
Int. J. Appl. Math. Comput. Sci., 2021, Vol. 31, No. 3, 487–500
DOI: 10.34768/amcs-2021-0033
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A linear combination of Gaussian components is known as a Gaussian mixture model. It is widely used in data mining
and pattern recognition. In this paper, we propose a method to estimate the parameters of the density function given by
a Gaussian mixture model. Our proposal is based on the Gini index, a methodology to measure the inequality degree
between two probability distributions, and consists in minimizing the Gini index between an empirical distribution for the
data and a Gaussian mixture model. We will show several simulated examples and real data examples, observing some of
the properties of the proposed method.
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1. Introduction

Consider the problem of finding clusters for the data set
P = {p1, p2, . . . , pM} with pm ∈ R

N = X . When we
want to analyze the data set by modelling their behaviour,
we usually use some of the known density functions, for
example the multivariate normal density of dimension N
given by

f(x|μ,Σ)
=

1

(2π)N/2|Σ|1/2 e
− 1

2 (x−µ)TΣ−1(x−µ), (1)

where μ is the mean and Σ is the covariance matrix.
However, sometimes a unimodal distribution cannot
represent the information given by the data when there are
clusters, so multimodal distributions are used.

In this paper we consider a multimodal distribution
that is a linear combination of Gaussian components to
model the data, known as a Gaussian mixture model,
(Bishop, 2006; Reynolds, 2009). The Gaussian mixture
model is widely used for segmentation of images,
speech recognition, language identification and statistical
representation (Greenspan et al., 2006; Povey et al., 2011;
Torres-Carrasquillo et al., 2002; Singh et al., 2009).

In the Gaussian mixture model we consider a density
function that is a linear combination of K Gaussian
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densities of the form

K∑

k=1

φkf(x|μk,Σk).

The components of this mixture are Gaussian densities
f(x | μk,Σk) with mean μk and covariance matrix Σk,
and the φk parameters are mixing coefficients that must
comply with

0 ≤ φk ≤ 1, k = 1, . . . ,K, (2)

and
K∑

k=1

φk = 1. (3)

The sought parameters in the Gaussian mixture
distribution are φ = (φ1, φ2, . . . , φK), μ = (μ1, μ2,
. . . , μK) and Σ = (Σ1,Σ2, . . . ,ΣK). One way to set
the values of these parameters is to use the maximum
likelihood method. The logarithm of the likelihood
function for this problem, when we have M elements,
that is, {pm}Mm=1, is given by

l(φ,μ,Σ|P ) =

M∑

m=1

log

(
K∑

k=1

φkf(pm | μk,Σk)

)
.

There is no analytical solution to this problem, so
iterative numerical optimization techniques are used for
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this purpose. In several texts (e.g., Dempster et al., 1977;
Meng and Rubin, 1994; Vaida, 2005; Xu and Jordan,
1996), the authors employ a powerful framework called
expectation-maximization for Gaussian mixtures. They
want to maximize the likelihood function with respect
to the parameters φ, μ and Σ by following the EM
algorithm.

Once the desired φ, μ and Σ parameters are
obtained, we can perform data classification, using the
total probability law and the Bayes theorem. We can
obtain the probability that, given a data point x, it belongs
to the parametric distribution gk, that is, Pr(gk|x), for
k = 1, . . . ,K , in the following way:

Pr(gk′ |x) = Pr(gk′)Pr(x|gk′ )
∑K

k=1 Pr(gk)Pr(x|gk)
,

for k′ = 1, 2, . . . ,K , where Pr(x|gk) is the probability
that x comes from the parametric distribution k and
Pr(gk) = φk is the probability of the parametric
distribution k. Once we obtain the probabilities Pr(gk|x),
with k = 1, . . . ,K , we make a comparison of these
values and we determine that the point x belongs to the
parametric distribution with the greatest value Pr(gk|x).
In this work we propose an alternative to the EM
algorithm, called the GI algorithm, based on minimizing
the Gini index between the empirical distribution of the
observed data and a mixture of Gaussians.

In Section 2, we will give a brief introduction to the
Gini index. In Section 3, we will show the proposed
procedure to estimate the parameters of a Gaussian
mixture model through the Gini index problem in an
efficient way, similarly to but in greater detail than in
our previous work (López-Lobato and Avendaño-Garrido,
2020). In Section 4 we will perform exhaustive
experiments with simulated data and a few real data
sets, with the purpose of comparing the numerical results
obtained by the EM algorithm, the K-means method
and the algorithm proposed in this work. We will end
by giving conclusions and mentioning future work in
Section 5.

2. Gini index

The Gini index is a distance between two probability
distributions, so it can be used to measure the inequality
level between them. This measure is applied as an
indicator of social and economic inequality when the
income distribution of a country is analyzed and in other
several fields like engineering, transport and ecology (see
Giorgi and Gigliarano, 2017; Rachev et al., 2013; Ultsch
and Lötsch, 2017).

For the Gini index (GI) problem, we consider a space
X , two probability distributions ν1 and ν2 on X , and a
distance function in X , d : X ×X → R.

The GI problem is as follows:

Minimize
∫

X×X

d(x, y) dπ

subject to

π(A×X) = ν1(A),

π(X ×A) = ν2(A),

π ∈ M+(X ×X),

for all A in the Borel σ-algebra of X , where M+(X×X)
is the convex cone of probability measures, i.e., π is in the
set of joint probability distributions on X × X , whose
marginals in the first and second components are the
probability distributions ν1 and ν2, respectively, denoted
by Π(ν1, ν2).

Rubner et al. (2000) and Villani (2003) showed that
this problem always has a solution, which is a distance
between the probability distributions ν1 and ν2 and can
be very expensive to find. In addition, the solution
π∗ ∈ Π(ν1, ν2) is a probability measure and the optimal
value of this problem defines the Gini index between the
probability measures ν1 and ν2, denoted by GI(ν1, ν2),
that is,

GI(ν1, ν2) =
∫

X×X

d(x, y) dπ∗.

