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Neuro-fuzzy systems have proved their ability to elaborate intelligible nonlinear models for presented data. However, their
bottleneck is the volume of data. They have to read all data in order to produce a model. We apply the granular approach
and propose a granular neuro-fuzzy system for large volume data. In our method the data are read by parts and granulated.
In the next stage the fuzzy model is produced not on data but on granules. In the paper we introduce a novel type of
granules: a fuzzy rule. In our system granules are represented by both regular data items and fuzzy rules. Fuzzy rules are
a kind of data summaries. The experiments show that the proposed granular neuro-fuzzy system can produce intelligible
models even for large volume datasets. The system outperforms the sampling techniques for large volume datasets.
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1. Introduction

1.1. Granular computing. Granular computing is
an emerging field of research in data mining. This
new paradigm is a shift from computer-centred to
human-centred analysis. The phrase “information
granulation” was coined by Lotfi Zadeh in 1979 (Zadeh,
1979). It was a very innovative idea (perhaps too
innovative) and was not exploited mainly because there
were not enough techniques and methods. Later on
techniques, algorithms, ideas, concepts were further
developed and in 1997 Zadeh published a paper in
which he described the idea of “granular computing”
(Zadeh, 1997), where he stated three concepts of human
cognition: granulation (decomposition of a whole into
parts), organization (integration of parts into a whole),
and causation (relations of causes and effects). Granular
computing (GrC) is an umbrella term for concepts,
algorithms, techniques, and methods that mimic the
human cognition model (Pedrycz et al., 2015b). Granular
computing aims at providing a generic abstraction for
methods already known and applied (Salehi et al., 2015).
It is a new view on existing methods and simultaneously
a starting point for new techniques, algorithms, and
concepts. For Zadeh granular computing is a starting point

for computing with words (Zadeh, 2002). In recent years
granular computing has woken up from long hibernation
and has made a huge progress (Yao et al., 2013). Yao
(2007) claims granular computing a new field of study.

Yao (2008) also describes a triarchic theory
of granular computing with three perspectives, each
supporting the other two (Fig. 1):

Philosophical perspective: focused on structured
thinking. A complex system can be decomposed
into smaller simpler and more fundamental parts.
A complex system is viewed as a cooperation of
simpler components. The properties of the system
are properties of its parts and relations between
components (in the case of emergent wholes). This
perspective holds both analysis of a whole into parts
and synthesis of a whole from parts.

Methodological perspective: focused on structured
problem solving. It analyses methods, techniques,
and tools aimed at systematic problem solving at
multiple levels and with multiple views.

Computational perspective: focused on structured
information processing. It tries to address
information processing on multiple levels of data
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Fig. 1. Granular computing triangle.

granularity by mimicking information processing in
a brain. This perspective enumerates two processes
(Fig. 2): granulation (creation of granules) and
computing with granules (this is a big challenge for
granular computing research).

1.2. Granules. A data granule may be defined as a
collection of related entities in the sense of similarity,
proximity, indiscernibility (Pedrycz, 2013; Yao and
Zhong, 2007; Yao, 2008). Data granules originate at
the numeric level and are arranged together due to their
similarity, functional adjacency, and distinguishabiblity
(Shifei et al., 2010). An important difference between
granulation and clustering is the semantics of data
granules (Bargiela and Pedrycz, 2006). A cluster
gathers similar, close objects, whereas granulation
requires granules to be tagged with a semantically rich
labels. A granule represents a semantic whole and
simultaneously, it is in a hierarchical relation with
other granules. A granule is a component of a more
general granule and simultaneously is a composition
of subcomponents—subgranules. Granularity is the
ability to represent and operate on different levels of
detail in data, information, and knowledge (Keet, 2008).
When some granule requires more detailed analysis,
it is further decomposed into finer (sub)granules (Yao,
2018). We trace granular entities in the environment and
then compose hierarchical structures of granules (Ciucci,
2016).

Granules are commonly represented with intervals,
fuzzy sets (Zadeh, 1965), rough sets (Skowron et al.,
2016), shadowed sets (Pedrycz, 1998), fuzzy rough sets
(Bisi et al., 2017), intuitionistic fuzzy sets (Atanassov,
1986), clusters (Siminski, 2020), etc. The fuzzy set
approach enables composition of granules with slightly
unequal objects due to the handling of imprecision with
fuzzy sets. Recent studies (Pedrycz et al., 2012) address

model

granules

data

granulation

granular computing

Fig. 2. Computational perspective of the granular approach.

a non-numeric view at membership functions in fuzzy
sets—application of interval type-2 fuzzy or general
type-2 fuzzy sets. The rough set approach makes use of
indiscernibility and knowledge granularity. Indiscernible
object builds notions in a very natural way. Shadow
sets (Pedrycz, 1998) enable representation of an element
whose membership to a set is unknown. Similarly to
(interval) type-2 fuzzy sets they also support non-numeric
processing. Fuzzy sets with granular membership
function are proposed by Pedrycz et al. (2012).

