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Travel time estimation for freeways has attracted much attention from researchers and traffic management departments.
Because of various uncertain factors, travel time on a freeway is stochastic. To obtain travel time estimates for a freeway
accurately, this paper proposes two traffic sensor location models that consider minimizing the error of travel time estimation
and maximizing the collected traffic flow. First, a dynamic optimal location model of the mobile sensor is proposed under
the assumption that there are no traffic sensors on a freeway. Next, a dynamic optimal combinatorial model of adding
mobile sensors taking account of fixed sensors on a freeway is presented. It should be pointed out that the technology of
data fusion will be adopted to tackle the collected data from multiple sensors in the second optimization model. Then,
a simulated annealing algorithm is established to find the solutions of the proposed two optimization models. Numerical
examples demonstrate that dynamic optimization of mobile sensor locations for the estimation of travel times on a freeway
is more accurate than the conventional location model.

Keywords: traffic mobile sensor, dynamic location model, travel time estimation, simulated annealing algorithm, data
fusion.

1. Introduction

Freeways constitute significant infrastructure for modern
urban transportation networks. Traffic information of a
freeway is essential for traffic management departments
to detect the freeway network. In recent years, the
technology of intelligent transportation systems has
been adopted to monitor the operation of the traffic
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infrastructure and equipment to obtain freeway traffic
information (Ban et al., 2011). Moreover, traffic
information of a freeway (e.g., traffic flow, travel time,
and average speed) can be collected through a fixed
sensor (e.g., coil, microwave, and video) or a mobile one
(e.g., mobile phones, GPS, and wireless communication
systems) (Kolosz et al., 2013).

Installing traffic sensors is a large investment, and
there really exist some common issues for the traffic
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information collection on freeways: (a) the number
of traffic sensors is insufficient and the corresponding
locations are unreasonable; (b) the real-time performance
of traffic data collection is poor; (c) the accuracy of
traffic data is not high; (d) the traffic sensor is prone to
failures. These shortcomings will result in the information
collected not reflecting the road conditions accurately.

In addition, most collection methods of dynamic
traffic data for freeways still rely on the traditional fixed
sensor. The fixed sensor can only be used for spot
detection (Salari et al., 2019), and the performance of the
whole freeway cannot be shown, while, the mobile sensor
can have the property of “line detection.” However, the
mobile sensor needs to seek out a dynamic and robust
location strategy (Zhu et al., 2014). Therefore, a single
type of sensor may miss some significant information.
Moreover, in reality, many freeways have set up a certain
amount of traffic sensors. Under these circumstances, a
combination of different types of traffic sensors is adopted
to improve the accuracy of dynamic traffic data collection
and safety of the freeway.

The sensor location problem addressed in this paper
aims to investigate how to optimize dynamic location of a
traffic mobile sensor that improves estimation accuracy of
travel time for the freeway. The contributions made in this
paper are two-fold:

• For a freeway without sensors, a dynamic
optimization model of mobile sensor location
for travel time estimation is established. The
proposed bi-objective model aims to minimize
the error of travel time estimation and maximize
the detected traffic flow. Moreover, the simulated
annealing algorithm is adopted to solve the proposed
model.

• For a freeway with fixed sensors, a dynamic optimal
combination location model with mobile sensors and
fixed sensors is presented. Data fusion technology
will be adopted to combine traffic data obtained by
multi-source sensors, which makes the estimation
more accurate.

The rest of the paper is organized as follows.
Section 2 offers a thorough literature review related to
the study of sensor location for travel time estimation
on a freeway. In Section 3, a new dynamic location
model of mobile sensors on the freeway is proposed for
a freeway without sensors. In Section 4, for a freeway
with fixed sensors, mobile sensors are added dynamically
and a combined location model is presented. In Section
5, the simulated annealing algorithm is adopted for the
proposed two models. In Section 6, we demonstrate the
efficiency of the proposed models and algorithms based
on a real freeway. Finally, a summary and conclusions are
presented in Section 7.

2. Literature review

The problem of optimal sensor location aims at using
the least number of sensors to acquire the most
comprehensive and accurate traffic information (Geetla
et al., 2014; Gentili and Mirchandani, 2012). According
to the application background, the sensor location
problem can be divided into an urban road network and
a freeway network (Gentili and Mirchandani, 2018). For
sensor location in urban road networks, the related studies
in the literature are categorized into four different types:
(i) OD estimation, which is to estimate the traffic flow
between the origin and destination during a particular
period (Yang and Fan, 2015; Ma and Qian, 2018); (ii)
travel time estimation (Zhu et al., 2018; Xing et al.,
2013); (iii) link flow inference (Ng, 2013; He, 2013);
and (iv) path flow reconstruction (Fu et al., 2017; Li
and Ouyang, 2011). On the other hand, sensor location
on a freeway has different purposes such as traffic event
detection (Chakraborty et al., 2019; Karatsoli et al., 2017),
travel time estimation (Chaudhuri et al., 2010; Liu and
Danczyk, 2009), and traffic state prediction (Fujito et al.,
2006; Hong and Fukuda, 2012). In this paper, we
concentrate on the problem of sensor location for travel
time estimation on freeways.

Empirical studies have revealed that vehicle speed
collected by sensors can be adopted to estimate the
average speed of a road section on a freeway, and then
the estimated travel time is obtained (Beryini and Lovell,
2009; Chang et al., 2019). Clearly, the more traffic
sensors are used on the freeway, the smaller the travel
time estimation errors. However, when a certain number
of sensors is reached, the accuracy of estimation will
not increase with the number of sensors increasing. In
addition, there is usually a budget constraint for locating
traffic sensors. Thus, how to locate sensors whose total
installation cost does not exceed a given budget so that
the estimation error of freeway travel time is the lowest
possible is a hot area of research.

