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This paper considers feature selection as a problem of an aggregation of three state-of-the-art filtration methods: Pearson’s
linear correlation coefficient, the ReliefF algorithm and decision trees. A new wrapper method is proposed which, on the
basis of a fusion of the above approaches and the performance of a classifier, is capable of creating a distinct, ordered
subset of attributes that is optimal based on the criterion of the highest classification accuracy obtainable by a convolutional
neural network. The introduced feature selection uses a weighted ranking criterion. In order to evaluate the effectiveness
of the solution, the idea is compared with sequential feature selection methods that are widely known and used wrapper
approaches. Additionally, to emphasize the need for dimensionality reduction, the results obtained on all attributes are
shown. The verification of the outcomes is presented in the classification tasks of repository data sets that are characterized
by a high dimensionality. The presented conclusions confirm that it is worth seeking new solutions that are able to provide
a better classification result while reducing the number of input features.
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1. Introduction

Feature selection (FS) is treated as the process of finding
and picking a subset of the most significant attributes
in the data. As a consequence, the dimensionality of
the considered input space is reduced. In contrast to
feature extraction, in FS the original feature values are left
unchanged. In general, FS is divided into the solutions
known as filters (variables are chosen independently of a
learning model), wrappers (a learning model is involved
in selection of a set of variables) and embedded methods.
In embedded methods, the input variables are chosen
within a training process of a learning model (Guyon and
Elisseeff, 2003). Since in this research, the filter and
wrapper approaches are studied, some attention to these
methods is paid below.

In filter based FS, the attributes are selected taking
into account the association of particular inputs and the
target output. The best known solutions are statistical
methods such as Pearson’s correlation, chi-square or
the Fisher scoring algorithm. However, there are also
other algorithms, including ReliefF (Robnik-Šikonja and
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Kononenko, 2003), where the weight computed for each
feature establishes its importance, or the decision tree, an
example of which is CART (Breiman et al., 1984), where
the information gain within the feature split imposes its
significance.

Although frequently applied, in many cases, the use
of a single FS method may be insufficient to extract the
most important attributes from the data (Bolón-Canedo
et al., 2013; Vergara and Estévez, 2014). This results
from the fact that some selection techniques may be
efficient in resolving particular problems, but useless in
others (Awada et al., 2012). For this reason, a lot of
up-to-date studies have been published that focus on
merging state-of-the-art FS methods so as to discover
an optimal subset of important features. The following
research is worth mentioning here: combinatorial fusion
analysis (Li et al., 2013), a voting scheme combination
framework (Rokach et al., 2006) or aggregation function
based feature ranking (Pes, 2020). The idea of fusion
of various FS methods has also been investigated by the
authors of the current work (Kusy et al., 2020; Zajdel
et al., 2020).
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The second group of methods, which are considered
even more efficient than filter based FS solutions, are
known as wrapper approaches (WAs). In contrast to
filters, WAs utilize the output of an applied model for
detecting the significance of features. WAs conduct
a search for a feature subset in the space of possible
features. The search requires a state space, an initial state,
a termination condition and a search engine (Russell and
Norvig, 1995). The feature state representation can be
easily understood using a bit-wise notation where each bit
indicates whether a feature is present (indicated as 1) or
absent (indicated as 0) in the data set. Based on such a
representation, the initial state can be determined either
with a single feature or all features but one included. Such
a configuration allows for applying a search algorithm,
the objective of which is to find the state for which the
highest accuracy of the model is attained. Unfortunately,
the size of the search space for I possible features is
O(2I); therefore, it is impractical to search the whole
space exhaustively (Devijver and Kittler, 1982).

Based on the search strategy, WAs can be generally
split into the following categories (El Aboudi and
Benhlima, 2016): exponential, e.g., the branch and bound
algorithm (Narendra and Fukunaga, 1977), population
based (Lu et al., 2008; Rodrigues et al., 2014) and
sequential, e.g., forward/backward selection (Whitney,
1971; Broughton et al., 2010).