Typically granular analysis of data starts with
granulation of data, i.e., extraction of granules from data
(Fig. 2). The spectrum of granulation techniques is very
wide. Commonly used techniques are discretization,
quantization, clustering, aggregation, and transformation
(Yao, 2020). If the granulation of objects is based on
an equivalent class, the elaborated granules are treated as
information granules (Pawlak, 1996). If a binary relation
is used, a binary granular structure is achieved (Qian et
al., 2011; 2010).

Pedrycz et al. (2015a) underline the importance of
data granulation in data mining. Some data may be
available only locally and cannot be shared because of
technical or legal constraints, and only some summaries
of them may be available. This problem may be solved
with the granulation and publishing of granules instead
of vulnerable data. Two interesting remarks on data
distribution are important (Pedrycz et al., 2015a). Data
may have spatial and/or temporal distribution (Yang et al.,
2019). The former occurs when data are collected at
different locations in various schemes, but granulation
may reveal some global abstract structure of data. In
the case of insufficient data transfer, granulation may be
one of solutions to share data between remote clients.
Similarly, data may be distributed over some time horizon
and it is impossible to gather all data at a time. Storage
and transfer of raw data may be impossible due to their
size. This problem may be solved with data granulation.
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Table 1. Symbols used in the paper.
Symbol Meaning
L set of rules, rule base
l rule, l ∈ L
L number of rules, L = ‖L‖
β number of data items in a part
γ number of data generated from a set

of granules
G set of granules
G number of granules in G
D data set
ci cardinality of the i-th granule
ei error of the i-th granule
qi quality of the i-th granule
ni number of items generate from the

i-th granule
yi expected value for the i-th data item
ŷi elaborated value for the i-th data item

1.3. Neuro-fuzzy systems. Neuro-fuzzy systems
have proved their effectiveness in both regression and
classification tasks. They can generalise presented data
and elaborate an intelligible model. Their great advantage
is the form of the elaborated model: it is a set of
fuzzy rules that can be easily understood by humans.
Neuro-fuzzy systems have found wide applications in
time series modelling, regression and classification tasks
(Siminski, 2021), automatic control, etc. In our system
any neuro-fuzzy system for regression can be used.
We use the Takago–Sugeno–Kang neuro-fuzzy system
described in Section 2.3.

1.4. Objective of the paper. Nowadays the volume
of data is still growing and they have to be handled.
Application of neuro-fuzzy systems may be difficult for
large data, because neuro-fuzzy systems require access to
all the data (in the paper we avoid the “big data” term,
because we focus only on the size of data and “big data”
is a semantically richer term). A simple approach suggests
the sampling of data and thus reducing the volume of data.
However, this approach loses data and uses only a small
part of data to build a model. This is why we would like
to apply the granular approach: instead of sampling data
we granularise them. Granules may be treated as specific
summaries of data with clear semantics, whereas sampled
data are just subsets of original full data.

Our objective is a reliable neuro-fuzzy system that is
able to handle data that are not possible to fit into machine
memory. The proposed system can both create a fuzzy
model and granulate data. It performs the latter, thus
reducing its volume until the final model is elaborated. In
our approach we use a novel representation of them: we
represent granules with fuzzy rules (Fig. 3).

granule

data item fuzzy rule

Fig. 3. Hierarchy of granules.

numerical
input data fuzzy rules

granular
input data

neuro-fuzzy
system

rule base
(set of

fuzzy rules)

«input» «elaborate»

Fig. 4. Scheme of the train procedure for a granular neuro-fuzzy
system.

In the paper we use the following convention for
symbols: the blackboard bold characters (A) are used
to denote sets, bolds (a) represent matrices and vectors,
upper case italics (A) stand for the cardinality of sets,
lower case italics (a) for scalars and set elements. A
detailed list of symbols is gathered in Table 1.

