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Reliability, efficiency and generalization are basic evaluation criteria for a vehicle automated driving system. This pa-
per proposes an automated driving decision-making method based on the Wasserstein generative adversarial imitation
learning–deep deterministic policy gradient (WGAIL–DDPG(λ)). Here the exact reward function is designed based on the
requirements of a vehicle’s driving performance, i.e., safety, dynamic and ride comfort performance. The model’s training
efficiency is improved through the proposed imitation learning strategy, and a gain regulator is designed to smooth the
transition from imitation to reinforcement phases. Test results show that the proposed decision-making model can generate
actions quickly and accurately according to the surrounding environment. Meanwhile, the imitation learning strategy based
on expert experience and the gain regulator can effectively improve the training efficiency for the reinforcement learning
model. Additionally, an extended test also proves its good adaptability for different driving conditions.

Keywords: automated driving system, deep learning, deep reinforcement learning, imitation learning, deep deterministic
policy gradient.

1. Introduction

In recent years, with the rapid growth of vehicle numbers,
safety and efficiency have become an urgent traffic
problem that needs to be solved. Automated driving is
regarded as an effective way to do so. According to
information processing, the design of automated driving
systems (ADSs) is divided into three steps: environment
perception, decision planning, and motion control (Ziegler
et al., 2014). Decision planning is one of the key issues
for automated driving applications.

At present, there are three solutions for ADS
decision-making: rule based (Xiong et al., 2015; Chen
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et al., 2017), deep learning (DL) based (Pomerleau,
1998; Xu et al., 2017), and the deep reinforcement
learning (DRL), based decision-making method (Xia
and Li, 2017). Rule-based solutions cannot enumerate
all possibilities and emergencies (Bai et al., 2019),
while DRL-based solutions have many merits such
as self-learning, self-reinforcement and good scenario
adaptability. Thus, DRL has been considered the main
solution to the problems of ADS decision-making (Zhu
et al., 2018).

For better performance in the field of unmanned
control, Chang et al. (2019) proposed a mobile edge
computing-based vehicular cloud of the cooperative
adaptive driving approach to avoid shock-waves
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efficiently in platoon driving. Hedjar and Bounkhel
(2019) presented a real-time obstacle avoidance
algorithm for multiple autonomous surface vehicles
based on constrained convex optimization. In terms
of DRL, reliability, efficiency and generalization are
essential for an effective model design. Gao et al.
(2019) proposed a vehicle decision-making model that
performed well in simple traffic scenarios; Zong et al.
(2017) established a driving decision model based on the
deep deterministic policy gradient (DDPG) to solve the
problems in complex scenarios. To tackle the efficiency
problem, Anderson et al. (2015) used pre-training tricks
to improve the model’s training efficiency.

Imitation learning aims at imitating the distribution
of expert data and has the advantage of making the agent
learn basic skills quickly by using this prior knowledge.
For automated driving research, it can make the controlled
vehicle learn basic driving rules based on the driver’s
experience. Dossa et al. (2020) proposed a hybrid
automated driving model based on the reinforcement
learning method with an imitation learning strategy
introduced. Test results show that the hybrid model can
be trained efficiently based on the driver’s experience
imitation. Zou et al. (2020) proposed a deep deterministic
policy gradient–imitation learning (DDPG–IL) algorithm
which introduces a dual experience pool to store expert
data and common data, and has a faster convergence
speed and better performance than the ordinary DDPG
algorithm.

Thus, it can be seen that, in order to improve
the training efficiency of RL, related research has paid
more attention to model pre-training or an experience
pool improvement and has made significant progress
with this issue. However, most of the approaches
made improvements by using existing experience or an
experience pool directly to generate an initial training
strategy for RL. To some extent, this strategy cannot make
full use of the relevant experience information from the
perspective of optimization, so appropriate research needs
to be further made so as to improve the RL training
efficiency caused by the blind exploration of the agent.