In the literature, the existing sensor location models
for travel time estimation on freeways concentrate on
various purposes. These models are summarized in
Table 1 in terms of the sensor type, consideration
of network uncertainty, the modeling approach, and
the solution method. Olia et al. (2017) introduced a
methodology for determining the optimal number and
location of freeway roadside equipment (RSE) units
for travel time estimation in vehicle-to-infrastructure
and vehicle-to-vehicle communication environments.
The proposed multi-objective problem is solved by a
non-dominated sorting genetic algorithm. Kim et al.
(2011) studied the influence of loop sensor location on
the accuracy of travel time estimation based on the
microscopic traffic simulation model. The results show
that the estimation accuracy depends mainly on the
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location of sensors and less on the number of sensors.
However, traffic sensors are prone to various failures.
Thus, it is necessary to incorporate sensor failure into
the optimal location model. Danczyk et al. (2016)
proposed a sensor location model to minimize the overall
monitoring error of the freeway, while considering a
certain probability of sensor failure. The results show
that the sensor fault has a great influence on monitoring
accuracy. Zhu et al. (2017) established a two-stage
stochastic conditional value at risk (CVaR) model for
travel time estimation in a freeway corridor. The
experimental results show that the performance of sensor
location is significantly improved after considering sensor
failure.

Most of the works use mathematical programming to
study the problem of freeway sensor location. In addition,
there are other methods.

(i) The shortest path method: Ban et al. (2009)
used the dynamic programming model to determine the
optimal location of freeway sensors, and the shortest
path algorithm was adopted to solve the model. The
optimal solution can be determined by the proposed
algorithm with polynomial time. Danczyk and Liu
(2011) focused on optimal location of loop sensors
to minimize performance measurement errors. They
described the sensor location problem under the constraint
of the number of sensors as a constrained shortest path
optimization problem, and designed an improved branch
and bound algorithm to solve it.

(ii) The cluster analysis method: Bartin et al. (2007)
transformed the problem of how to locate sensors on a
freeway to estimate travel time accurately into that of
clustering all small cells of the freeway into different
classes according to the estimation error of travel time.
Unlike ordinary clustering, each class of Bartin et al.
(2007) consisted of contiguous small cells. To this end,
Kianfar and Edara (2010) adopted the global K-means
algorithm to obtain new clustering with the technology of
adding new boundaries.

On the basis of the above discussion, most of the
existing research results might focus on a fixed sensor.
Obviously, the fixed sensor cannot be moved once it is
installed on a certain road. Under these circumstances,
a fixed sensor cannot fit the dynamic traffic network.
In recent years, the problem of locating mobile sensors
on freeways has attracted much attention. Chow (2016)
presented a dynamic location strategy of an unmanned
aerial vehicle (UVA) based on real-time data, which
abstracted the problem into a stochastic arc inventory
routing one, and an approximate dynamic programming
algorithm based on the least squares Monte Carlo method
is proposed to form the strategy. Park and Haghani
(2015) proposed an optimal dynamic location model for
bluetooth sensors on freeways as the pattern of travel time
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error changes over time. However, it is not reasonable to
determine the location of mobile sensors based on the time
interval of each day due to the problem of sensor location
considering not only the travel time error but also other
traffic parameters. In this paper, we use a shorter time
interval as the benchmark and concentrate on minimizing
the travel time estimation error and maximizing the
detected traffic flow to determine the dynamic mobile
sensor location on the freeway.

In reality, many freeways have installed fixed
sensors. Thus, how to add different types of sensors
to obtain the minimum estimation error and the lowest
cost has not attracted much attention. Zhan et al. (2015)
investigated the required minimum number of probe
vehicles to estimate travel time with the desired statistical
accuracy for freeways equipped with fixed sensors. The
results showed that the travel time estimation error with
probe vehicles and fixed sensors is less than in the case
of fixed sensors only. However, the optimal proportion
of probe vehicles is determined by the trial and error
method and does not have generality. To this end, this
paper proposes a novel mathematical programming model
for combinatorial location of mobile sensors and fixed
sensors.

3. Dynamic mobile sensor location model

Attributed to both daily and seasonal variations in travel
activity patterns, traffic conditions of a freeway are not
deterministic but actually fluctuate from day to day.
Moreover, the mobile sensor can not only move freely
in the traffic network, but also record the traffic flow,
vehicle speed, and license plate information. Therefore,
the mobile sensor is easier to adapt to the dynamic traffic
environment. Thus we will divide the freeway into several
cells with an equal distance and propose a new dynamic
location model of the mobile sensor in different time
periods.

3.1. Model assumptions.

• The mobile sensors start from the first cell of the
freeway and go back to the last one. This means that
the sensors move in the same direction as the vehicles
on the freeway.

• The speed of the mobile sensor is constant. This is
to estimate how many cells the mobile sensor moves
each time it changes the position.

• There is only one mobile sensor in a cell of the
freeway at the same time period.

• The same mobile sensor can arrive at only one cell of
the freeway at the same time period.

• The mobile sensor location in a cell of the freeway
means the position of the midpoint of this cell.

3.2. Model establishment. As mentioned in the
preceding sections, suppose the freeway is divided into N
equal cells with small length l, as shown in Fig. 1. The
number of mobile sensors is M (M < N ). The total
observation time is divided into R periods with the same
time interval.

If a mobile sensor is located in a cell, the sensor
gets the speed of all vehicles passing through this cell.
Since the freeway is divided into cells of a very short
length, the cell is regarded as a point relative to the entire
freeway. Therefore, the average speed of all vehicles
passing through a cell is taken as the point speed of the
cell.

Suppose that there are J vehicles passing through the
cell s in time period t, so the point speed of the cell is

vts =
1

J

J∑

j=1

vts,j , (1)

where vts is the point speed of cell s in time period t, vts,j
is the speed of vehicle j passing through cell s in time
period t.