2. Granular neuro-fuzzy system for large
volume data

The objective of our research is a neuro-fuzzy system
for large volume data. We use granules to represent
summaries of data in elaboration of a fuzzy rule base for
a whole large dataset. The main idea of our approach is
to process data by parts. The system elaborates a set of
fuzzy rules as a model of processed data. In our approach
fuzzy rules represent granules and a set of granules is an
input data set for the system. We describe our system in
this section in detail.

2.1. Representation of granules. Often in papers
the term “granular neuro-fuzzy system” is used for
neuro-fuzzy systems with identification of the fuzzy rule
base with the clustering approach. This step (clustering)
is often labelled “granulation.” In our approach we
would like to go deeper. In Introduction we list several
techniques used to represent granules. Now we add one
more: fuzzy rules. These are composed of premises and
consequences. Premises of rules split the input domain
into regions.

A more detailed description of fuzzy rules used in
experiments is presented in Sections 2.3.1 and 2.3.2.

Each region represents a part of data due to the
intelligibility of the fuzzy rule base. This is why we can
use fuzzy rules as granules—they have clear semantics.

The structure of rules is described in Section 2.3.
Premises of rules are composed of fuzzy sets. We follow
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the definition of fuzzy rules by Ahmed and Isa (2017),
who define fuzzy granules as “sufficiently interpretable
fuzzy sets.”

In our approach granules are represented both by data
items (by a data item we understand a vector of numbers,
a “classical” numeric data representation) and fuzzy rules
(Fig. 3). In the training mode our neuro-fuzzy system
takes numerical data items (vectors of numbers) or fuzzy
rules as input and elaborates a set of fuzzy rules—a fuzzy
rule base (Fig. 4). The produced fuzzy rules are granules,
thus may be an input for our neuro-fuzzy system (dashed
arrow in Fig. 4). Training a neuro-fuzzy system with data
granules is described in detail in Section 2.2.

The principle of justifiable granularity (Pedrycz and
Homenda, 2013) is an important issue in granulation. It
focuses on the semantics of granules. If a granule covers
a lot of data items, it loses its meaning. On the other hand,
if a granule represents data very precisely, it may cover
only a few items. A granule has to fulfil two contradictory
criteria: (i) data coverage and (ii) specificity. The
former requires a sufficient experimental evidence behind
a granule, the latter—clear semantics of a granule. These
two criteria are contradictory, because highly specific
granules have usually poor data coverage, and granules
with wide data coverage usually lack specificity and
semantics. A balance between these two criteria is the
principle of justifiable granularity (Wang et al., 2019). In
neuro-fuzzy systems, the intelligibility of rules is their
crucial property (Cpalka et al., 2014; Alcalá et al., 2006;
Alonso and Magdalena, 2011; Botta et al., 2009; Evsukoff
et al., 2009; Gacto et al., 2011; Herrera et al., 2005; Yen
et al., 1998; Siminski, 2015; 2014; 2017). Rules that
have poor semantics (either too specialised or too general)
break the principle of justifiable granularity. Application
of neuro-fuzzy systems makes the risk of unjustifiable
granularity lower, because in neuro-fuzzy systems the
fuzzy rule base has to be interpretable and have clear
semantics of rules, which is in full concordance with the
principle of justifiable granularity.

2.2. Creating a fuzzy rule base. To handle data that
are too large to fit a machine memory, we read data by
parts (blocks) and build a fuzzy rule base part by part
(Alg. 1). Each block of data holds β data items. Because
numerical data items are granules (Fig. 3), they are treated
as such—they build a zeroth grade set G0 of granules
(line 9). When a block of data is read, fuzzy rules are
elaborated (line 12). The resulting rules are treated as
granules and added to a first grade set G1 of granules
(line 14). If the set G1 is too large (line 16), the granules
are used as input to produce a new set of rules (line 17).
The procedure iterates until all blocks of data are read
and transformed into granules. If a number of elaborated
rules is larger than required, one more granulation is run
(line 21). Finally, the set of rules (granules) is returned.

The number L of rules (granules) in a fuzzy rule base is a
parameter of the procedure.

2.2.1. Forming of fuzzy rules from data granules.
Lines 12 and 20 in Algorithm 1 seem very similar (in both
lines the procedure create_rules_from_granules is called),
but actually these two calls are completely different. The
pseudocode for this procedure is presented in Algorithm 2.
It is trivial, but its behaviour depends on how granules are
represented. Implementation of degranulation depends on
the data that constitute a granule.