Based on the above analysis, this paper proposed
a WGAIL–DDPG(λ) model for ADS decision-making
based on DRL, in which the reward function is specifically
designed based on the requirements of vehicle driving
performance. The training efficiency of the proposed
DDPG model is improved by introducing imitation
learning tricks. Additionally, a gain regulator is used to
smooth the transition process from the imitation to the
reinforcement learning phase.

The main contributions of this paper are as
follows: firstly, since the essence of DRL is to
enumerate all possible actions and evaluate their effects
accordingly, the search space of a model’s training
is too large. How to improve the model training

efficiency is a general and important problem to be
solved. Based on the expert experience, this research
reduces the search space effectively through the proposed
Wasserstein generative adversarial imitation learning
(WGAIL) module. Meanwhile, with the introduction of
imitation learning, how to transit the training phase from
imitation to reinforcement learning is a key problem that
needs to be considered. In this paper, a gain regulator
is designed to solve this problem. Finally, the reward
function designed based on the requirements of vehicle
performance has a positive effect on the training process
of reinforcement learning.

2. Methodology

2.1. ADS decision-making model design.

2.1.1. Model inputs and outputs. For the DRL-based
ADS decision-making model, the model’s input vector
(state) and output vector (action) should be determined
in advance. According to the purpose of this research,
vehicle control can be achieved by integrating lateral and
longitudinal control. For vehicle control, the function of
longitudinal control is mainly responsible for the vehicle’s
acceleration, deceleration and braking, and lateral control
for the vehicle’s steering. Therefore, herein the ADS
model’s output is defined as a vector combined with
variables of the brake pedal travel, the accelerator pedal
travel and the steering angle. Meanwhile, considering the
shortages of using an image as a model’s input vector in
computational complexity, to simplify the ADS model’s
construction, herein we define the model’s input vector
as [b, d, Vx, Vy, Vz , θ]. Detailed information about the
variables can be found in Table 1.

2.1.2. Generative adversarial imitation learning
algorithm. To solve the problem of insufficient
generalization of expert data in imitation learning,
Ho and Ermon (2016) proposed the generative
adversarial imitation learning (GAIL) model based
on generative adversarial networks (GANs) and the
inverse reinforcement learning algorithm. Its main idea is
training a data generator that can imitate the distribution
of the expert policy with random noisy data. For the
GAIL model, GAN is composed of two modules: a
generator (G) and a discriminator (D), as shown in Fig. 1.
Here G is used to generate a sample similar to the expert
data distribution, and the sample is regarded as a fake
one. D is used to distinguish a true sample from fake
ones. In the training process of the GAIL model, G and D
are optimized alternately in a zero-sum game. With the
generator upgrade, the discriminator cannot distinguish
fake samples from the input ones, i.e., the correct rate for
any sample is 50%. At this time, the model parameters
will no longer change and the model tends to be stable.
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Fig. 2. DDPG-based automated driving decision model.

2.1.3. Reinforcement learning model. In
this research, the proposed DDPG-based ADS
decision-making model is displayed in Fig. 2. The
actor-online module is used to generate an action under
the current circumstance, while the critic-online module
is used to evaluate the actions generated by the actor.
Considering that the learning process is unstable with
a single network, the DDPG divides the Actor Net and
the Critic Net into two sub-networks, respectively, i.e.,
the Online Net and the Target Net. Both of them have
same structure, but different parameters. The Online Net
uses the latest parameters and updates the Target Net
during certain training steps. The difference in network
parameters cuts off the correlation between the Online
Net and the Target Net, and this strategy makes the model
learning process more stable.

