∑
l=1

KkS
(m,l)
(i,j)

+ 2KkR
+
k ,

d2 tr
(
P+
k|k

)
dK2

k

= 2(n0 + 1)CmP+
k|k−1C

T
m

+ 4

ny∑
i=1

nx∑
j=1

C(i,j)
r P+

k|k−1

(
C(i,j)

r

)T

+

ny∑
i=1

nx∑
j=1

ny∑
m=1

nx∑
l=1

S
(m,l)
(i,j)

+ 2R+
k .

The second derivative is always positive definite, which
guarantees the existence of a minimum value for

tr
(
P+
k|k

)
, and Kk is obtained from the first derivative:

Kk = (n0 + 1)P+
k|k−1C

T
mS−1

k , (20)

Algorithm 1. iUBIKF algorithm.

Require:
[
x̂0|0

]
, P+

0|0, [A], [B], [C], [Q], [R], yk , uk, Ak,
Qk, Rk, k = 1, 2, . . .

Ensure:
[
x̂k|k

]
, P+

k|k
1: for k = 1, 2, . . . do
2: Prediction step:[

x̂k|k−1

]
= [A]

[
x̂k−1|k−1

]
+ [B]uk,

Pk|k−1 = AkP
+
k−1|k−1A

T
k +Qk,

P+
k|k−1 	 Pk|k−1 (Props. 5 and 6).

3: Correction step

R+
k 	 Rk (Prop. 5 and 6),

Kk = (n0 + 1)P+
k|k−1C

T
mS−1

k ,

Sk = (n0 + 1)mid ([C])P+
k|k−1mid ([C])

T

+ 2

ny∑
i=1

nx∑
j=1

C(i,j)
r P+

k|k−1

(
C(i,j)

r

)T

+
1

2

ny∑
i=1

nx∑
j=1

ny∑
m=1

nx∑
l=1

S
(m,l)
(i,j)

+R+
k .

P+
k|k = (n0 + 1) (I −Kkmid ([C]))P+

k|k−1.[
x̂k|k

]
= (I −Kk [Ck])

[
x̂k|k−1

]
+Kkyk.

4: end for

where

Sk = (n0 + 1)CmP+
k|k−1C

T
m

+ 2

ny∑
i=1

nx∑
j=1

C(i,j)
r P+

k|k−1

(
C(i,j)

r

)T

+
1

2

ny∑
i=1

nx∑
j=1

ny∑
m=1

nx∑
l=1

S
(m,l)
(i,j) +R+

k .

(21)

The expression for the covariance matrix bound P+
k|k is

obtained from Eqn. (19) using Kk as given in Eqn. (20):

P+
k|k = (n0 + 1) (I −KkCm)P+

k|k−1. (22)

The algorithm steps are summarized in Algorithm 1.

6. Case studies

This section applies the proposed filter (iUBIKF) to two
systems. The first one is an academic example that is
used to compare the estimation results with the previous
filter UBIKF and to show how the upper bound on the
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covariance matrix is less conservative. The second is a
case study of a two-wheeled vehicle used to compare the
iUBIKF results with those of the interval observer of Raka
and Combastel (2013).

6.1. Academic example. Consider an uncertain
system described by the following equations:{

xk+1 = Akxk +wk,

yk = Ckxk + vk, k ∈ N.
(23)

Both {wk} and {vk} are independent centered Gaussian
white noise sequences with covariance matrices Qk and
Rk, respectively.

We assume that Ak, Ck, Qk and Rk are respectively
bounded by the interval matrices [A], [C], [Q] and [R]
defined as

[A] =

⎛
⎝ [2.55, 2.65] [−1.43− 1.37]

[6.57, 6.83] [−3.47,−3.33]
[−0.77,−0.73] [0.29, 0.31]

[0.26, 0.28]
[2.55, 2.65]
[0.09, 0.11]

⎞
⎠ ,

[C] =

⎛
⎝ [−8.24,−7.76] [−4.12,−3.88]

[−2.06,−1.94] [−2.06,−1.94]
[−0.41,−0.39] [15.52, 16.48]

[1.94, 2.06]
[−6.18,−5.82] ,
[6.79, 7.21]

⎞
⎠ ,

[Q] =

⎛
⎝ [8, 12] [−6,−4] [3.2, 4.8]
[−6,−4] [8, 12] [1.6, 2.4]
[3.2, 4.8] [1.6, 2.4] [8.12]

⎞
⎠ ,

[R] =

⎛
⎝ [8, 12] [−6,−4] [3.2, 4.8]
[−6,−4] [8, 12] [1.6, 2.4]
[3.2, 4.8] [1.6, 2.4] [8.12]

⎞
⎠ .

First, we compare the results provided by the original
UBIKF presented by Tran et al. (2017) and by our
improved filter (iUBIKF). The efficiency of the filtering
algorithms is evaluated via a set of criteria. One of them
is the upper bound of the root mean square error RMSE
defined as

RMSE = sup
( 1

L

L∑
k=1

(
xk −

[
x̂k|k

]T

· (xk −
[
x̂k|k

]) ) 1
2

.

(24)

In Eqn. (24), L represents the number of iterations,[
x̂k|k

]
is the interval estimate. Additionally, we propose

to compute the percentage of time steps O where the

confidence interval [Ick ], defined as

[Ick ] =
[
x̂k|k

]
+
[
− 3

√
diag

(
P+
k|k

)
, 3

√
diag

(
P+
k|k

)]
, (25)

contains the actual state, where diag(M) is the vector of
diagonal elements of matrix M . This index allows one to
determine the confidence degree of the state envelopes.