If a granule is represented by a single data item, the
procedure simply returns the data item (Algorithm 3). If

Algorithm 1. Procedure create_rulebase_by_parts.
Require: L {number of rules to elaborate}, β {number

of data items to read in one block}
1: G1 := ∅
2: while more data exist do
3: data := read a block of β data
4: G0 := ∅
5: for all datum d in data do
6: {“classical” numeric data items:}
7: g := create a granule from each datum d;
8: {add granule to the set of granules:}
9: G0 := G0 ∪ g

10: end for
11: {a block of data read and transformed into unit

granules}
12: L = {l1, . . . , lL} := create_rules_from_granules

(G0){Fig. 2}
13: for all rule l in L do
14: G1 := G1 ∪ l {add each rule of the set of

granules}
15: end for
16: if ‖G1‖ > β then
17: G1 := create_rules_from_granules (G1)
18: end if
19: end while
20: if ‖G1‖ > L then
21: G1 := create_rules_from_granules (G1){Fig. 2}
22: end if
23: return G1

Algorithm 2. Procedure create_rules_from_granules.
Require: G {set of granules}

1: if granules represented by data items then
2: D := degranulate_data_items (G){Alg. 3}
3: end if
4: if granules represented by data items then
5: D := degranulate_fuzzy_rules (G){Alg. 4}
6: end if
7: L := train_neuro_fuzzy_system (D)



GrNFS: A granular neuro-fuzzy system for regression in large volume data 449

a granule is represented by a fuzzy rule, the procedure
returns a set of data items generated by the fuzzy rule
(Algorithm 4).

The granule is a kind of data summary. Now we
“open” a granule to get the data. It is not a container for
data items. A granule holds information extracted from
data in the form of premises and consequences. A granule
is able to reconstruct data in the degranulation process
(Reyes-Galaviz and Pedrycz, 2015; Hu et al., 2017).
The reconstructed data are not exactly the same data the
granule was created with.

First the rule cardinalities are calculated (line 1 in
Algorithm 4). By the cardinality c of a rule we mean
the number of data items that are matched (recognized,
covered) by this rule. Because rules are fuzzy, their
cardinalities are not integers. Then we evaluate the root
mean square errors RMSE e (Eqn. (23)) for each rule
(line 2 in Algorithm 4).

Finally, in line 5 we assess the quality of rules with
the formula

qi =
ci

∑G
k=1 ck

(

1− ei
∑G

k=1 ek

)

, (1)

where ci stands for the cardinality of the i-th rule, and ei
for its error and G for the number of granules.

The principle of justified granularity (Pedrycz and
Gomide, 2007) highlights two features of granules:
coverage and precision. The first factor in (1) is a
normalised cardinality that represents the coverage of a

Algorithm 3. Procedure degranulate_data_items.

Require: G = {g1, . . . , gG} {set of granules represented
by data items (vectors of numbers)}

1: D := ∅
2: for all granule g in G do
3: D := D ∪ g {granule is a data item}
4: end for
5: return D

Algorithm 4. Procedure degranulate_fuzzy_rules.

Require: G = {g1, . . . , gG} {set of granules represented
by fuzzy rules}

1: {c1, . . . , cG} := elaborate_cardinalities_of_rules(G)
2: {e1, . . . , eG} := elaborate_errors_of_rules(G);
3: D := ∅ {set of elaborated data items}
4: for all granule gi in G do
5: qi := evaluate quality of granule gi with (1);
6: ni := evaluate number of data items to generate

from granule gi whose quality is qi with (2)
7: d := generate ni data items from granule gi
8: D := D ∪ d
9: end for

10: return D

granule. The second factor stands for the precision of
a granule (the complement of a normalised error of a
granule).

We calculate the numbers of data items to generate
from each rule:

ni =

[

γ
qj

∑G
j=1 qj

]

, (2)

where γ is the number of generated data items from the
set of fuzzy rules (it a parameter of the system) and [·] is
the rounding operator defined as

[x] =

{
�x�, x− �x� < 0.5,

�x�+ 1, x− �x� ≥ 0.5.
(3)

Data items are generated with normal distribution,
because premises of rules are represented with Gaussian
fuzzy sets (cf. Section 2.3.1). Rules with higher
qualities have higher probability of data item generation.
Eventually the data set with generated data items is
returned from the procedure.

In our approach granules are specific summaries
of data. They do not hold data literally, data are not
zipped or packed, but they are represented by granules and
representatives of data can be extracted (produced) from
granules.

2.3. Takagi–Sugeno–Kang neuro-fuzzy system. In
our approach any neuro-fuzzy system may be used. We
use the Takagi–Sugeno–Kang (TSK) neuro-fuzzy system
(Takagi and Sugeno, 1985; Sugeno and Kang, 1988).