In this paper, we propose to find the Gaussian
mixture distribution that minimizes the Gini index to an
empirical distribution. We make this proposal based on
the work of Bassetti et al. (2006), where the theory of
the minimum dissimilarity estimators and the estimators
of the minimum distance of Kantorovich are discussed.
In this type of problems, the distribution ν1 is known,
commonly associated with an empirical distribution, and
the distribution ν2 must be estimated in such a way that
the distance between ν1 and ν2, given by the Gini index, is
minimum. We propose this in order to efficiently estimate
the parameters of a Gaussian mixture model through the
Gini index problem.

Now, we will explain the process that we follow to
establish the Gini Index problem based on a given data set
and the way in which we solved the problem.

3. Parameter estimation minimizing the
Gini index

3.1. Empirical distribution ν1. We suppose to have a
data set

P =
{
pm =

(
p
(m)
1 , p

(m)
2 , . . . , p

(m)
N

)}M

m=1
,

with M elements in dimension N . Consider this set P as
the following data frame:
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Fig. 1. Representative histogram for column Cn.
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For each n = 1, . . . , N , we define data frame column
sets as

Cn =
{
p(m)
n

}M

m=1
,

and we obtain a representative histogram of each of them.
We assume that Cn ∈ [αn, βn]. The histogram helps us to
divide the set [αn, βn] into several bins. We use the count
of these bins as a density estimate. If we have Sn bins, the
partition is

Bn
1 = [y

(n)
0 , y

(n)
1 ), Bn

2 = [y
(n)
1 , y

(n)
2 ),

. . . , Bn
Sn

= [y
(n)
Sn−1

, y
(n)
Sn

].

The variable Yn =
{
y
(n)
j

}Sn

j=0
is represented by the

x’s in Fig. 1. In such a case, for a given point xn ∈ Bn
j

we define the density estimation as

γ̂n(xn) =
1

M

M∑

m=1

IBn
j
(p(m)

n ),

where IA is the indicator function of the set A.
To define the empirical distribution ν1 in X , we

consider the multiplication of the density estimation for
each of the columns, i.e., for x = (x1, x2, . . . , xN ) ∈ X
we have

f1(x) =

N∏

n=1

γ̂n (xn) . (4)

3.2. Parametric distribution ν2. For the parametric
distribution ν2 on X , we consider a Gaussian mixture
density, that is,

f2(x) =

K∑

k=1

φkf(x|μk,Σk).

The parameters φk are the mixture proportions and
must comply with (2) and (3). In this work, the function f
is assumed that is an independent multivariate normal dis-
tribution of dimensionN , given in (1), where the mean μk

is a real vector [μk1, μk2, . . . , μkN ]
T and the covariance

matrix Σk is a real diagonal positive definite N × N ,
matrix i.e.,

Σk = diag(σ2
k1, σ

2
k2, . . . , σ

2
kN ). (5)

Then, by the form of Σk, we know that

f(x|μk,Σk) =

N∏

n=1

g(xn|μkn, σ
2
kn),

for x = (x1, x2, . . . , xN ) ∈ X , where g is the univariate
normal density function, that is,

g(s|μ, σ) = 1√
2πσ2

e−
(s−μ)2

2σ2 .

Thus, we have, for x = (x1, . . . , xN ) ∈ X ,

f2(x) =
K∑

k=1

φk ·
N∏

n=1

g
(
xn|μkn, σ

2
kn

)
. (6)

Remark 1. It should be noted that we use independent
probability densities in order not to increase the
computational cost of the proposed model. This
fundamental assumption is made to simplify the
real-world problem complexity in a similar way to the
naive Bayesian classification model (Mao et al., 2020),
and take individual problems for each coordinate in the
multidimensional case as done by Kulczycki (2018). In
several works (e.g., Elkan, 1997; Flach and Lachiche,
2004), it has been mentioned that even with this unrealistic
assumption this technique is effective in practice.

3.3. Gini index problem for a Gaussian mixture
model. The Gini index problem is as follows:

Minimize
∫

X×X

d(x, y) dπ



490 A.L. López-Lobato and M.L. Avendaño-Garrido

subject to

π(A,X) =

∫

A

f1(x) dx,

π(X,A) =

∫

A

f2(x) dx

π ∈ M+(X ×X),

for all A in the Borel σ-algebra of X , where M+(X×X)
in the set of joint probability distributions on X ×X , d is
the Euclidean distance in X , f1 is as in (4) and f2 is as
in (6). We are looking for the following parameters of the
density f2 given in (6):

• the proportions defining the mixture φ =
(φ1, φ2, . . . , φK), which comply with (2) and
(3);

• the means of the Gaussian components μ =
(μ1, μ2, . . . , μK);

• the covariance matrices of the independent Gaussian
components Σ = (Σ1,Σ2, . . . ,ΣK) as in (5).

3.4. Parameter estimation. As the solution exists, by
Bassetti et al. (2006), we can solve this problem using
the Lagrange multiplier method. The Lagrangian for this
problem is

L(φ,μ,Σ) =
∑

x∈X

∑

y∈X

d(x, y)π(x, y)

−
∑

x∈X

λx

⎡

⎣
∑

y∈X

π(x, y)− f1(x)

⎤

⎦ (7)

−
∑

y∈X

γy

[
∑

x∈X

π(x, y) − f2(y)

]

− α

⎡

⎣
∑

x∈X

∑

y∈X

π(x, y)− 1

⎤

⎦

− β

[
K∑

k=1

φk − 1

]
.

Consider first setting the values for the joint
distribution π. We write πxy = π(x, y) and dxy =
d(x, y). For s and t fixed at X , the following is true:

∂L
∂πst

= dst − λs − γt − α = 0.

Then it is true that dst = λs + γt + α. Since d is a
distance in X , if s = t, we have that γt = −λt−α, due to
dtt = 0. Also, as dts = dst, it is true that λt + γs + α =
λs+γt+α, and then λt−λs = −(λt−λs). This equality
is fulfilled if and only if λt = λs, for s, t ∈ X .