If two cells S and S′ are occupied by mobile sensors
i and i′, respectively, then the two cells compose a section
(see Fig. 1). It is to be noted that the number of mobile
sensors is M and the freeway is always divided into M+1
sections for any time period (the length of these sections
is not equal). Except for the first and last sections, the
beginning and the end of every other section are occupied
by the actual sensors, and the average value of point speed
data collected by the sensors at the beginning and the
end of the section is taken as the average speed of this
section. The first section only has a sensor at the end,
so the average speed of the first section equals the sensor
data of its end. Similarly, the average speed of the last
section equals the sensor data of its beginning. Therefore,
the average speed of all sections can be deduced as

vtss′ =

⎧
⎪⎨

⎪⎩

vts′ , ss′ = 1,
1
2 (v

t
s + vts′), 2 ≤ ss′ ≤ M,

vts, ss′ = M + 1,

(2)

where vtss′ is the average speed of section ss′ between
start cell s and end cell s′ in time period t.

Sensor i Sensor  i’

  1      2        ......       S         ......      S’    ......     N
  
Cell                                    Section

Fig. 1. Schematic diagram of a freeway.



Dynamic location models of mobile sensors for travel time estimation on a freeway 275

Then, the travel time for each section is

Et
ss′ =

Lss′

vtss′
=

l · (s′ − s)

vtss′
, (3)

where Et
ss′ is the estimated travel time of section ss′ in

time period t, Lss′ is the length of section ss′.

On the other hand, there is a true travel time for each
section, so the error of travel time estimation for each
section is expressed as

etss′ = |Gt
ss′ − Et

ss′ |, (4)

where etss′ is the error of travel time estimation for section
ss′ in time period t, Gt

ss′ is the true travel time of section
ss′ in time period t.

Once the method for estimating the travel time error
has been determined, the problem of dynamic mobile
sensor location on the freeway can be transformed into
how to locate the mobile sensors in different cells in
different time periods to minimize the sum of errors of
travel time estimation of all sections. It is worth noting
that the mobile sensor can not only pick up the speed of
passing vehicles, but also observe the traffic flow, that
is, the number of vehicles passing the cell within a time
interval. The greater the traffic flow in a cell, the more
accurate the point speed of that cell calculated by Eqn. (1),
and thus the more accurate travel time estimation. In
other words, mobile sensors located in some cells seem
meaningless if one cell has a large travel time estimation
error and a small traffic flow. Therefore, this paper
proposes a bi-objective optimization model to minimize
the error of travel time estimation and maximize the
observed traffic flow on a freeway. The bi-objective model
is shown below:

M1 : min f1 =
R∑

t=1

N∑

s=1

N∑

s′=s+1

M∑

i=1

M∑

i′=1

xitsxi′ts′e
t
ss′ ,

(5)

max f2 =

R∑

t=1

N∑

s=1

M∑

i=1

xitsq
t
s, (6)

s.t.

N∑

s=1

xits = 1, ∀ i, ∀ t, (7)

M∑

i=1

xits ≤ 1, ∀ s, ∀ t, (8)

xits′ > xit′s, ∀ i, ∀ t′ > t, ∀ s′ > s, (9)

s′−1∑

s=1

M∑

i=1

M∑

i′=1

xitsxi′ts′

=

N∑

s′′=s′+1

M∑

i′=1

M∑

i′′=1

xi′ts′xi′′ts′′ ,

∀ s′ = 2, 3, . . . , N − 1, ∀ t, (10)

xits ∈ {0, 1}, ∀ i, ∀ t, ∀ s, (11)

where xits is a 0–1 variable, xits = 1 indicates that the
mobile sensor i is located in cell s in time period t and
otherwise zero, qts is the traffic flow on cell s in time
period t.

The objective function (5) ensures that the estimated
travel time error of the whole freeway in the total
observation time is minimum. The objective function (6)
ensures that the total observed flow is maximum. Now
we use a simple example (see Fig. 2) to explain the
calculation of the objective functions f1 and f2. Suppose a
freeway consists of seven cells, and there are two mobile
sensors. The total observation time is divided into two
periods. In the first one, sensors i1 and i2 are located in
cells 2 and 5, respectively. That is, x125 = x215 = 1.
Then, the freeway is divided into three sections, namely,
from cell 1 to cell 2, from cell 2 to cell 5, from cell 5 to
cell 7. In the second time period, sensors i1 and i2 are
located in cells 4 and 6, respectively (x124 = x226 = 1).
Then, the corresponding three sections are from cell 1 to
cell 4, from cell 4 to cell 6, from cell 6 to cell 7.

According to Eqn. (2), the average speed of the three
sections in two time periods is

v112 = v12 , v125 =
v12 + v15

2
, v157 = v15 ,

v214 = v24 , v246 =
v24 + v26

2
, v267 = v26 .

(12)

Then, the estimated travel time of the three sections in two

i2i1

Section 1                     Section 2     Section 3

Section 1               Section 2               Section 3

i2i1

1         2          3          4           5            6         7

1          2          3           4           5           6         7

Fig. 2. Simple example of dynamic location of sensors on a
freeway.
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time periods by Eqn. (3) is

E1
12 =

l

v112
, E1

25 =
3l

v125
, E1

57 =
2l

v157
,

E2
14 =

3l

v214
, E2

46 =
2l

v246
, E2

67 =
l

v267
.

(13)

Hence, the estimated error of travel time f1 and
observed traffic flow f2 for the entire freeway in the total
observation time are calculated as follows:

f1 = e112 + e125 + e157 + e214 + e246 + e267,

f2 = q12 + q15 + q24 + q26 .
(14)

The constraint (7) ensures that the same sensor can
only be located in one cell at the same time period. The
constraint (8) guarantees that at most one sensor is located
in the same cell at the same time period. The constraint
(9) ensures that the mobile sensor always moves forward
along the one-way freeway. For sensor i, if it is located
in cell s′ in time period t, i.e., xits′ = 1, then, in any
later time period t′, sensor i cannot be located in all cells
s in front of cell s′, i.e. xit′s = 0. The constraint
(10) guarantees that any given cell can only serve as the
beginning of a section at most. In other words, for any
cell (except for the first and the last cell), when it is the
beginning of a section, it must be the end of the previous
section. When it is not the beginning of a section, it
is certainly not the end of the previous section. The
constraint (11) is the restriction on decision variable xits.