In this paper, we propose a new wrapper approach
for feature selection. It relies on merging three known
FS methods, i.e., Pearson’s linear correlation coefficient
(PC), ReliefF (RF) and a single decision tree (DT). Based
on the assumed formal criteria, which refer to feature
importance ranking and the accuracy of a classification
model, the approach selects the most significant subset
of attributes from the input patterns. As the investigated
model, we utilize a one-dimensional convolutional
neural network. This has been receiving greater and
greater attention in the literature due to its prominent
performance in several applications (Abdeljaber et al.,
2018; Abdel-Hamid et al., 2014a; Kiranyaz et al., 2015a;
Abdeljaber et al., 2017). Although our method utilizes
the idea of wrappers, it can also be perceived as a hybrid
solution. This is because the conducted selection of
features is based both on the accuracy of the classifier and
the application of filtering methods. This paper can be
treated as an extension of the work presented by Kusy
et al. (2020) and Zajdel et al. (2020). However, its
main contribution is the introduction of a novel weighted
combined ranking score that allows for selecting the most
significant features. Such a solution creates a new wrapper
approach to feature selection.

The rest of the paper is arranged as follows. In
Section 2, the issue of feature selection is discussed. Here,
the basis of the filter methods and the wrapper approaches
applied in the current work are put forward. Section 3

sets out a description of the utilized convolutional neural
network. Section 4 is devoted to the presentation of
the proposed method. The case study that depicts
implementation of the method for a particular database is
introduced in Section 5. In Section 6, we characterize the
examined data sets and delineate the settings of the CNN.
In this part of the article, we provide a thorough analysis
of the obtained results. Section 7 concludes the work.

2. Feature selection

The proposed method utilizes filter feature selection
methods in its operation; therefore, in the first part of
the current section, we devote some attention to these
particular techniques. Since our method belongs to
the class of wrapper approaches, the concept of WA is
explained in the second part of this section.

2.1. Filter methods. In this work, two known and
widely used FS filter methods are selected for research
that do not reduce the number of features. These
are Pearson’s correlation coefficient and the ReliefF
algorithm. The third filter method, the decision tree,
is chosen due to its property of reducing the number
features.

2.1.1. Pearson’s linear correlation coefficient. PC is
a statistic measure used to establish a linear correlation
between two variables. For the i-th feature, i = 1, . . . , I ,
of L input records and the available data targets tl, the
correlation between the i-th input and the output can be
defined as follows (Benesty et al., 2009):

ri =

∑L
l=1 (xli − xi)

(
tl − t

)

√
∑L

l=1 (xli − xi)
2 ∑L

l=1

(
tl − t

)2
, (1)

where xi = (1/L) ·∑L
l=1 xli is the mean over the i-th

feature, while t = (1/L) ·∑L
l=1 tl denotes the mean over

the targets of all xl records for l = 1, . . . , L. If xl and tl
are linearly dependent, ri = ±1; ri = 0 if the variables
are not correlated. On the basis of decreasing values of
|ri|, the ranking of feature importance can be established.

2.1.2. ReliefF algorithm. RF (Robnik-Šikonja and
Kononenko, 2003) is a filter based approach developed to
determine the ranking of features. It finds the weights of
the attributes that reflect the relevance of the predictors.
For a randomly selected record xl, ReliefF searches for
k = 1, . . . ,K of its nearest neighbors from class c
(nearest hits hk) and k nearest neighbors from each of
j = 1, . . . , J classes (nearest misses mj

k) for j �= c. The
weights of the features are determined according to the
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following formula:

wnew
i = wold

i −
1

L ·K
[ K∑

k=1

Δ(xli, hki)
2

+

J∑

j=1, j �=c

Pj

1− Pc

K∑

k=1

Δ
(
xli,m

(j)
ki

)2
]
, (2)

where hki and m
(j)
ki are the i-th elements of hk and

mj
k, respectively; Pj and Pc denote the occurrence

probabilities of class j and class c; Δ determines the
discrepancy between the i-th feature of the vectors; Δ =
{0, 1} and Δ ∈ [0, 1] hold for discrete and continuous
attributes, respectively. A higher feature’s relevance
results from a greater weight value.