For the Actor Net, which is used to generate the
corresponding decision based on the current agent state,
the network parameters are optimized with the Critic Net
output. The loss function is

∇θQJ =
1

n

n∑

t=1

(
yt −Q

(
st, at | θQ

))2
. (1)

For the Critic Net, which is used to evaluate the
output strategy from the Actor Net, the loss function is

∇θμJ =
1

N
∇aQ

(
st, at | θQ

)∣∣∣∣
s=st,a=μ(st

)

×∇θμμ (s | θμ) | st, (2)

where yt denotes

yt = rt + γQ′
(
st+1, μ

′(st+1 | θu′
) | θQ′)

, (3)

n stands for the number of samples per sample, rt denotes
the reward value at the current moment, γ denotes the
discount factor, θu denotes the parameter of the Online
Net in the Actor Net, θu

′
denotes the parameter of the

Target Net in the Actor Net, θQ denotes the parameter
of the Online Net in the Critic Net, θQ

′
denotes is the

parameter of the Target Net in the Critic Net.

2.1.4. WGAIL–DDPG(λ) model. Due to the
disadvantages of a large search space and a low efficiency
of trial-and-error procedure, the reinforcement learning
algorithm usually cannot yield high learning efficiency
in the early stage of model training. Therefore, in this
research, an imitation learning module WGAIL is used
to pre-train the reinforcement learning module DDPG.
The framework of the proposed WGAIL–DDPG model is
shown in Fig. 3. Herein the DDPG is used as a Generator
for automated driving decisions. Additionally, the
gradient descent direction for DDPG updating depends on
the discriminator score and the reward function.

The influence of the imitation and reinforcement
module on the DDPG updating process is adjusted by
a Gain regulator. Therefore, from the point of view
of the Gain regulator, the proposed WGAIL–DDPG(λ)
model training process can be divided into three phases:
the imitation learning phase, the transition phase and
reinforcement learning phase. The imitation learning
strategy from expert data is to make the agent have
a primary decision-making function to avoid excessive
blind attempts. The gain regulator is designed to realize
gradual transition from the imitation to the reinforcement
learning phase, so as to ensure the reinforcement learning
module can inherit the results of the imitation learning
module and make full use of the expert experience
effectively. Furthermore, the reward function is used to
evaluate the performance of the reinforcement learning
process. Based on the analysis of driving characteristics,
the reward function is designed in terms of three aspects:
safety, dynamic and ride comfort performance.

2.2. Experiment data description. For vehicle
driving, the main external environment factors that
affect a driver’s decision-making include vehicular,
environmental and road factors (Gu et al., 2020). Figure 4
shows a schematic diagram of the external environment
for vehicle driving. Here, b reflects the lateral offset of the
vehicle from the center line, d reflects the relative distance
between the vehicles, W is the width of the lane, Vx is the
longitudinal speed and Vy is the lateral speed of the target



464 M. Zhang et al.

Expert data

Random
noise Gain regulator

Discriminator

Fig. 3. Framework of the WGAIL–DDPG(λ) model.

Agent

Target

vehicle

θ

Fig. 4. Schema of the external environment for vehicle driving.

vehicle, and θ denotes an angle from the central-line to
driving direction.

Based on the above analysis and the purpose of this
paper, the list of acquired experimental data is shown in
Table 1.

2.3. Reward function design. Reinforcement learning
is a process where intelligent agents achieve the maximum
reward during the interaction with the environment.

Safety is the primary requirement for intelligent
vehicles, and the other requirements such as traffic
efficiency and ride comfort should also be considered on
this basis. Therefore, from the essential requirements
analysis of the automated driving decision-making
system, it should be designed meeting the driving safety
requirement first and then the factors of traffic efficiency
and ride comfort. Based on this opinion, in this research,
safety, traffic efficiency and ride comfort are considered
in reward function design. According to safety, a smaller
lateral speed and offset, a greater distance from other
vehicles or obstacles are conducive to the safety of
vehicles. For dynamic performance, larger longitudinal
velocity is beneficial to the improvement of transportation
efficiency. For the ride comfort, the lower the vertical
speed Vz , the better the ride comfort performance. Based
on this analysis, the reward function RD for the DDPG
model andRG for WGAIL–DDPG model can be designed
respectively as

RD =

⎧
⎪⎨

⎪⎩

CT
S VS + CDVD + CRVR, |b| ≤ W

2 ,

−100, |b| > W
2 ,

−dmg, d < 0,

(4)

RG =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1− λ)(CT
S VS+CDVD

+CRVR) + λSi, |b| ≤ W
2 ,

−100, |b| > W
2 ,

−dmg, d < 0.