4. Combinatorial location model of mobile
and fixed sensors

For most freeways, there already exist fixed sensors
to collect or estimate traffic information. However,
traffic estimation will not be accurate due to some
uncertainty factors such as sensor failures. In addition, the
distance between each fixed sensor is too big to provide
high-precision traffic data effectively on account of the
limitation of upfront cost. Unlike fixed sensors, mobile
ones can collect real-time traffic data in a wide range.
Therefore, it is more reasonable to add mobile sensors
to the freeway with fixed sensors to obtain high-precision
dynamic traffic data.

Suppose the number of fixed sensors that have been
located on a freeway is C. The data collected by
these fixed sensors include point speed and traffic flow.
The freeway is divided into C + 1 sections according
to the position of fixed sensors. The length of each
section is equal to the distance between two adjacent fixed
sensors. Therefore, the problem of dynamic location of
mobile sensors on a freeway with fixed sensors consists
in determining how to locate mobile sensors in sections in
different time periods.

There will be two types of sensors (fixed sensors
and mobile sensors) in a section when mobile sensors
are located at this section. Since location points of
different kinds of sensors are disparate, it is important to
integrate multi-source traffic sensor data to obtain fusion
data accurately. In the literature, there are some common
information fusion approaches, including the weighted
average, the Kalman filter, modulus theory, and artificial
neural networks (Meng et al., 2020). Among these data
fusion methods, the weighted average method is suitable
for the dynamic traffic problem and it is easy to operate.
Thus, the weighted average method is adopted to calculate
the fusion speed of the section, that is,

vkt =
1

2

⎛

⎜⎜⎜⎝

vfkt +
∑

s∈S(k)

M∑
i=1

xitsv
t
s

∑
s∈S(k)

M∑
i=1

xits

⎞

⎟⎟⎟⎠ , (15)

where vkt is the fusion average speed of section k in time
period t, vfkt is the average speed obtained by the fixed
sensor of section k in time period t, which is calculated
by Eqn. (2), S(k) is the set of cells included in section k
except for the beginning and end cells. Since fixed sensors
have been located at the beginning and end cells of each
section, according to the model assumptions that only one
sensor can be located in each cell, mobile sensors can only
be located in the cell without fixed sensors. The meaning
of xits and vts is the same as before.

In Eqn. (15),

∑
s∈S(k)

M∑
i=1

xitsv
t
s

∑
s∈S(k)

M∑
i=1

xits

represents average speed obtained by the mobile sensor of
section k in time period t. Fusion average speed vkt is
obtained by the weighted average of the fixed and mobile
speed data. Thus, the travel time estimation error for each
section k in time period t can be calculated as

ekt =

∣∣∣∣Gkt − Lk

vkt

∣∣∣∣ , (16)

where Gkt is the true travel time of section k in time
period t, Lk is the length of section k.

Similarly, the fusion traffic flow of each section can
be obtained with the following equation:

qkt =
1

2

(
qfkt +

∑
s∈S(k)

∑M
i=1 xitsq

t
s

∑
s∈S(k)

M∑
i=1

xits

)
, (17)

where qkt is the fusion flow of section k in time period t.
qfkt is the fixed sensor flow of section k in time period t.
The meaning of qts is the same as before.
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On the basis of the above discussion, in the case of
fixed sensors on a freeway, the dynamic location model of
adding mobile sensors is described as follows:

M2 : min f3 =
R∑

t=1

C+1∑

k=1

ekt, (18)

max f4 =

R∑

t=1

C+1∑

k=1

qkt, (19)

s.t.
∑

s∈S

xits = 1, ∀ i, ∀ t, (20)

M∑

i=1

xits ≤ 1, ∀ s, ∀ t, (21)

xits′ > xit′s, ∀ i, ∀ t′ > t, ∀ s′ > s, (22)

xits ∈ {0, 1}, ∀ i, ∀ t, ∀ s, (23)

where S ∈ {S(k)}, k = 1, 2, . . . , C + 1.
In fact, the proposed two modelsM1 andM2 are very

similar. Obviously, the first objective functions of both
models (Eqns. (5) and (18)) are to minimize the error of
travel time estimation, and the second objective functions
(Eqns. (6) and (19)) are to maximize the observed traffic
flow. The only difference between the two models is the
candidate cell for mobile sensor location. Specifically,
model M1 needs to consider how to locate mobile sensors
in all N cells of the whole freeway, while model M2 only
needs to consider the remaining N − C cells except C
fixed sensors.

5. Solution algorithm

The proposed two models M1 and M2 are bi-objective
optimization problems. There usually exist contradictions
among multiple sub-objectives, so it is necessary
to coordinate and trade-off among the multiple
sub-objectives so that each sub-objective can reach
an ideal value as far as possible, that is, to find its
Pareto solution (Chou et al., 2019). In order to deal with
bi-objective optimization, the linear weighting method
is adopted to convert a bi-objective problem into a
single-objective one (Kolak et al., 2018). It is noted that,
for a model M1, f1 is minimization, f2 is maximization,
and the magnitude of the two objectives is quite different.
Therefore, objectives f1 and f2 are first normalized
according to the following formula:

f ′
i =

fi − fi,min

fi,max − fi,min
, (24)

where f ′
i is the normalized function of objective function

fi, fi,max, fi,min is the maximum and the minimum of
objective function fi, respectively.

Then, normalized functions f ′
1 and f ′

2 are converted
using the linear weighting method into the following

single-objective optimization:

M1 : min f = f ′
1 − f ′

2,
s.t. (7) ∼ (11).

(25)

Similarly, model M2 is modified to the following
single-objective optimization:

M2 : min f = f ′
3 − f ′

4,
s.t. (20) ∼ (23).