Similarly, it is true that γt = γs for s, t ∈ X . Then
λx = λ for every x ∈ X , γy = γ for every y ∈ X and
γ = −λ − α. With these equalities, the Lagrangian (7)
turns out to be

L(φ,μ,Σ) =
∑

x∈X

∑

y∈X

dxyπxy + λ
∑

x∈X

f1(x) (8)

− (λ + α)
∑

y∈X

f2(y) + α− β

[
K∑

k=1

φk − 1

]
.

To obtain the means, we differentiate the Lagrangian
(8) with respect to μtr, with fixed 1 ≤ t ≤ K and fixed
1 ≤ r ≤ N . Because the only sum in which the variable
μtr appears is where ν2 is present, we have

∂L
∂μtr

= −(λ+ α)
∑

y∈X

∂

∂μtr
ν2(y)

In order to use the definition of f2 given in (6), we
must set the sum of all the elements of X given in the
above equation in terms of their coordinates, so

− (λ+ α)
∑

y∈X

∂

∂μtr
f2(y)

= −(λ+ α)

S1∑

j1=1

S2∑

j2=1

· · ·
SN∑

jN=1

∂

∂μtr

[
K∑

k=1

φk ·
N∏

n=1

g
(
y
(n)
jn

|μkn, σ
2
kn

)]
.

Thus, we have

∂L
∂μtr

= −(λ+ α) · φt

(
1

σ2
tr

)

·
S1∑

j1=1

S2∑

j2=1

· · · · · ·
SN∑

jN=1

[ N∏

n=1

g
(
y
(n)
jn

|μtn, σ
2
tn

)

·
(
y
(r)
jr

− μtr

) ]
= 0.

Here λ+ α must be different from 0, since if it were
0, γ would be 0 and there would be no restrictions. In the
same way, φt must be different from 0, since if it were,
there would be no K Gaussian components. Accordingly,

S1∑

j1=1

S2∑

j2=1

· · ·
SN∑

jN=1

[ N∏

n=1

g
(
y
(n)
jn

|μtn, σ
2
tn

)

·
(
y
(r)
jr

− μtr

) ]
= 0.

Then we have

μtr

=

S1∑
j1=1

S2∑
j2=1

· · ·
SN∑

jN=1

y
(r)
jr

N∏
n=1

g
(
y
(n)
jn

|μtn, σ
2
tn

)

S1∑
j1=1

S2∑
j2=1

· · ·
SN∑

jN=1

N∏
n=1

g
(
y
(i)
jn
|μtn, σ2

tn

) .
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Simplifying the common terms in the numerator and
denominator, we get

μtr =

Sr∑
jr=1

y
(r)
jr

exp

(
− (y

(r)
jr

− μtr)
2

2σ2
tr

)

Sr∑
jr=1

exp

(
− (y

(r)
jr

− μtr)
2

2σ2
tr

) . (9)

If we differentiate (8) with respect to σtr, with fixed
1 ≤ t ≤ K , 1 ≤ r ≤ N , analogously to the previous case,
we get

σ2
tr =

Sr∑
jr=1

(
y
(r)
jr

− μtr

)2
exp

(
− (y

(r)
jr

− μtr)
2

2σ2
tr

)

Sr∑
jr=1

exp

(
− (y

(r)
jr

− μtr)
2

2σ2
tr

) .

(10)
The expressions (9) and (10) can be evaluated

iteratively. This estimate is made with respect to the data
set P , so the iterative expressions of the GI algorithm are

μtr =

M∑
m=1

p
(m)
r exp

(
− (p

(m)
r − μtr)

2

2σ2
tr

)

M∑
m=1

exp

(
− (p

(m)
r − μtr)

2

2σ2
tr

) , (11)

for 1 ≤ t ≤ K and 1 ≤ r ≤ N,

σ2
tr =

M∑
m=1

(
p
(m)
r − μtr

)2
exp

(
− (p

(m)
r − μtr)

2

2σ2
tr

)

M∑
m=1

exp

(
− (p

(m)
r − μtr)

2

2σ2
tr

) ,

(12)
for 1 ≤ t ≤ K and 1 ≤ r ≤ N.

For the proportions of the mixture φk, as in the
EM algorithm, we use in each iteration the expression
(1) to calculate for each point pm, m = 1, . . . ,M ,
the probability that pm comes from the parametric
distribution k, i.e., P (fk|pm), with k = 1, . . . ,K , where
fk = f(x|μk,Σk). Then we can compare these values
and determine the membership of the point pm. Once
this classification is made, we can obtain the proportions
by taking the quantity of elements in each class and
normalizing via dividing by M .

It is important to emphasize that, to obtain the
expressions (11) and (12), we made the assumption
that the components of the Gaussian mixture f2 were
independent multivariate normal distributions, and for this
reason we only looked for the values of the covariance
matrix that is a positive definite diagonal matrix. In
the following section we will show some of the results
obtained when using this algorithm.

4. Numerical results

In this section we will show the obtained numerical
results when using the EM algorithm, the GI algorithm
and the K-means method. We consider experiments
with simulated data and real data. In the experiments
with simulated data we consider data from 2, 3 and 4
Gaussians. For experiments with real data we consider
two databases: the Iris data set and the Seeds data set,
found in the UCI Machine Learning Repository 1.

To carry out these experiments we used the free
software R2. For the classification with the K-means
method we use the kmeans() function, and for the
classification using the EM algorithm we employ the
GMM() function in the ClusterR package.

With respect to the initial values that we use for
the GI algorithm, we select them as follows. For the
initial values of the means, we make a random selection
of points within the domain of the analysed data set. For
the initial values of the covariance matrix, we randomly
select values between 1 and 4. For the initial values
of the mixing proportions, we use, as usual, the values
of a uniform distribution, that is, if we want adjust K
Gaussians, we take proportions φk = 1/K , for each k,
as the initial values.

4.1. Simulated data. First we will show how the
training data was generated and then what process will be
used to make comparisons between the GI algorithm, the
EM algorithm and the K-means model.