(5)

where CS = [c1, c2]
T , CD = c3, and CR = c4 denote the

weight coefficients of safety, dynamic performance and
ride comfort, respectively, which are used to characterize
the different proportion in the reward function. Also,

VS = [−|b|Vx sin θ, Sgn (Vd − Vx cos θ) (200− d)]
T
,

VD = Vx cos θ,

VR = − |Vz|
denote the relevant vectors of safety, dynamics and ride
comfort, respectively, while Vd is the target vehicle speed;
λ is the hyper-parameter of reinforcement learning, which
is used to adjust the weight of the reward function and the
gradient descent direction. Additionally, Si is the score
of the Discriminator; ‘dmg’ is the degree of damage to
the agent when a collision occurs, the symbolic function
‘Sgn’ is the enumeration constant, and its value is −1, 0
or 1. Here 0 means that there is no target vehicle around
the agent, 1 means that the target vehicle is in front of the
agent, and −1 denotes that the target vehicle is behind the
agent.

2.4. Gain regulator design. To implement a gradual
transition from the imitation learning to the reinforcement
learning phase, a gain regulator is designed to achieve the
dynamic adjustment between the two training phases. The
main idea of the regulator design is as follows: in the
early training phase, the model’s input mainly depends on
the imitation learning module; then the training process
gradually shifts to the reinforcement learning module.
For the WGAIL–DDPG(λ) model, within the imitation
phase, the score of the discriminator plays a major role
in generator action optimization, while, for reinforcement
learning phase, the reward function is important for the
agent action optimization. Therefore, λ should have
characteristics of gradual attenuation with the training
process and a low attenuation rate in the early transition
phase.

Based on this analysis, three types of gain regulators
are discussed; linear attenuation, exponential attenuation,



An automated driving strategy generating method based on WGAIL–DDPG 465

Table 1. Experimental data acquisition.
Symbol Unit Description

Agent information
Vx km/h longitudinal velocity
Vy km/h lateral velocity
Vz km/h vertical velocity

θ rad
heading angle of the agent

(angle deviation)

Environment information

b m
distance from the agent to the road center line

(lateral deviation)

d m
distance from the agent to the target vehicle

(safe distance)

dmg − current damage of the agent
(the higher the value, the higher the damage)

and a 1-sigmoid attenuation model, which are shown in
Fig. 5. Here, the expressions for λ are

λ1 = N0 − αn, (6)

λ2 = N0e
−αn, (7)

λ3 = N0 − 1

1 + e−α(n−c)
, (8)

where N0 denotes the initial value of the attenuation
gain regulator and α denotes the attenuation index.
Consequently, the gain regulator decreases with the
training rounds n.

From Fig. 5, some conclusions can be drawn as
follows:

1. For a linear attenuation gain regulator with constant
rate α, the transition process may be unstable with
a large α. In this case, the expert data are not
fully utilized. On the other hand, for a small α,
the model training rounds in the transition phase
increased correspondingly, which makes the overall
training efficiency decrease.

2. For an exponential attenuation gain regulator, which
has a variable attenuation rate, the attenuation degree
of λ gradually decreases with the training rounds. In
the early transition phase, with a large attenuation
rate, the reinforcement learning decision may deviate
from the expert experience.

3. For a 1-sigmoid attenuation gain regulator, the
attenuation degree of λ in the early transition phase
is low, which can satisfy the requirements of this
research.

For the 1-sigmoid regulator, there are three
hyper-parameters: N0, α and the symmetry axis c. In
this research, N0 = 1, c = Ne/2, Ne denotes the total
number of training rounds of the transition phase and α

is an undetermined coefficient. The influence of α on the
gain regulator is shown in Fig.6.