(26)

Obviously, models M1 and M2 are also integer
programming problems. Some conventional algorithms
can be adopted to solve integer programming problems,
such as branch and bound, cut plane, and enumerations
(Fischetti and Monaci, 2020). However, these
conventional algorithms are only suitable for smaller
scale problems. In other words, these algorithms are less
efficient when there are more variables. In recent years,
some intelligent algorithms have been frequently used to
solve large-scale integer programming problems, such as
genetic algorithms, particle swarm optimization, the tabu
search algorithm, and the simulated annealing algorithm
(Nemati et al., 2018). These algorithms can produce
an approximate optimal solution within acceptable
time. Compared with other intelligent algorithms, the
simulated annealing algorithm converges to the optimal
solution with probability 1 theoretically. Meanwhile,
the simulated annealing algorithm has the advantages
of a simple description, using flexible, high running
efficiency, and is less affected by the initial solution
(Song et al., 2020). Moreover, models M1 and M2 are
very similar. Thus, the simulated annealing algorithm is
employed to solve the two models proposed in this paper.

Simulated annealing is an algorithm that simulates
the solid annealing process. Such a process includes
the coding of the solution, an annealing temperature,
the energy function, generation and acceptance of a new
solution, and the length of the Markov chain (Liu et al.,
2019). Detailed descriptions are as follows.

Solution coding: The natural number coding and a matrix
are used to express the dynamic location scheme of mobile
sensors. This is illustrated by a simple example in Fig. 2,
which can be coded using the following matrix:

X =

(
2 5
4 6

)
.

The element ati of this matrix represents the cell number
where mobile sensor i is located in time period t. For
example, a12 = 5 represents that sensor 2 is located in cell
5 in time period 1. Thus, each row of the matrix represents
the distribution of all sensors in each time period, and each
column represents the path of each sensor over all time
periods.

Annealing temperature: The annealing temperature
controls the solution process. As long as the initial
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temperature is high enough, the cooling process is slow
enough, and the termination temperature is low enough,
so that the algorithm can converge to the global optimal
solution. Therefore, the initial temperature is generally set
to 95∼100, and the termination temperature is 1∼5. The
cooling function always adopts the equation Tk+1 = αTk,
k = 0, 1, 2, . . . , where α is a constant, usually ranging
from 0.5 to 0.99.

Energy function: The energy function represents the pros
and cons of the current solution. The lower the energy,
the closer the solution to the optimal one. Since the
objective function in Eqns. (25) and (26) aims at finding
the minimum, the energy function is defined as E = f .

Generation of a new solution: A new feasible solution
is obtained by randomly changing the value of some
decision variables corresponding to the current solution.
In this paper, we randomly select an altered element for
each row in the coding matrix of the current solution.
Then for the same row, one of the cells unoccupied
by sensors is randomly picked to replace the altered
element. For example, the current solution shown in Fig. 2
produces a new solution as follows:

(
2 5
4 6

)
−→

(
2 3
5 6

)

Current solution New solution

Acceptance of the new solution: The acceptance of the
new solution is divided into unconditional acceptance
and conditional acceptance. If the objective value of the
new solution is less than that of the current solution, the
new solution is accepted. Otherwise, the new solution is
accepted with a certain probability.

Length of the Markov chain: The length of the Markov
chain is the number of iterations at any temperature.
In other words, it is the number of inner cycles of the
algorithm, which is generally regarded as Lk = 100n,
where n is the scale of problem.

Therefore, the simulated annealing algorithm is to
gradually reduce the temperature and repeat the following
process: generate a new solution, calculate the difference
of the objective function, accept or discard. The algorithm
steps are shown in Algorithm 1.

6. Simulation experiment

In this section, the He-huai-fu Freeway in the Anhui
Province, China, is used to illustrate the effectiveness
of the proposed models and algorithms. This freeway
starts at the Shushan of Hefei in the south and ends
at the Sishipu of Fuyang in the north. Since its

Algorithm 1. Simulated annealing.
Step 1. Initialization. Set initial solution X0, initial
temperature T0, termination temperature Tf , cooling
function Tk, energy function B, and length of Markov
chain Lk. Set iteration number k = 0, current temperature
Tk = T0 and current solution Xk = X0.

Step 2. Disturb current solution Xk, and randomly
generate new solution Xi. Calculate the increment of
energy function �B = B(Xi)−B(Xk).

Step 3. If �B < 0, accept new solution Xi as the new
current solution. Otherwise, accept new solution Xi with
a probability of exp(−�B/Tk).

Step 4. At temperature Tk, repeat the disturbance and
acceptance Lk times, i.e., repeat Steps 2 and 3.

Step 5. Decrease temperature Tk according to the cooling
function. If Tk < Tf , stop the iteration, otherwise, go to
Step 2.

opening in 2008, the He-huai-fu Freeway has effectively
strengthened exchanges between the provincial capital
and northwest Anhui, and it is an important road from East
China to Central Plain. The entire length of the He-huai-fu
Freeway is 191 km and it passes through four cities,
namely, Hefei, Lu’an, Huainan and Fuyang. The section
from Hefei to Huainan is a two-way six-lane freeway,
and the section from Huainan to Fuyang is a two-way
four-lane freeway. The He-huai-fu Freeway includes 14
interchanges and 4 service areas. Their lanes and pile
numbers are shown in Table 2. In this paper, the pile
number of the He-huai-fu Freeway from K225+954 to
K247+213 is selected as the research road, whose total
length is 21.26 km. There already exist 6 fixed sensors
on the freeway with non-equal intervals, and the related
parameters are shown in Fig. 3.

The freeway under study should be divided into
several cells. On the one hand, the length of each cell
cannot be too long. Different cells represent different
locations of the freeway, i.e., the sensor gets the traffic
information of the cell where it is located. The shorter the
cell, the more accurate the information collected. But the
cell length should not be too short, because the shorter the
cell length, the bigger the number of cells, which leads to
too many decision variables of the model. For illustration,
the freeway in Fig. 3 is divided into 212 cells with 100
meters in length.

Because traffic data of the cell are difficult to
obtain in practice, this paper uses the microscopic traffic
simulation program VISSIM to generate the required
speed data and traffic flow data. In order to approximate
the actual environment, the simulation input data the
based on the actual traffic flow. The simulation traffic
flow is set as shown in Table 3. Here, q1 is the traffic
flow of the main line, q2, q3, q4, q5 represent the traffic
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Table 2. Road information of the He-huai-fu Freeway.