We generated a training data set P with a sample
size M = 3000, from 2, 3 or 4 classes when considering
different configurations for each case (univariate and bi-
variate), by analyzing the following characteristics:

• data proportion: the data amount from each class can
be equal or different;

• data intersection: classes can be spatially well differ-
entiated or intersected.

We specify the values used in each configuration
in the corresponding sections. Once the data set to be
analyzed has been generated, we translate the data items
to the interval [−10, 10] for the univariate case, and to
[−10, 10] × [−10, 10] for the bivariate case. In addition,
we can obtain a class vector that establishes from which
Gaussian each data item comes from, in order to be able
to establish the classification accuracy with the analysed
models.

For the experiments with synthetic data we perform
the following process 100 times:

1. We generate a set P of 3000 training data items
specifying the characteristics of the configurations.

1https://archive.ics.uci.edu/ml/index.php.
2https://www.r-project.org/.

https://archive.ics.uci.edu/ml/index.php
https://www.r-project.org/
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Table 1. Results of Configuration 1: univariate case.
Adjusted Acc. GI EM

K-means
Gaussians algorithm algorithm

Acc. 100 100 99.96667
2 time 0.58 0.0345 0.0328

GI 0.300322
Acc. 100 78.8483333 75.66667

3 time 0.5683 1.3175 0.2292
GI 0.300322

Acc. 100 77.0606667 74.3270
4 time 0.6651 1.643 0.3069

GI 0.300322

2. We adjust each of the three models to the data set P ,
assuming that there are 2, 3, 4 or 5 groups, depending
on each case. Then we obtain the classification
accuracy.

3. We record the obtained classification accuracy
through the three models and, for the univariate case,
the Gini index values given by the GI algorithm.

Once we obtain the results of 100 iterations of
these experiments, we calculate the average classification
accuracy for each model; the time average, and the
average values of the Gini index in the univariate case.
These values are recorded in the tables in the following
sections. In each table in this document, we show in
boldface the best classification accuracy average. Let us
recall that a small value for the Gini index suggests that the
empirical distribution is closer to the estimated theoretical
model.

4.1.1. Univariate case.

Configuration 1. (See Fig. 2(a)) We have 3000 data
items generated with equal proportions of 2 separate uni-
variate Gaussians, with the following parameters: 1500
data items with μ1 = −12, σ1 = 2 and 1500 data items
with μ2 = 10,σ2 = 3. In this case we adjust 2, 3 and
4 Gaussians with the three methods, and the results are
shown in Table 1.

The best classification accuracy average for the
three models are those that consider the search for two
Gaussians, because the data was generated precisely from
two Gaussians. With the GI algorithm and the EM
algorithm we obtain a 100% of average accuracy, higher
than the K-means method. We obtain 100% when
searching for 3 and 4 Gaussians with the GI algorithm
because, even when it finds them, one or two have a
proportionφk = 0. For the value of the Gini index, we can
see that the minimum is obtained for 2 Gaussians, which is
an advantage, since we do not require a priori knowledge
about the number of components in the mixture.

Table 2. Results of Configuration 2: univariate case.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

Acc. 87.5 86.732 81.0850
3 time 0.5689 0.0995 0.2305

GI 1.408632
Acc. 99.899333 94.36667 99.86667

4 time 0.4542 1.6996 0.3029
GI 1.109472

Acc. 99.899333 83.776333 89.8310
5 time 0.6337 2.0762 0.3678

GI 1.109472

Configuration 2. (See Fig. 2(b)) We have 3000 data
points generated with different proportions of 4 in-
tersected univariate Gaussians, with the following
parameters: 375 data points with μ1 = −22, σ1 = 3,
750 data points with μ2 = −8, σ2 = 2, 750 data points
with μ3 = 5, σ3 = 2 and 1125 data points with μ4 = 15,
σ4 = 1. In this case we adjust 3, 4 and 5 Gaussians. In
Table 2 we show the results for this configuration.

In this configuration the GI algorithm yielded the
best result when considering 4 and 5 Gaussians, and the
value of the Gini index is lower in these cases. Again, we
find a proportionφk = 0 when we adjust 5 Gaussians with
the GI algorithm.

Configuration 3. (See Fig. 2(c)) We have 3000 data
items generated with equal proportions of 3 univari-
ate distributions, 2 intersected, with the following
characteristics: 1000 data items from a beta distribution
X ∼ β(2, 1.5), 1000 data items from a chi-square
distribution X ∼ χ2(40) and 1000 data items from a
Poisson distribution X ∼ Pois(100). We adjust 2, 3 and
4 Gaussians in this case. The results are shown in Table 3.

In this configuration we obtained a better
classification when we adjusted 3 and 4 Gaussians
with the GI algorithm. With this configuration we can see
that, even when we generate the data set to be analyzed
from non-Gaussian distributions, the method works
correctly, that is, it is robust in this regard.

Configuration 4. (See Fig. 2(d)) We have 3000 data
points generated with different proportions from 3 in-
tersected univariate distributions, with the following
characteristics: 1500 data points from a gamma
distribution X ∼ Γ(0.7, 0.3), 1000 data points from a
binomial distribution X ∼ Bin(20, 0.8), 500 data points
from a Poisson distribution X ∼ Pois(35). The obtained
results for this configuration are found in Table 4.

In this case, we obtained a better classification with
the K-means method.

In Configurations 3 and 4 we obtain the same
averages for 4 Gaussians with the GI algorithm, which



Fitting a Gaussian mixture model through the Gini index 493

P

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

P

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

P

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

P

N
or

m
al

iz
ed

 fr
eq

ue
nc

y

−10 −5 0 5 10

0.
00

0.
05

0.
10

0.
15

0.
20

(a) Configuration 1 (b) Configuration 2 (c) Configuration 3 (d) Configuration 4

Fig. 2. Configuration examples for the univariate case.