From Fig. 6 it can be seen that the gain regulator
has the characteristic of a step change and the maximum
of the first order derivative increases with α. For this
research, the gain regulator should have the characteristic
of a low attenuation rate and no breakpoints, so α = 0.2 is
selected. Based on this analysis, for the entire model, the
transition process of the gain regulator is shown in Fig. 7.

Here, n denotes the model training rounds, while w,
Dw and Rw denote the coefficient weight, discriminator
weight and the reward function weight in the DDPG
model, respectively. Nm, Ne, and Nr denote the training
times of the imitation learning phase, the transition phase
and the reinforcement learning phase, respectively. Within
stage [0, Nm], λ = 1 indicates that the discriminator score
plays major role for the optimization of the generator
action and the reward function does not work; within
[Nm, Nm + Ne], the reward function starts to work
with the training proceeding, and the supervisory role
of the discriminator gradually decreases. Within the
reinforcement learning phase, λ = 0 indicates that the
distribution of expert data will not affect the agent, so
that the latter can explore more advanced decision-making
strategies.

3. Testing and result analysis

In terms of this research target, the following
experiments and analyses are carried out, including
model performance, adaptability and efficiency.

3.1. Experimental scenarios. TORCS (The Open
Racing Car Simulator) is an open-source automated
driving simulator that can create a physical separation
between the game engine and the drivers. Users can obtain
the vehicle state and environment information without
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Fig. 5. Characteristic of different gain regulators.

having to understand the internal program structure. It
can efficiently improve the ADS algorithm development.
TORCS provides a series of test scenarios that are created
from a natural driving environment. In this research, the
scenery for data acquisition and training is determined as
the CG-1 track (shown in Fig. 8). Details about CG-1 are
as follows it is: 2057.56 meters long, 15 meters wide and
has a variety of line shapes such as long straight lines and
curves with different curvatures.

3.2. Model performance. In this research, the reward
function design is based on three aspects; the relevant tests
are conducted and some conclusions can be drawn.

1. Stability performance. Stability is one of the
basic properties that evaluate the vehicle’s
handling performance. Here, the normalized

distance b/(W/2) is used to evaluate the stability
performance of the proposed ADS model. The
closer the value of b/(W/2) to 0, the better the
tracking stability of the control system. From Fig. 9,
it can be seen that the normalized distance changes
in the range of [−0.3, 0.3], which indicates that the
proposed model can control the vehicle driving well.

2. Safety performance. Here, the safety distance
d between vehicles is used for safety evaluation.
The smaller the value of d, the greater the risk
of a collision. From the test results shown in
Fig. 10, it can be seen that the safe distance is
maintained at more than 10 meters under stable
driving conditions, which can ensure the vehicle’s
safe driving. When disturbed by other vehicles, as
shown in the circle mark, the proposed ADS can
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make accurate adjustments according to the changes
in the environment, so as to avoid collision accidents.

3.3. Model’s adaptability. Adaptability denotes the
ability of an algorithm to adapt to new samples or
environments. To verify the proposed WGAIL–DDPG
model’s performance, three types of tracks are used for
testing the model’s adaptability. The composition of road
alignment of each track and comparisons are shown in
Fig. 11.

The test tracks are classified according to the driving
difficulty level. The component of the line shape for the
test track includes Straight, Simple, Right-angle, U-turn,
S-turn and Acute Shape. For instance, the Alpine track
includes six line shapes and the CG-2 track includes three
line shapes (shown in Fig. 11). From this, the driving
difficulty of the three test tracks is Alpine > CG-1 >
CG-2.

It should be noted (Table 2). that the proposed model
can control the vehicle to drive safely and stably on the
CG-2 track. For the track with a more complex road
alignment (Alpine), the model can work well without any
specific training, although there are many unknown road
conditions. However, for the more complex Alpine track,
a minor collision occurred during the second test lap. The
reason is that the track CG-1 used for model training does
not include U-turns with a comparable difficulty level to

the Alpine track, which makes the agent unable to handle
this untrained situation. For this problem, it can be solved
by increasing the line shapes of training tracks.