Traffic
Name Lanes

Pile numbers
direction Entrance Exit

Shushan interchange

6

K60+830

Hefei west interchange

K73+130
K73+580

K73+750
K73+940

Wushan interchange
K85+860
K86+460

K86+960

Longmensi service area
K98+930

K99+130

Yangmiao interchange
K106+630

K107+030

Changfeng south interchange
K131+829

K132+210

Changfeng interchange
K136+410

K136+910
South

Caoan interchange
K142+660

K143+210
↓

Huainan south interchange
K148+860

K149+660
North K150+310

Bagongshan service area
K156+230

K156+630

Huainan west interchange
K165+360

K167+060

Jiaogang lake service area
K185+080

K185+580

Maoji interchange
K202+860

K203+130

Yingshang east interchange

4

K212+780
K213+230

Yingshang service area
K222+880

K223+380

Yingshang west interchange
K234+240

K234+740

Fuyang south interchange
K243+250

K243+540

Sishipu interchange
K251+330

K251+930

Note: The unit of pile numbers in front of ‘+’ is kilometer and the back is meter.

flow of the two on-ramps, respectively. According to the
classification statistics of vehicles collected in Table 3, the
ratio of cars to trucks is set at 10:1. The speed range of the
car is set to be (60, 120) km/h, and that of the trucks is set
to be (60, 100) km/h.

The simulation time is 0–21600 s, where the first
3600 s are the warm-up time and the last 18000 s are the

normal running time. The time interval of data acquisition
is 10 minutes, so the running time is divided into R =
18000÷ (10× 60) = 30 periods.

The true travel time is obtained from the VISSIM file
‘Travel Time’. The initial speed data from the VISSIM
file ‘Data Point’ are regarded as the true speed. There are
two types of sensors on the studied freeway: fixed sensors
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3.75 3.04 4.23 2.92 1.67 3.26 2.39

Unit: km

South North

Fix sensor
Yingshang west
interchange

Fuyang south
interchange

Fig. 3. Location of fixed sensors on the study road of the He-huai-fu Freeway.

Table 3. Simulation settings of traffic flow.

Traffic flow
Simulation time q1 q2 q3 q4 q5

0 ∼ 3600 s 2120 157 126 53 84
3600 ∼ 7200 s 2520 189 151 63 101

7200 ∼ 10800 s 2678 199 158 66 115
10800 ∼ 14400 s 2625 197 162 57 105
14400 ∼ 18000 s 2436 183 147 65 100
18000 ∼ 21600 s 1837 136 110 48 78

and mobile sensors, which have different precisions in
collecting vehicle speed data. Generally, the error of the
fixed sensor is 5%, and that of the mobile sensor is 10%.
Therefore, in order to distinguish the speed data of the two
sensors, we multiply the initial speed data by (1 ± 0.05)
and (1±0.1), respectively, where the positive and negative
signs are randomly selected.

The parameters of the simulated annealing algorithm
are set as follows: initial temperature T0 = 97,
termination temperatureTf = 3, coefficient of the cooling
function α = 0.95 and length of the Markov chain Lk =
10000.

6.1. Location of the mobile sensor. In this section,
we solve model M1 for the investigated freeway, that is,
how to dynamically locate mobile sensors on the premise
where that there is no sensor on the freeway.

6.1.1. Comparison of the mobile sensor and the fixed
sensor. In model M1, the number of mobile sensors
ranges from 6 to 18, and the corresponding normalized
objective function values f1 (Eqn. (5)), f2 (Eqn. (6)), f
(Eqn. (25)) can be obtained. For comparison, we also
evaluate the objective function when locating the same
number of fixed sensors. Since the fixed sensor cannot
move, the total objective function value is the sum of the
objective function values for all time periods. The detailed
results are shown in Fig. 4.

In Fig. 4(a), when the same number of sensors is
located, the travel time error f1 estimated by the mobile
sensor is always smaller than that of the fixed sensor.

This is mainly because the position of the mobile sensor
varies in each time period while that of the fixed sensor
is constant, so the optimal solution of the mobile sensor
is also the optimal solution in each time period, but the
fixed sensor does not guarantee that. In addition, with an
increase in the number of sensors, the travel time errors of
mobile and fixed sensors are both reduced. This is because
the freeway is divided into sections by the sensors. The
greater the number of sensors, the greater the number of
sections, and the more accurate the estimation of the entire
freeway. It should be noted, however, that this downward
trend is mitigated when the number of sensors reaches
13. In other words, increasing the number of sensors at
this point has little effect on the accuracy of travel time.
Therefore, it is not always best to have as many sensors as
possible, and there are cost constraints in real life.

In Fig. 4(b), traffic flow f2 observed by the mobile
sensor is always greater than that observed by the fixed
sensor, because the mobile sensor can move flexibly. In
addition, no matter what kind of sensor is used, with an
increase in the number of sensors, the observed traffic flow
is increased.

Figure 4(c) shows that the mobile sensor still
performs better than the fixed sensor for the objective
function f = f1− f2. For instance, the objective function
values of the mobile sensor and the fixed sensor are
−0.4877 and −0.3563 when the number of sensors is 9,
respectively. However, the advantages of mobile sensors
over fixed sensors decrease as the number of sensors
increases. For example, the objective function values of
mobile and fixed sensors are almost the same when the
number of sensors is 18. This is partly because when the
number of mobile sensors increases, the possible locations
for mobile sensors decrease. On the other hand, model
M1 is originally bi-objective including f1 and f2 with
possible conflicts. The objective function f is a linear
combination of f1 and f2 into a single objective, so it
represent a trade-off between the two objectives to some
extent.