The structure of the TSK system is presented in
Fig. 5. TSK is a multiple-input single-output (MISO)
system. Its rule base L contains fuzzy rules l in the
IF-THEN form:

l : IF x is a THEN y is b, (4)

where x = [x1, x2, . . . , xD]T is a vector of attribute
values (descriptors) of a data item and y is a decision
attribute for this data item. All attributes are real numbers.

2.3.1. Premises. Below we describe the architecture of
the system only for one rule in order to keep the notation
simpler.

The linguistic variable a in the rule premise is
represented as a fuzzy set A in a D-dimensional space. In
each dimension d, the set Ad is described with a Gaussian
fuzzy set:

uAd
(xd) = exp

(

− (xd − vd)
2

2s2d

)

, (5)

where vd is the core location for the d-th attribute and sd is
the fuzziness of this attribute. The Gaussian membership
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function is differentiable in its whole domain, which
enables application of the gradient descent optimisation
procedure. The memberships of all attributes (descriptors)
are aggregated in order to elaborate the membership uA of
a data item to the premise of the rule. A T-norm � is used
as the aggregation operator:

uA = uA1 � uA2 � . . . � uAD . (6)

The T-norm is implemented as a product (thus Eqn. (6)
becomes

uA =
D∏

d=1

uAd
. (7)

From now on the rule index l will be used again. Thus uA

becomes ulA.
To avoid misunderstandings, please keep in mind the

meanings of the symbols:

uAd
stands for the membership of the d-th attribute to the
fuzzy set Ad in the premise of a certain rule (the index
of which we omit here) as in the formulae (5)–(7),

ulA stands for the membership of the whole data item to
the premise of the l-th rule.

Combining (5) and (7), we get the activation (firing
strength) F of the premise of the l-th rule for data item
x:

Fl(x) = ulA(x) =

D∏

d=1

exp

[

− (xd − vld)
2

2s2ld

]

, (8)

which is a real number for any x: F (x) ∈ (0, 1].

2.3.2. Consequences. The term b in (4) describing the
l-th rule’s consequence is represented by a singleton fuzzy
set. The localisation yl of the singleton is determined by a
linear combination of input attribute values:

yl = pT
l · [1,xT

]T
= [pl0, pl1, . . . , plD] ·

⎡

⎢
⎢
⎢
⎣

1
x1

...
xD

⎤

⎥
⎥
⎥
⎦
.

(9)

The above formula can also be written as

yl =

D∑

d=1

pldxd + pl0 =

D∑

d=0

pldxd, (10)

where x0 = 1.
The height of the singleton is the firing strength

Fl(x) (Eqn. (8)). Singletons of all rules are aggregated
a into final answer of the TSK system with the formula

y0 =

∑L
l=1 Fl (x) yl(x)
∑L

l=1 Fl (x)
. (11)

2.3.3. Identification of system parameters. The
initial system parameters are identified with two different
methods. The premises of rules are produced with the
fuzzy C-means (FCM) clustering algorithm (Dunn, 1973).
The consequences are calculated precisely with the least
squares method for regression.

2.3.4. Tuning system parameters. The identified
parameters of the TSK system are tuned with a gradient
optimisation technique (for premises) and the least
squares method (for consequences).

3. Experiments

In experiments we used a TSK neuro-fuzzy system as a
part of granular neuro-fuzzy system and as a standalone
reference system. For the TSK neuro-fuzzy system
we use the implementation available from the public
library—NFL (Siminski, 2019).

3.1. Datasets. In the experiments we use large volume
data. This is why we use artificial data sets that are defined
with mathematical formulae. This enables preparation of
datasets of large volume we need in our experiments.

3.1.1. Two dimensional surface. The input domain
of the system has two attributes, x1 and x2. The
former is partitioned with two triangular fuzzy sets,
the latter—with two semitriangular fuzzy sets. The
descriptors in premises of rules are joined with a product
T-norm. The consequences follow the Mamdami–Assilan
paradigm and are composed of four triangular fuzzy sets,
and produce output value y for a pair 〈x1, x2〉. A data
item in this data set follows the scheme 〈x1, x2, y +
N(−0.5, 0.5)〉, where N(−0.5, 0.5) is a random value
with normal distribution N(m = −0.5, σ = 0.5).