Table 3. Results of Configuration 3: univariate case.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

Acc. 66.666667 66.633 66.66667
2 time 2.1092 0.1714 0.129

GI 3.810997
Acc. 99.497333 98.53267 94.7140

3 time 3.3735 0.1525 0.8571
GI 3.32223

Acc. 99.497333 83.836333 76.66667
4 time 3.5821 5.3871 1.1383

GI 3.32223

means that in both cases the model found the same means
and deviations values for 3 and 4 Gaussians, with a mixing
proportion φk = 0 for the case of 4 Gaussians. Although
the results using the GI algorithm are not the best for
Configuration 4, they are very close to those obtained with
the K-means method, with the additional information of
the covariance matrices.

These last two configurations have the ability to
verify how the algorithm behaves with other distributions,
not only for Gaussian mixtures. As can be seen, we obtain
similar results to experiments with data generated from
Gaussian mixtures.

In order to complement the experiments carried out
in this section, we will analyze other situations that could
be of interest, considering experiments with different
amounts of data and different numbers of intervals in the
representative histogram.

Different amount of data. In Tables 5 and 6, we show
the results that we obtain by using the same parameters
of Configurations 2 and 3, respectively, but varying the
amount of data. In each table we show the data set size.

It is important to mention that the proportions
used for the generation of the data correspond to
the configuration proportions, i.e., the proportions 1/8,
1/4, 1/4 and 3/8 for Configuration 2 and a uniform
distribution for Configuration 3.

As you can see in Table 5 in addition to Table 2, the

Table 4. Results of Configuration 4: univariate case.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

Acc. 79.659 75.966667 81.63367
2 time 0.3753 0.0779 0.033

GI 1.987989
Acc. 97.901333 97.501 98.03333

3 time 1.0017 0.1584 0.2376
GI 1.401458

Acc. 97.901333 88.364667 87.26267
4 time 1.055 0.4704 0.3044

GI 1.401458

results given by the GI algorithm are not affected by the
quantity of data. The values for the Gini index change in
each case, but the minimum value always appears when
we adjust 4 Gaussians. In Tables 3 and 6 the same thing
is noticeable as in the previous case. It is important to
note that, in this case, when we have less data, i.e., 150
elements, we obtain the best results. Again, we have the
same accuracy for 3 and 4 Gaussians and the lowest Gini
index in the same cases, because in the case of 4 Gaussians
one of them has a zero proportion.

Different numbers of intervals in the representative
histogram. For the experiments with different numbers
of intervals in the representative histogram, we consider
Configuration 2, with 4, 20 and 40 intervals. The results
for this experiments are in Table 7. In Table 2, we show
the results for 10 intervals.

As can be seen, the results do not depend on the
number of intervals. The only value that varies with
respect to the number of intervals is the Gini index. The
lowest value appears when we adjust 4 Gaussians.

In all the experiments carried out in this work, we
use the histogram generated by default by the hist()
function of R, with 10 intervals.

4.1.2. Bivariate case. For the data generation in
the plane, we consider independent bivariate normal
distributions, that is, Gaussians whose covariance matrix
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Fig. 3. Configuration examples for the bivariate case.

Table 5. Results of different amount of data for Configuration 2.
Set Adj. GI EM

K-means
size G algorithm algorithm

160

Ac. 86.875 86.5 86.875
3 time 0.2451 0.0227 0.05

GI 1.561819
Acc. 99.875 98.75 99.3750

4 time 0.0794 0.0527 0.0674
GI 1.184991

Acc. 99.375 88.125 84.3750
5 time 0.1978 0.0715 0.0748

GI 1.197076

320

Ac. 87.5 85 86.86875
3 time 0.4076 0.0412 0.14730

GI 1.494086
Acc. 99.75 99.125 99.41875

4 time 0.254 0.05430 0.1979
GI 1.158949

Acc. 99.75 86.790625 84.10938
5 time 0.2487 0.704 0.2149

GI 1.15895

1280

Ac. 85.12344 86.875781 84.99922
3 time 1.45510 0.1826 0.5949

GI 1.41227
Acc. 99.898437 99.207813 99.86766

4 time 1.330626 3.2445 0.7271
GI 1.130626

Acc. 99.4976563 82.293750 82.57734
5 time 1.4255 4.1051 0.8474

GI 1.1593782

is diagonal, and non-independent bivariate normal
distributions, that is, Gaussians whose covariance matrix
is a positive definite non-diagonal matrix. This is in
order to verify how efficient the models are when we use
databases that might not meet the independence condition
used by the GI algorithm.

Configuration 1. (See Fig. 3(a)) We have 3000 data
items generated with different proportions of 2 separate
bivariate Gaussians, with the following parameters: 2000

Table 6. Results of different amount of data for Configuration 3.
Set Adj. GI EM

K-means
size G algorithm algorithm

150

Ac. 66.666667 66.666667 66.66667
2 time 0.0765 0.0195 0.0109

GI 3.836915
Acc. 99.98 99.973333 97.30667

3 time 0.079 0.0085 0.0288
GI 3.371382

Acc. 99.98 87.42 84.70667
4 time 0.0811 0.0231 0.0301

GI 3.371382

300

Ac. 66.666667 66.666667 66.66667
2 time 0.17 0.0154 0.0094

GI 4.026724
Acc. 99.33667 99.336667 98.00333

3 time 0.1667 0.0115 0.0389
GI 3.35724

Acc. 99.33667 87.226667 85.31333
4 time 0.2154 0.0295 0.0538

GI 3.35724

1200

Ac. 66.66667 66.3325 66.66667
2 time 0.2857 0.0365 0.0187

GI 3.87596
Acc. 99.9125 99.078333 97.65833

3 time 0.3832 0.0267 0.1359
GI 3.376

Acc. 99.9125 87.972500 85.18583
4 time 0.4729 0.6719 0.1533

GI 3.376

data items with

μ1 = (−7,−3), Σ1 =
(

2 −1
−1 1

)

and 1000 data items with

μ2 = (3, 10), Σ2 =
(
1 1
1 2

)
.

In Table 8 the results for this configuration when we adjust
2, 3 and 4 Gaussians are shown.