6.1.2. Sensitivity analysis of the model parameter.
From the above experimental results, we have seen that
the number of sensors has a certain impact on the objective
function value of model M1. In fact, the key to determine
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Fig. 4. Comparison of different objective function values for
mobile and fixed sensors.
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Fig. 5. Comparison of mobile sensors for different road condi-
tions.

the solution of the model lies in the vehicle data collected
by the sensor, and these data are varied in different road
conditions, sampling time intervals and sensor precision.
Therefore, this section makes some sensitivity analysis of
model M1 in the following aspects:

Traffic congestion: In order to study the impact of road
conditions on the model, two cases of congestion and
non-congestion are discussed. We take the traffic flow in
Table 3 as the non-congestion data, and the speed range
of the car and truck is set to be (60, 120) and (60, 100)
km/h, respectively. The data in Table 3 are multiplied by
1.5 for the congestion case. Because of the heavy traffic,
the vehicle speed should be reduced. To this end, the
speed range of the car and truck is set to be (60, 100) and
(60, 80) km/h, respectively. In the case of congestion and
non-congestion, the objective function value f (Eqn. (25))
changes with the number of mobile sensors, as shown in
Fig. 5.

As can be seen from Fig. 5, when the number of
mobile sensors is less than 10, the objective function
value of congestion is better or worse than that of
non-congestion. That is to say, when there are few
sensors, the road condition has little effect on the model.
However, when the number of sensors exceeds 10, the
objective function of non-congestion is obviously smaller
than that of congestion. This is mainly because too
many mobile sensors cannot move freely in a crowded
environment.

We also provide the dynamic location scheme of
mobile sensors for congestion and non-congestion when
the number of mobile sensors is 6, that is, the cell labels
located with 6 sensors in each time period. The results are
shown in Table 4.

Comparing the same row in Table 4, the cell
labels associated with 6 mobile sensors at the same
time period are completely different for congestion and
non-congestion. In other words, the sensor location is
very sensitive to the degree of road congestion. And
different road conditions will lead to different vehicle
speeds, traffic flows and travel times, so the optimal
scheme of sensor location is dependent on simulation data.

In addition, the objective function with different
numbers of mobile sensors and fixed sensors for
congestion and non-congestion is compared as shown
in Fig. 6.

Apparently, Fig. 6(a) shows that the mobile sensor
performs better than the fixed one in non-congestion
networks. However, under the congestion condition in
Fig. 6(b), it is obvious that the intersection point of two
curves is 15. When the number of sensors is less than
15, the mobile sensor performs better than the fixed one.
On the contrary, the fixed sensor has better performance
when the number of sensors is more than 15. That is
to say, the advantages of mobile sensors over fixed ones
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Table 4. Dynamic location scheme of 6 mobile sensors with different road conditions.

Time Non-congestion Congestion
period i1 i2 i3 i4 i5 i6 i1 i2 i3 i4 i5 i6

1 2 8 17 22 39 47 3 13 26 38 41 45
2 2 23 38 56 76 91 4 19 39 54 70 86
3 9 27 47 65 80 101 5 21 39 59 77 96
4 9 31 48 71 95 110 8 23 46 62 78 101
5 12 31 51 73 95 111 8 30 53 74 89 106
6 18 38 60 80 99 115 13 35 55 76 97 117
7 21 43 61 81 100 118 16 35 59 77 97 120
8 25 43 62 83 103 122 20 43 61 81 98 121
9 25 43 63 85 103 124 24 44 65 88 103 122

10 26 45 65 86 104 125 29 50 72 91 106 123
11 28 46 70 88 108 129 31 53 72 96 118 134
12 32 50 72 93 112 132 38 58 82 104 126 144
13 33 51 73 93 114 132 45 64 83 104 127 144
14 38 59 75 99 120 135 45 66 84 105 127 145
15 43 65 86 102 122 140 50 68 86 107 128 148
16 48 67 87 105 124 144 51 69 86 107 128 149
17 55 77 98 117 133 151 53 70 88 108 129 150
18 59 79 98 117 134 152 55 71 93 113 135 155
19 60 80 99 117 134 153 62 84 102 117 135 157
20 62 81 100 122 142 157 68 85 108 125 144 166
21 65 85 101 124 143 167 70 91 110 133 155 171
22 72 88 109 128 146 169 71 94 115 135 156 174
23 72 89 112 132 154 175 72 96 120 138 157 177
24 72 94 115 136 157 175 77 97 121 138 161 180
25 78 101 117 137 159 176 84 105 128 151 171 190
26 82 102 123 140 161 177 91 113 133 152 172 190
27 84 105 124 143 162 179 94 115 136 152 174 191
28 86 105 125 144 165 181 99 121 138 156 174 195
29 90 108 125 145 169 185 106 125 142 166 183 200
30 92 111 129 146 169 191 106 129 150 167 187 204

gradually decrease with traffic congestion. This is because
the mobile sensor cannot move in congestion.

In summary, when the number of sensors is small,
mobile sensors perform better than fixed ones regardless
of road conditions. However, the advantages of mobile
sensors gradually decrease when the number of sensors
increases, especially in the congestion case. Therefore,
how to choose different kinds of sensors on a freeway
depends on traffic congestion and the number of sensors.

Sampling time interval: In order to illustrate the impact
of different time intervals on dynamic location of mobile
sensors, the time intervals are set to be 10 min, 15 min,
20 min, and 30 min, respectively. The number of sensors
is 10. Then, the objective function value of model M1

compared to with fixed sensors is shown in Fig. 7.

It is obvious that, when the time interval increases,
the objective function value increases. This is because the

shorter time interval can collect more traffic information.
Moreover, the results with mobile sensors always perform
better than the solutions with fixed sensors. Specifically,
when a time interval increases, the gap between the
objective function values with fixed sensors and mobile
sensors decreases. For example, when the time interval
increases from 10 minutes to 30 minutes, the gap between
the objective function values with fixed sensors and
mobile sensors decreases from 0.12 to 0.02. This is
because the shorter the time interval, the more frequently
the location of mobile sensor changes, which can better
reflect dynamic data on the freeway.

Mobile sensor precision: Now, we study the effects of
sensors with different precisions on model M1. The
detection precisions of the mobile sensor are set to be
97%, 95%, and 90%, respectively. For each precision,
the number of sensors ranges from 6 to 18. The objective
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Fig. 6. Comparison of mobile and fixed sensors for different
road conditions (non-congestion (a), congestion (b)).

function of models with different numbers of sensors and
precisions is shown in Fig. 8.