3.1.2. Mackey–Glass series. This data series
represents concentration of leukocytes in blood modelled
with the Mackey–Glass equation (Mackey and Glass,
1977):

dx(t)

dt
=

ax(t− τ)

1 + (x(t− τ))10
− bx(t), (12)

where x is the concentration of leukocytes, a = 0.2, b =
0.1 and τ = 17 are constants. The equation was solved
for the initial condition x(0) = 0.1 with the Runge–Kutta
method with step k = 0.1 (Leski, 2008). First, 500 items
were removed, and from the other each tenth item is taken.
The data series was the base for creation of tuples with the
template

[x(t), x(y − 6), x(t− 12), x(t− 18), x(k + 6)] . (13)

To each value in a tuple, a random noise value N(0, 0.05)
is added.
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Fig. 5. Structure of the TSK fuzzy system with two rules and two input descriptors. The membership values of the 1st and the 2nd
input are aggregated with the product T-norm. The final crisp output is calculated with Eqn. (11).

3.1.3. Lorenz system. The Lorenz system describes a
model of atmospheric convection (Lorenz, 1963):

x′ = a(y − x), (14)

y′ = x(c− z)− y, (15)

z′ = xy − bz, (16)

where parameters a, b, and c represent physical values in
the model. For values a = 10, b = 8/3, and c = 28 the
Lorenz system has chaotic behaviour. The first variable x
is used to produce data tuples with the pattern

[x(t), x(t + 1), x(t+ 5), x(t+ 7), x(t+ 13)] . (17)

To each value in a tuple, a random noise value N(0, 0.05)
is added.

3.1.4. Rössler attractor. This chaotic attractor was
first proposed theoretically (Rössler, 1976), but later
found applications in analysis of chemical reactions. The
Rössler system is defined with three equations:

x′ = −y − z, (18)

y′ = x+ ay, (19)

z′ = b+ z(x− c), (20)

with the original parameters a = 0.2, b = 0.2, and c =
5.7. The first variable x is used to produce data tuples with
the pattern

[x(t), x(t + 1), x(t+ 5), x(t+ 7), x(t+ 13)] . (21)

To each value in a tuple, a random noise value N(0, 0.05)
is added.

3.1.5. Noisy plant identification dataset. This data
set is used for comparison with other researchers. This is
why the data set is not a huge one, because the goal of
other researchers was different from ours. The data are
created with the equation

y(t+ 1) =
y(t)

1 + y2(t)
+ u3(t), (22)

where u(t) = sin(2πt/100), t = 1, 2, . . . , 200, and
y(1) = 0. Data tuples are inputs y(t) and u(t), output
y(t + 1). The noisy data tuples are used as the training
data set. The original, clean data tuples are used as the
test set. The number of iterations for this data is 500. The
experiments were repeated 20 times. The scheme of the
experiment for this data set differs, because we mimic the
experiments by Juang and Chen (2013).

3.2. Error measures. We use two error measures
commonly applied for the regression task. The root mean
square error (RMSE) and the mean absolute error (MAE)
are defined respectively as

ERMSE =

√
√
√
√ 1

N

N∑

i=1

(yi − ŷi)
2
, (23)

EMAE =
1

N

N∑

i=1

|yi − ŷi| , (24)

where yi denotes the i-th expected value and ŷi the
predicted value, N stands for the number of data items.
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3.3. Experiments. Experiment 1 aims at computation
of optimal parameters (β and γ) of the algorithm
(Section 3.3.1). This experiment has two parts: 1a
and 1b. The objective of Experiment 2 is to verify
whether our system can handle large volume datasets.
Experiment 3 compares the proposed granular approach
and the sampling of large volume datasets.

3.3.1. Experiment 1. This experiment analyses the
influence of parameters β and γ on the quality of set of
granules. Parameter β denotes the size of data read in one
block and γ the number of data items generated from the
set of granules (fuzzy rules). We would like to find some
recommendation for values of these two parameters.

The experiment is divided in two parts.
Experiment 1a is run for smaller datasets and a grid
of parameters β and γ. This may be treated as a
preliminary experiment to tune parameter values for the
other experiments. In Experiment 1b we use a results of
Experiment 1a and run it for larger datasets.

Experiment 1a. The first experiment was run for the
number of items in one block β ∈ {100, 200, 500,
1000, 2000, 5000, 10000} and the number of data items
generated from the set of granules γ ∈ {100, 200, 500,
1000, 2000, 5000, 10000}. We present here the results for
the ‘Rössler’ and ‘Lorenz’ data sets. For each pair of
values (β, γ) the experiment was repeated 10 times. In
Tables 2 and 3 we present averages of the RMSE, MAE,
and execution time for the ‘Rössler’ and ‘Lorenz’ data
sets.