We obtain the best accuracy with the GI algorithm
for 2, 3 and 4 Gaussians, and the EM algorithm and
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the K-means method for 2 Gaussians. Once again, we
obtained satisfactory results when adjusting 2 or more
Gaussians with the GI algorithm because with this method
we have values φk = 0 for the extra components
considered in the adjustment of the mixture. Also, in
this configuration, we consider a generated data set from
non-independent Gaussian distribution, which means that
it does not comply with the independence condition, and
we have favourable results.

Configuration 2. (See Fig. 3(b)) We have 3000 data
points generated with different proportions of 4 bivariate
Gaussians intersected by pairs, with the following
parameters: 1200 data points with

μ1 = (0, 16), Σ1 =

(
2 0
0 1

)
,

900 data points with

μ2 = (7, 18), Σ2 =
(
1 1
1 2

)
,

600 data points with

μ3 = (8,−5), Σ3 =
(
2 0
0 2

)

and 300 data points with

μ4 = (14,−5), Σ4 =
(
1 0
0 2

)
.

The results for this configuration, when we adjust 3, 4 and
5 Gaussians, are shown in Table 9.

Again, in this configuration we obtain the highest
percentage for each model when we consider 4 Gaussians,
and the GI algorithm has the highest average.

Configuration 3. (See Fig. 3(c)) We have 3000 data
items generated with equal proportions from 4 intersected
bivariate Gaussians, with the following parameters: 750
data items with

μ1 = (0, 16), Σ1 =
(

1 −1
−1 2

)
,

750 data items with

μ2 = (5, 16), Σ2 =
(
1 1
1 2

)
,

750 data items with

μ3 = (0, 10), Σ3 =
(
1 0
0 2

)

and 750 data items with

μ4 = (5, 11), Σ4 =
(
1 0
0 1

)
.

Table 7. Results of different number of intervals in the represen-
tative histogram.

No. of Adj. Acc. GI EM
K-means

intervals G algorithm algorithm

4

Ac. 87.5 86.73533 86.799
3 time 0.4551 0.1198 0.2823

GI 5.710026
Acc. 99.899667 94.907333 99.832

4 time 0.5139 1.8622 0.365
GI 4.710025

Acc. 99.899667 83.800333 81.07567
5 time 0.9875 2.3186 0.4648

GI 4.710025

20

Ac. 87.5 86.733333 86.8
3 time 0.4884 0.1288 0.3123

GI 0.9650311
Acc. 99.9 94.966667 99.83333

4 time 0.5834 1.9476 0.4083
GI 0.3244576

Acc. 99.9 83.7666667 81.06667
5 time 1.0465 2.3792 0.501

GI 0.3244576

40

Ac. 87.5 86.73333 86.8
3 time 0.4737 0.1386 0.2887

GI 0.8450669
Acc. 99.9 94.96667 99.83333

4 time 0.5339 1.89810 0.3835
GI 0.2116182

Acc. 99.9 83.76667 81.06667
5 time 0.9864 2.3081 0.468

GI 0.2116182

Table 8. Results of Configuration 1: bivariate case.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 100 100 100
time 0.9672 0.0228 0.0105

3
Acc. 100 83.90367 67.99533
time 1.5312 0.1307 0.0064

4
Acc. 100 52.33167 62.93767
time 1.6254 0.2826 0.0072

Table 9. Results of Configuration 2: bivariate case.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

3
Acc. 89.8144 89.6008 89.3394
time 1.0006 0.1135 0.0165

4
Acc. 98.0784 94.8428 90.0292
time 1.0633 0.7247 0.0166

5
Acc. 97.5006 79.3204 77.0836
time 1.3915 2.8278 0.0197

In Table 10 the obtained results are displayed.
In this case, we obtain high averages for 4 and 5

adjusted Gaussians with the GI algorithm. We obtain the
second best result when we consider 4 Gaussians with the
K-means method. With this example we can see that
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Table 10. Results of Configuration 3: bivariate case.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

3
Acc. 73.3720 73.5376 73.7796
time 1.9184 0.8386 0.0518

4
Acc. 97.6964 93.4616 97.1192
time 1.749 1.5722 0.058

5
Acc. 97.6964 82.5796 87.0752
time 1.3066 4.7118 0.0648

Table 11. Results of different amount of data for Configura-
tion 2: bivariate case.

Set Adj. GI EM
K-means

size G algorithm algorithm

150

3
Ac. 89.89333 89.34 89.34

Time 0.2482 0.0091 0.0074

4
Acc. 99.99333 99.34 99.34
Time 0.1834 0.0109 0.0055

5
Acc. 99.98667 85.3 85.20667
Time 0.2792 0.0755 0.0051

300

3
Ac. 88.67667 89.66667 89.66667

Time 0.2811 0.0141 0.0061

4
Acc. 99.99667 80.00333 99.43
Time 0.268 0.0428 0.0059

5
Acc. 99.99667 69.9700 82.76
Time 0.3704 0.0497 0.0058

1200

3
Ac. 89.66833 89.75167 69.915

Time 0.7935 0.0242 0.0049

4
Acc. 99.91417 99.75083 99.58083
Time 0.8211 0.0444 0.0062

5
Acc. 99.91417 87.90667 85.9925
Time 1.1526 0.1197 0.0062

the method is robust with respect to the independence
condition established for the analyzed data set.

In the same way as in the univariate case, we will
show some experiments considering a different amount
of data. In this case, we think that the experiments with
different numbers of intervals are not relevant since we got
similar results to those observed in Table 7. The number
of intervals does not affect the results. Furthermore, we
can see that the algorithm performs well even though the
independence hypothesis is not fulfilled.

Different amounts of data. For the experiments with
different amounts of data, we use the same parameters
for the means and covariance matrices of Configurations 2
and 3 in the bivariate case. We show the different amounts
of data and the results in Table 11 for Configuration 2 and
in Table 12 for Configuration 3. The proportions used
correspond to the configuration ones, as in the univariate
case.

Table 12. Results of different amount of data for Configura-
tion 3: bivariate case.