Apparently, when the number of mobile sensors
increases, the total objective function value with different
precisions decreases. Moreover, the higher the precision
of mobile sensors, the smaller the total objective function
value with the same number of sensors. For a
low-precision sensor, we can increase the number of
sensors to improve the objective function value. For
example, in order to reach the objective function value
of −0.58, the number of mobile sensors needs to be set
as 8, 11, and 15 with a 97%, 95%, and 90% precision,
respectively. This indicates that the precision of mobile
sensors plays an influential role in sensor location.

6.2. Combination location of mobile and fixed sen-
sors. In this section, we solve model M2 for the
investigated freeway, that is, how to dynamically add
mobile sensors on the premise where 6 fixed sensors have
been located on the freeway.

6.2.1. Comparison of adding mobile sensors and
adding fixed sensors. In model M2, the number of
mobile sensors ranges from 1 to 10. Moreover, we also
calculate the objective function value of adding the same
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Fig. 7. Comparison of results for different time intervals.
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Fig. 8. Comparison of results for different precisions.

number of fixed sensors for comparison. The detailed
results are shown in Fig. 9.

It can be seen from Fig. 9 that the objective function
value decreases as the number of sensors increases,
regardless of which type of sensor is added. In addition,
when the number of added sensors is 4, the trend of rapid
decline slows down. This shows that when the number of
added sensors reaches 4, it will not significantly improve
the results if adding more sensors. Thus, the following
experiments only discuss the case of adding 4 mobile
sensors. Moreover, the mobile sensor performs better than
the fixed one for the same number of added sensors. For
instance, the objective function values for mobile sensor
and fixed sensor are −0.6423 and −0.5689 in the case of
adding 4 sensors, respectively. On the basis of the above
discussion, a combination of mobile and fixed sensors can
be adopted to obtain more accurate traffic information in
reality.

6.2.2. Position analysis of added mobile sensors. It
is assumed that the added number of mobile sensors is
4 and the time interval is 10 minutes. The position of
each mobile sensor in 30 time periods can be obtained by
solving model M2. The whole freeway is divided into 7
sections by 6 fixed sensors and counts the total number of
mobile sensors located in each section in 30 time periods.
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Then, the number of mobile sensors on each section and
the distance of each section are arranged in descending
order. The detailed descriptions are shown in Table 5.

It can be seen from Table 5 that the number of mobile
sensors is proportional to their distance for most sections.
For example, the number of sensors and the distance of
Section 2 are larger than those of Section 5. This indicates
that the longer the distance, the more sensors need to
be located in this section. This aims at ensuring more
accurate estimation. However, the numbers of mobile
sensors in some sections are inconsistent with the orders
of their distances. For example, although the distance of
Section 6 is shorter than that of Section 1, the number
of sensors in Section 6 is obviously greater than that of
Section 1. There are two reasons that may lead to such a
phenomenon. First, it can be seen from Fig. 3 that Section
6 contains entrance and exit ramps, which may make
travel time and traffic flow vary greatly. Therefore, the
sensors should be located in a section with relatively large
fluctuation information, so as to collect more valuable
information. Secondly, this paper assumes that the mobile
sensor starts from the beginning point of the freeway and
returns to the ending point. Thus, Section 1 is regarded as
the starting point and will not have more opportunities to
locate sensors. In summary, the location of mobile sensors
will consider the length and position of each section.

6.2.3. Data fusion comparison. For model M2, the
speed and flow data of the fixed and mobile sensors
should be fused. In this section, we examine the effect
of data fusion on Section 3 of the freeway. The reason
for choosing Section 3 is the longest distance among all 7
sections, and the fact that it contains an entrance and exit
ramp. Moreover, Section 3 is in the middle of the entire
freeway. The comparison of speed data and flow data in
Section 3 is shown in Figs. 10 and 11.

In Figs. 10 and 11, the fused data are very close to the
actual data and the error is near zero. Moreover, we know
that the number of mobile sensors located in Section 3 is
26 in 30 time periods from Table 5. Apparently, there are
4 times when mobile sensor data are zero, and the error
of 4 points on the line that represents the mobile sensor is
very large, as shown in Figs. 10 and 11. In addition, the
fusing error of speed is smaller than that of the flow, which
is mainly due to the fact that the speed of vehicles passing
through Section 3 is stable at about 80 km/h and the flow
ranges from 120 to 430 pcu/hour. Thus the combination of
fixed and mobile sensors is more effective for travel time
estimation. In summary, linear weighting is a simple and
effective fusion data method, which can make the fusion
data closer to their true values.

7. Conclusions

In order to obtain travel time estimates for a freeway
accurately, this paper proposed two sensor location

models that consider minimizing the error of travel time
estimation and maximizing the collected traffic flow. First,
a dynamic optimization model for mobile sensor location
was proposed under the assumption that there are no
traffic sensors on the freeway. Next, a dynamic optimal
combinatorial model of mobile sensors and fixed sensors
was presented taking account of fixed sensors on the
freeway. The proposed models were optimized with
the simulated annealing algorithm. In the simulation
experiment, we verified the applicability of the model and
the robustness of the algorithm. The experimental results
show that the mobile sensor is better than the fixed sensor
in most cases, and the combination of both sensors is best.
However, this paper has several limitations, and thus we
suggest the following future research works.

• The proposed models need to know the traffic flow
and all vehicles’ speed in each cell, but it is not
practical to locate sensors in each cell to get this
information. Therefore, this paper simulates the data
needed in the simulation experiment. How to use
special technology such as the Freeway Performance
Measurement System to obtain vehicle information
in reality is worth further studies.

• It is an important research direction how to consider
sensor failures in the proposed model to guarantee its
reliability.

• The linear weighting method is used to fuse the
data of mobile and fixed sensors in this paper. In
future research, some artificial intelligence fusion
algorithms will be adopted to compare the effect of
various algorithms on traffic data fusion.
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