The parameters γ and β influence both execution
time and the attendant errors. With an increase in the
number β of data items read in one block, both errors
and time decrease. The number β of data items read in
one block should be as large as possible to keep errors
and execution time similar to the values of the reference
system.

For the number γ of items generated from a set of
rules the behaviour of the system differs. With an increase
in γ the errors decrease (cf. Fig. 6), but execution time
increases (cf Fig. 7). The execution time is constant for
γ ≤ β. If γ > β the execution time increases linearly with
γ (cf. Tables 2 and 3). To keep the errors low, we should
use higher values of γ. To keep the execution time short,
we should use lower γ values. Some reasonable trade-off
should be found for these two contradictory conclusions.
We decided to fix γ = β. This is the largest value of γ
that keeps the execution time short.

Experiment 1b. This experiment is designed to analyse
the effectiveness of the system for larger data sets.
In the experiment we use the results from the first
experiment and set β = γ. The results presented in
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Fig. 6. Root mean square errors for the ‘Lorenz’ data set.
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Fig. 7. Execution times for the ‘Lorenz’ data set.

Table 4 reveal that β should be as large as possible.
The last row in Table 4 presents results produced by
the reference Takagi–Sugeno–Kang neuro-fuzzy system.
The penultimate row shows the results produced by our
granular neuro-fuzzy system when all input data are read
in one block.

The obtained results show that very low values of β
and γ imply higher errors and longer execution times. For
higher numbers β of items read in one block, the errors are
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Table 2. Results produced for the ‘Rössler’ data set in the first experiment.

Number β of Number γ of items generated from the set of granules
items read 100 200 500 1000 2000 5000 10000

100 RMSE 0.2341 0.2404 0.2266 0.2297 0.2276 0.2315 0.2309
MAE 0.1897 0.1996 0.1875 0.1906 0.1887 0.1929 0.1919

time [s] 129 257 647 1283 2567 6435 12768

200 RMSE 0.4008 0.4305 0.4430 0.4247 0.4197 0.4221 0.4210
MAE 0.3257 0.3469 0.3440 0.3382 0.3351 0.3368 0.3368

time [s] 127 127 323 634 1268 3174 6372

500 RMSE 0.1330 0.1287 0.1300 0.1337 0.1314 0.1322 0.1291
MAE 0.1060 0.1030 0.1041 0.1071 0.1051 0.1057 0.1033

time [s] 133 132 132 264 521 1281 2510

1000 RMSE 0.1033 0.1032 0.1033 0.1032 0.1032 0.1034 0.1031
MAE 0.0823 0.0823 0.0823 0.0823 0.0823 0.0824 0.0822

time [s] 119 119 119 119 240 600 1198

2000 RMSE 0.1034 0.1032 0.1032 0.1031 0.1031 0.1031 0.1031
MAE 0.0824 0.0822 0.0823 0.0822 0.0822 0.0822 0.0822

time [s] 99 99 100 100 101 254 504

5000 RMSE 0.1035 0.1039 0.1031 0.1031 0.1031 0.1031 0.1031
MAE 0.0825 0.0829 0.0822 0.0822 0.0822 0.0822 0.0822

time [s] 94 94 94 95 96 98 197

10000 RMSE 0.1033 0.1037 0.1031 0.1031 0.1031 0.1031 0.1031
MAE 0.0823 0.0827 0.0822 0.0822 0.0822 0.0822 0.0822

time [s] 92 92 92 93 93 96 101

TSK RMSE 0.1031
MAE 0.0821

time [s] 95

almost the same as in the reference system (the differences
are less than 0.1).

3.3.2. Experiment 2. The second experiment is
designed to show the ability of the system to handle large
volume data, which is our objective. In this case we use
data sets with 1 000 000, 5 000 000, and 10 000 000 data
items. The data are so large that it is impossible to use a
standalone reference TSK system, and only results for our
granular neuro-fuzzy system can be presented in Table 5.
The TSK system reads all data at once to identify and tune
parameters of a fuzzy model (a set of fuzzy rules). If a data
set is too large, it cannot be stored in computer memory.
In this case we cannot compare the results of our system
with the reference one. The granular system has linear
time complexity in the number of data items.

Figure 9 presents the premises of produced rules for
the ‘Lorenz’ data set with the granular TSK system. The
premises of rules split the input domain in a regular way,
and each region can be labelled with semantically rich tags
(e.g., ‘very low’, ‘low’, ‘medium’, ‘high’, ‘very high’).