3.4. Learning efficiency. The relationship between
the cumulative return and the number of training
rounds is used for evaluating the efficiency of the
proposed model. Therefore, in order to test the
model’s efficiency under complicated driving conditions,
multiple vehicles are used for enhancing the complicity
of the environment. To make a comparison, the
DDPG-based and WGAIL–DDPG(λ)-based models are
tested separately and the comparison results are shown in
Fig. 12. From the results of efficiency comparison, some
conclusions can be drawn as follows.

Phase-1, n ∈ [1, 100]. From the slope of the cumulative
return, it can be seen that, within the early training phase,
the efficiency of WGAIL–DDPG(λ) is significantly
higher than that of the DDPG. The reason is that the
imitation learning phase can make the agent achieve
the expert experience quickly. In addition, it also
further verifies the effectiveness of the introduction of the
imitation learning strategy.

Further analysis shows that when n is almost equal
to 40, the cumulative return value of WGAIL–DDPG(λ)

1
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Fig. 7. Transition process from imitation to reinforcement
learning.
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Fig. 8. CG-1 track.
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Table 2. Test results of the model’s adaptability.
Track First lap Second lap Third lap Forth lap Fifth lap

CG-1 � � � � �

CG-2 � � � � �

Alpine � � � � �

Note: �means a collision,�means no collisions.
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Fig. 9. Stability performance test.
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Fig. 10. Safety performance.

reaches a level of 9,000 quickly, which indicates
that the agent had simpler driving strategies such
as lane-following, while the DDPG is still in the
trial-and-error phase.

Furthermore, the imitation learning phase can avoid
the blind attempt of the agent in the initial training
phase, which greatly improves the training efficiency of
reinforcement learning.

Phase-2, n ∈ [100, 550]. In the subsequent phase
of the training, the cumulative return obtained by
WGAIL–DDPG(λ) is significantly higher than that of the
DDPG. The reason is that, after learning the primary
driving strategies, the agent uses the gain regulator
to realize a transition from the imitation phase to the
reinforcement learning phase, so that the agent can
explore more advanced driving strategies.

Further analysis shows that when the number
of training rounds is about 140, the agent of
WGAIL–DDPG(λ) is stable at the cumulative return
of 19,000. This indicates that the agent has a basic
behavior of avoiding vehicles and driving stably along
the lane. By comparison, the agent of the DDPG
achieves the same goal often around 480 training rounds.
Additionally, the learning speed of WGAIL–DDPG(λ) is
approximately 3.4 times faster than that of the DDPG.

Thus, a smooth transition from the imitation learning
phase to the reinforcement learning phase can be achieved
through the designed gain regulator. Additionally, it also
can allow the agent to further explore advanced strategies
after basic driving strategies learning from imitation.

4. Conclusions

With the rapid development of vehicle intelligence,
automated driving has become the focus in the research
field of vehicle engineering. For the entire vehicle
automated driving process, a decision-making strategy
based on the dynamic environment is a core problem to be
solved for ADS development. Focusing on this problem,
this paper proposed a WGAIL–DDPG(λ) model based on
DRL to solve vehicle automated driving decision-making
problems.

To improve the model’s training efficiency that is
important for deep learning application, this research
reduces the search space through an imitation learning
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strategy. Meanwhile, to ensure the efficiency of the
transition process from the imitation learning module to
the reinforce learning module, a gain regulator is designed
to balance the relationship between them. For the reward
function, the basic problems to be considered for deep
learning, it was designed based on the performance
requirements including the vehicle’s safety, dynamic
and ride comfort performance. Test results show that
the designed reward function can effectively ensure the
reliable output of the DDPG decision model. The
proposed imitation learning strategy based on expert
experience and the designed gain regulator can effectively
improve training efficiency for the reinforcement learning
module.

In addition, it should be pointed out that, due to the
difficulty of real driving environment tests, this research
only verified the proposed model on the environment
under a simulation platform. Its reliability and advantages
need to be further verified with actual experiment data.
In the future, the proposed model should be improved by
merging more performance requirements in actual driving
conditions.
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