The simulations are run on the time stage [0,1000]
with the toolbox Intlab of Matlab (Rump, 1999). The
comparison of the two filtering algorithms based on the
indexes RMSE, O and the execution time is shown in
Table 1. The 3σ confidence intervals [Ick ] (cf. Eqn. (25))
given by the two filters (Figs. 1–3) enclose the actual
states at any time step (O = 100%). However, the
confidence intervals on it are tighter since the iUBIKF
provides a better upper bound of the state estimation error
covariance.

Figures 1–3 provide the three components of the
actual state and the 3σ confidence intervals [Ick ] (noted
as CI in the figures’ internal caption) given by the UBIKF
and the iUBIKF.

Let us now compare the estimation error covariance
upper bounds given by the two filters with reference to the
conventional Kalman filter. To do so, the original Kalman
filter (Kalman, 1960) is applied to a set of 1000 models
{Ak, Ck, Qk, Rk}, where the matrices Ak, Ck, Qk and
Rk are uniformly sampled from the interval matrices
[Ak], [Ck], [Qk] and [Rk], respectively. The maximum
diagonal elements of the covariance matrices generated
for this set of models by the Kalman filter are compared
with the diagonal elements of the covariance upper bound
given by the UBIKF and the iUBIKF in Figs. 4–6.

As shown in the three figures, the iUBIKF provides
a less conservative upper bound on the covariance matrix
than the UBIKF, which is quite close to the maximal value
obtained by the conventional Kalman filter run on the set
of sampled models.

6.2. Case study from the automotive domain. The
second example comes from the automotive domain.
It is based on the continuous-time nonlinear model

Table 1. UBIKF and iUBIKF comparative evaluation.
UBIKF iUBIKF

x1
RMSE 3.64 3.55
O(%) 100 100

x2
RMSE 3.60 3.49
O(%) 100 100

x3
RMSE 2.88 2.83
O(%) 100 100

Time (s) 15 30
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Fig. 1. Actual x1 state component and the 3σ confidence inter-
vals [Ick ] obtained by the UBIKF and the iUBIKF.

960 962 964 966 968 970 972 974 976 978 980
−80

−60

−40

−20

0

20

40

60

80

Time step k

Fig. 2. Actual x2 state component and the 3σ confidence inter-
vals [Ick ] obtained by the UBIKF and the iUBIKF.
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Fig. 3. Actual x3 state component and the 3σ confidence inter-
vals [Ick ] obtained by the UBIKF and the iUBIKF.

of the dynamics of a two-wheeled vehicle that has
been linearized and discretized to be suitable for the
UBIKF/iUBIKF. The resulting state space model has two
states: x1 is the angular speed of the slideslip angle and
x2 is the acceleration of the vehicle yaw. We compare

the iUBIKF estimates with those of the interval observer
proposed by Raka and Combastel (2013).

The interval matrices [A], [C], [Q] and [R] bounding
Ak, Ck, Qk, and Rk, respectively, are the following:

[A] =

(
[0.6439, 1.1814] [−0.0131, 0.1023]

[−0.2393,−0.1006] [0.8516, 0.9646]

)
,

[C] =

⎛
⎜⎜⎝
[−2.3594,−1.1150] [0.0211, 1.9326]
[0.0849, 1.9151] [−0.6333, 0.6333]

[−3.7331,−3.7123] [−2.1423,−1.5307]
[−0.0702, 0.0702] [0.8322, 1.1678]

⎞
⎟⎟⎠ ,

[Q] = [0.0000, 0.0501]Inx, nx = 2,

[R] = [0.0000, 0.0501]Iny, ny = 4.

The performance comparison of the three filtering
algorithms UBIKF, iUBIKF and the interval observer of
Raka and Combastel (2013) is given in Table 2.

Figure 7 shows the evolution of the state estimates
produced by the UBIKF, the iUBIKF, i.e., [x̂1] and [x̂2],
and the interval observer., i.e., [x1] and [x2].

As indicated by the RMSE in Table 2 and by the
graphs in Fig. 7, the interval observer bounds are far wider
than the estimation bounds of the iUBIKF and the UBIKF,
those of the iUBIKF being the tightest. On the other
hand, the computation time is higher and may limit some
applications.

7. Conclusion

An improved minimum upper bound of variance interval
Kalman filter (iUBIKF) which provides a lower error
covariance upper bound was proposed. This filter
allows bounding the set of all possible state estimates
given by the Kalman filter for any admissible parameter
uncertainties. Through a number of simulations, the
advantages of the iUBIKF with respect to previous
versions and to other proposals of the literature are
exhibited.

The proposed iUBIKF is intended for systems of
moderate dimensions as it has not been optimized for
larger ones. For example, square root filtering algorithms

Table 2. Comparative evaluation of the UBIKF, the iUBIKF,
and an interval observer.

UBIKF iUBIKF Int. obs

x1 RMSE 0.17585 0.051212 1.1276
x2 RMSE 0.291 0.080989 1.1274

Time (s) 2.3916 7.6362 0.40902
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are known as viable alternatives to the conventional
Kalman filter that inherently involves unstable numerics.
Updating the iUBIKF in this direction can be seen as a
nice perspective for future work.

This work shows that the integration of statistical
and bounded uncertainties in the same model can be
successfully achieved, which opens wide perspectives
from a practical point of view.
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