3.3.3. Experiment 3. In this experiment we would
like to test if the granulation technique can produce better
results (lower error rates) than the simple sampling of
large volume data. The granular TSK system is trained
exactly in the same way as in Experiment 2. A TSK
system is trained not with the whole train data set with
10 000 000 data items, but with a sampled data set that
holds 100 000 data vectors taken at random from the
whole data set. The granular approach can elaborate
results with lower errors (Table 6). However, it takes 100
times more time to build the model, because the volume
of data is 100 times larger.

3.3.4. Experiment 4. This experiment aims at a
comparison of the proposed neuro-fuzzy systems with
other research result. The parameters are β = γ = 25, the
number of rules L = 6, the number of tuning iterations
500. The experiments were repeated 20 times. The results
are presented in Table 7. The proposed system yields quite
good results results, although not the best ones.
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Table 3. Results elaborated for the ‘Lorenz’ data set in the first experiment.

Number β of Number γ of items generated from the set of granules
items read 100 200 500 1000 2000 5000 10000

100 RMSE 1.2099 0.8059 0.5913 0.5532 0.5050 0.4364 0.4490
MAE 0.9493 0.5792 0.4536 0.4222 0.3747 0.3281 0.3392

time [s] 108 217 546 1079 2161 5410 10791

200 RMSE 0.8522 0.8976 0.4254 0.4906 0.3846 0.3943 0.3968
MAE 0.6328 0.6892 0.3325 0.3689 0.3032 0.3095 0.3095

time [s] 102 102 253 506 1010 2528 5063

500 RMSE 0.7361 0.5495 0.8591 0.4486 0.4198 0.4266 0.3569
MAE 0.4902 0.4122 0.5494 0.3414 0.3240 0.3209 0.2795

time [s] 98 99 99 197 393 984 1971

1000 RMSE 0.9914 1.1367 0.7059 0.4414 0.3876 0.4605 0.3988
MAE 0.5747 0.6067 0.4684 0.3356 0.2947 0.3322 0.3007

time [s] 97 97 97 98 196 488 980

2000 RMSE 0.7160 0.7234 0.4897 0.3636 0.3478 0.3571 0.3570
MAE 0.4492 0.4576 0.3574 0.2752 0.2665 0.2743 0.2749

time [s] 99 98 99 99 100 248 493

5000 RMSE 0.3596 0.3437 0.3431 0.3446 0.3360 0.3379 0.3380
MAE 0.2698 0.2636 0.2637 0.2650 0.2578 0.2597 0.2595

time [s] 96 96 95 94 96 99 198

10000 RMSE 0.4010 0.3537 0.3383 0.3551 0.3356 0.3358 0.3363
MAE 0.3110 0.2732 0.2590 0.2746 0.2570 0.2574 0.2577

time [s] 94 94 95 95 96 99 104

TSK RMSE 0.3386
MAE 0.2591

time [s] 93

4. Conclusions and future work

Neuro-fuzzy systems have proven their ability to build
intelligible nonlinear models for presented data. However,
their bottleneck is the volume of data. They have to read
all data in order to produce a model. We addressed this
problem with granular computing.

In the paper we applied the granular approach and
proposed granular neuro-fuzzy system for large volume
data. In our approach the data are read by parts and
granulated. In the next stage the fuzzy model is produced
not on data, but on granules.

We introduced a new form of granule—a fuzzy
rule. In our system the granules are represented by
numeric vectors and by fuzzy rules. Fuzzy rules are
specific summaries of data. The experiments showed that
the proposed granular neuro-fuzzy system can produce
intelligible models even for large volume data sets. The
quality of the elaborated fuzzy models is very close to that
of the models produced by classical neuro-fuzzy sets (for
small data sets where application of classical neuro-fuzzy
systems and comparison are possible).

The experiments reveal that the granular approach
can produce more precise models than preprocessing data
and reducing the volume of data by sampling.

In future research we would like to focus on the
precision of the degranulation process. Degranulation
commonly introduces some errors. We would like to
reduce them and simultaneously decrease the number of
degranulated data items, which is supposed to shorten the
time needed to run the system. We would also like to
propose prototype-based fuzzy rules with a new form of
granularised premises.
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Table 5. Experiment 2: root mean square errors, mean absolute errors, and execution time elaborated by the granular TSK and reference
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Table 6. Experiment 3: averaged of root mean square errors, mean absolute errors, and execution time elaborated by the granular TSK
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