Set Adj. GI EM
K-means

size G algorithm algorithm

160

3
Ac. 73.2125 74.8875 74.9625
time 0.3401 0.0108 0.0061

4
Acc. 99.33875 99.28125 99.33125
time 0.2771 0.0101 0.0055

5
Acc. 99.33875 83.0125 88.70625
time 0.3963 0.0137 0.0053

320

3
Ac. 68.73438 73.44688 73.44375
time 0.4153 0.0102 0.0041

4
Acc. 95.96563 95.89062 95.65625
time 0.3818 0.0193 0.003

5
Acc. 95.96563 83.8250 86.26562
time 0.6307 0.0409 0.0043

1280

3
Ac. 62.73438 73.98438 73.82812
time 1.273 0.0581 0.0088

4
Acc. 97.89062 96.07812 97.8125
time 0.9137 0.0941 0.0073

5
Acc. 97.89062 89.21875 86.79688
time 1.5352 0.1195 0.0084

Table 13. Results for 2 Gaussians in dimension 5.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 100 100 100
time 5.6146 0.0969 0.0393

3
Acc. 99.85305 76.25725 75.833
time 6.6641 8.4049 0.0642

4
Acc. 97.23465 67.4484 66.45755
time 8.4456 12.0507 0.0843

4.1.3. Higher dimensions. In this section we consider
experiments in dimensions 5 to 8 when we generate data
from 2 and 3 Gaussians, in order to verify how efficient
the models are in higher dimensions.

For this experiments we use the following values
for the parameters: μ1 = (1, 1, . . . , 1) ∈ R

N and
Σ1 = Diag(1, 1, . . . , 1) with size N × N , μ2 =
(10, 10, . . . , 10) ∈ R

N and Σ2 = Σ1. Remember that N
is the corresponding dimension of the analyzed data set.
For the cases with 3 Gaussians, μ3 = (20, 20, . . . , 20) ∈
R

N and Σ3 = Σ1.
In these cases we also transfer the data to

[−10, 10]× · · · × [−10, 10]︸ ︷︷ ︸
N times

,

taking into account the number of dimensions N .

Dimension 5. In Tables 13 and 14, we show the results
obtained when we generated the data set with 2 and 3
Gaussians, respectively.

In the first case we obtained 100% of accuracy when
we adjusted 2 Gaussians with the 3 models. We obtain the
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Table 14. Results for 3 Gaussians in dimension 5.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 66.66667 66.66667 66.66667
time 5.508 0.212 0.074

3
Acc. 99.98667 100 100
time 7.196 0.202 0.088

4
Acc. 96.16133 84.44 83.442
time 8.92 21.052 0.118

Table 15. Results for 2 Gaussians in dimension 6.
Adjusted GI EM

K-means
Gaussians Algorithm Algorithm

2
Acc. 100 100 100
Time 0.7409 0.0115 0.0059

3
Acc. 100 77.5225 75.896
Time 1.0445 0.9674 0.0054

4
Acc. 100 70.5875 68.2905
Time 1.3269 1.3206 0.008

Table 16. Results for 3 Gaussians in dimension 6.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 66.66667 66.66667 66.66667
time 0.638 0.033 0.015

3
Acc. 96.13667 93.68333 100
time 0.833 0.875 0.033

4
Acc. 93.13333 60.35 83.86667
time 1.086 1.216 0.036

second best result when we adjust 3 Gaussians with the GI
algorithm. In the second scenario, we have better results
with the EM algorithm and the K-means method when we
adjust 3 Gaussians. We obtain the second best result with
the GI algorithm.

It is important to mention that if we do not have a
priori information about the number of classes in the data
set and we adjust a wrong number of classes, we obtain
the best results with the GI algorithm.

Dimension 6. We show the results for the experiments
in dimension 6 in Tables 15 and 16.

For the experiments with 2 Gaussians, we obtain
better results when we adjust 2 Gaussians with 3 models
and when we adjust 3 and 4 Gaussians with the GI
algorithm. In this case we can observe that the GI
algorithm guarantees better results even when we adjust
more Gaussians because the model finds values equal to
0 for mixture proportions for the additional Gaussians.
As for 3 Gaussians, we obtain better results with the
K-means method.

As in the experiments in dimension 5, in these cases
we obtain the best result if we adjust a wrong number of

Table 17. Results for 2 Gaussians in dimension 7.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 100 100 100
time 1.0257 0.012 0.0064

3
Acc. 99.9975 76.7625 76.701
time 1.3625 0.9881 0.0066

4
Acc. 99.9495 72.1115 68.392
time 1.6538 1.4013 0.0087

Table 18. Results for 3 Gaussians in dimension 7.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 66.66667 66.66667 66.66667
time 0.724 0.024 0.02

3
Acc. 90.71333 90.70667 100
time 0.93 0.578 0.048

4
Acc. 89.53333 87.377333 84.01333
time 1.212 0.75 0.028

Table 19. Results for 2 Gaussians in dimension 8.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 100 100 100
time 0.862 0.03 0.016

3
Acc. 100 81.97 75.53
time 1.232 0.798 0.032

4
Acc. 100 74.24 67.73
time 1.536 1.368 0.032

classes with the GI algorithm.

Dimension 7. In Table 17 we can observe the results
obtained when we generated a data set from 2 Gaussians.
The best results are obtained when we adjust 2 Gaussians
with 3 models. In this case, we obtained some mixture
proportions with values close to zero, so that the accuracy
for 3 and 4 Gaussians is close to 100%.

For the case of 3 Gaussians, we obtain the best result
with the K-means method, as can be seen in Table 18.

Dimension 8. In Table 19 we show the results for 2
Gaussians. Again, we obtain the best results when we
adjust 2, 3 and 4 Gaussians with the GI algorithm and
when we adjust 2 Gaussians with the 3 models.

For 3 Gaussians, we obtain the results in Table 20.
The K-means method yields better results when we adjust
3 Gaussians. It is important to mention that with this
model we only have values for the means of the data.
Again, in these cases, if we adjust a wrong number of
classes, we have the best result with the GI algorithm.

Remarks. Our chief remarks are as follows.
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• In most cases we get better results with the GI
algorithm than with the other two models, and when
we do not get the best result, we get the second best.

• We obtain the best averages when considering the
actual number of classes used to generate the data.

• We get better results when classes are well
differentiated, graphically speaking.

• The difference between the average with the GI
algorithm for the original number of classes and
the following ones is very small, because, when
we consider more classes, this model finds the
parameters for the additional ones with proportionφk

equal or close to 0.
• The Gini index values for the univariate case are

lower when we consider the actual number of data
classes.

• The model appears to be robust with respect to the
number of data items and the number of intervals in
the representative histogram.

• If we analyze the execution time of these methods, it
is clear that the fastest and relatively effective method
is the K-means ones; however, with it we cannot find
values for the covariance matrices.

• When we compare the accuracy of the GI algorithm
with that of the EM algorithm, the former performs
better but takes longer to execute.

• We can ensure that the GI algorithm finds values of
mixing proportions equal or close to zero when we
fit more Gaussians than the actual amount used to
generate the data.

4.2. Real data. To carry out classification experiments
with real data, we consider the Iris data set and the Seeds
data set of the UCI Machine Learning Repository. For
each of these data sets we use the GI algorithm, the EM
algorithm and the K-means method for data classification.

Similar results of these experiments are reported in
our earlier work (López-Lobato and Avendaño-Garrido,
2020); however, here the execution times for the three
considered models are added.

4.2.1. Iris data set. In the Iris data set the authors
examine 3 different varieties of the Iris plant: Iris Setosa,
Iris Versicolour and Iris Virginica, 50 instances each,
considering 4 physical characteristics of this plants: sepal
length, sepal width, petal length and petal width. In this
case we have a 4-dimensional data set with 3 classes. The
results obtained for this database are shown in Table 21.

We obtain the best percentage of accuracy for the 3
models when we consider 3 clusters, because the database
has 3 differentiated classes. We obtain a better percentage
of accuracy with the GI algorithm for 3 Gaussians.

Table 20. Results for 3 Gaussians in dimension 8.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 66.66667 66.66667 66.66667
time 0.8067 0.0367 0.0167

3
Acc. 99.7 58.388889 100
time 1.1267 1.04333 0.0333

4
Acc. 96.68889 91.72222 83.97778
time 1.4367 1.47 0.04

Table 21. Results for the Iris data set.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 66.66667 66.66667 66.66667
time 0.11 2.39 0.02

3
Acc. 97 96.66667 88.66667
time 0.22 3.36 0.01

4
Acc. 96 92 72.66667
time 0.28 4.32 0.02

Table 22. Results for the Seeds data set.
Adjusted GI EM

K-means
Gaussians algorithm algorithm

2
Acc. 66.66667 66.66667 66.19048
time 1.07 2.68 0.01

3
Acc. 94.61905 93.33333 89.52381
time 1.27 4.83 0.02

4
Acc. 92.85714 89.52381 77.14286
time 1.7 9.97 0.02

4.2.2. Seeds data set. In the Seeds data set,
the authors examine 3 different varieties of wheat
seeds: Kama, Rosa and Canadian, 70 instances each,
considering 7 geometrical parameters of wheat grains:
area, perimeter, compactness, length of kernel, width of
kernel, asymmetry coefficient and length of kernel groove.
Thus, we have a 7-dimensional data set with 3 classes.

By adjusting this data set through the GI algorithm,
the EM algorithm, and the K-means method, we obtain
the percentages of accuracy shown in Table 22.

With the three models we obtain a better percentage
of accuracy when we consider three adjusted Gaussians.
We obtain the best average with the GI algorithm.

It is important to mention that, in the experiments
with real data, the time required by the GI algorithm is
smaller than that required by the EM algorithm with better
results. This leads us to the conclusion that the proposed
model helps us to efficiently estimate the parameters of a
Gaussian mixture model through the Gini index problem.

5. Conclusions and future work

Thanks to the experiments carried out in this work, we can
say that with the proposed model we obtain favourable
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results, because our model seeks to minimize the Gini
index between the empirical distribution and the proposed
parametric distribution.

With the proposed model we obtain good results,
even if the independence condition is not met and if
the analyzed data sets comes from distributions that are
not Gaussian mixtures, as in Configurations 3 and 4 for
the univariate case and the experiments with real data.
Furthermore, if we do not know the number of classes
present in the database and arbitrarily set this number, the
model fits the true number of classes, as we observed with
the simulated data.

As future work, we want to study the theoretical
properties and convergence of the GI algorithm and
search for applications with real data. Also, we want
to find some way to automatically specify the number
of classes present in the analyzed data set with our
method, analogously to the articles by Kulczycki (2018)
and Kłopotek et al. (2020).
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Adriana Laura López-Lobato is a third-year PhD student at the Fac-
ulty of Mathematics in the University of Veracruz. She was born in
Xalapa, Mexico, in 1991. She received a BS degree and an MS de-
gree, both in mathematics, at the University of Veracruz. Her scientific
interests are applied mathematics, computing mathematics, probabilistic
inference problems and optimization.

Martha Lorena Avendaño-Garrido was born in Xalapa, Mexico, in
1980. She received her BS degree in mathematics from the University
of Veracruz (Mexico) in 2004, her MSc degree in industrial mathematics
and computer science from the Mathematics Research Center (Mexico),
and her PhD degree in mathematics from the Complutense University of
Madrid (Spain) in 2013. She is a full professor at the Faculty of Math-
ematics of the University of Veracruz. She is interested in optimization,
applied mathematics, modeling and computer science.

Received: 29 March 2021
Revised: 18 June 2021
Accepted: 1 July 2021


	Introduction
	Gini index
	Parameter estimation minimizing the Gini index
	Empirical distribution ν1
	Parametric distribution ν2
	Gini index problem for a Gaussian mixture model
	Parameter estimation

	Numerical results
	Simulated data
	Univariate case
	Bivariate case
	Higher dimensions

	Real data
	Iris data set
	Seeds data set


	Conclusions and future work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