2.1.3. Decision tree. A DT is a hierarchical structure
used in decision processes. If the targets for given records
are discrete, the DT is a classification tree. The DT
takes the form of a graph composed of nodes, branches
and leaves. In classification trees, nodes represent a data
split based on a given attribute, branches denote possible
courses of action available at a node while leaves are
the counterpart of decisions. While growing the tree, it
is possible to establish the importance of data features.
In CART (Breiman et al., 1984), such an importance is
determined by the decrease in node impurity weighted by
the node probability:

ΔI = PnI(Xn)

− (
P(n,l)I(X(n,l)) + P(n,r)I(X(n,r))

)
,

(3)

where I is the Gini index or entropy indicator,Xn denotes
the set of records reaching the n-th node; X(n,l) and
X(n,r) stand for the records reaching the left and right
child nodes of the n-th parent, respectively. In (3), Pn =
|Xn|/L, P(n,l) = |X(n,l)|/Ln and P(n,r) = |X(n,r)|/Ln

are the probabilities of the nodes n, (n, l) and (n, r),
respectively. By maximizing the impurity ΔI over all
possible splitting attributes, the features’ significance is
obtained.

2.2. Wrapper approaches. Feature selection
performed according to a wrapper approach requires
an application of a model (e.g., a classifier). The main
idea of the WA is as follows. A feature subset selection
algorithm is employed to choose the subset of attributes.
Based on these attributes a new data set is established
for which the model’s performance is evaluated. Such
a performance can be assessed by certain statistical
indicators, e.g., accuracy (Kohavi and John, 1997).

Among many alternatives, sequential feature
selectors constitute an important family of search
algorithms. Basically, they add or remove one feature at a

time, and count the performance of a model until a feature
subset of a desired size S (S < I) is achieved. In this
work, sequential forward selection (SFS) and sequential
backward selection (SBS) are used as reference methods;
therefore, they are shortly discussed herein. Since the
idea of both SFS and SBS is fairly similar, only the first
is presented below.

We are given a set F of available input features:
F = {f1, f2, . . . , fI}. The aim of SFS is to select a
subset of features ΦS = {φ1, . . . , φs, . . . , φS} where
φs ∈ F and S = 0, 1, 2, . . . , I , provided that S < I .
Initially, for S = 0, Φ0 = ∅. Now, let

R = F \ ΦS (4)

be the reduced set of features. Let also Q(·) stand
for the quality measure of a classifier (e.g., accuracy).
The feature that is associated with the best classifier
performance can be established as follows:

φ̂ = arg max
r=1,...,|R|

Q (ΦS ∪ φr) , (5)

where φr ∈ R. Once φ̂ is found, it is included in the next,
enlarged feature subset:

ΦS+1 = ΦS ∪ φ̂. (6)

Setting S ← S +1 reduces R from which φr are checked
for selection in (5). The process of including further
features (4)–(6) is repeated until some assumed stopping
criterion is met.

The SBS approach is conducted in a similar manner
but it is initialized as follows: ΦS = F , S = I and R =
ΦS . The quality Q is computed on the set ΦS \ φr and,
instead of inclusion as in SFS, the exclusion of the feature
takes place: ΦS−1 = ΦS \ φ̂. Afterwards, S ← S−1 and
the process of excluding next features is repeated.

3. Convolutional neural network

The convolutional neural network (CNN), proposed by
LeCun et al. (1998), is a type of feed-forward neural
network whose architecture is arranged in layers of a
repeatedly occurring operation. After a single input layer,
often called the input volume due to the characteristics
of incoming signals, multiple convolutional, pooling and
activation layers appear. Neurons are usually activated
by rectified linear units which compute the following
operation: ReLU(x) = max(0, x). Some normalization
and dropping operations may also be introduced. The
CNN’s final stages are formed by a combination of fully
connected layers and an output layer that provides some
classification result.

The CNN is designed to process data that take the
form of multiple arrays, e.g., images containing pixel
values in the three color channels (LeCun et al., 2015).
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However, in spite of common CNN application in image
recognition tasks (Scherer et al., 2010; Krizhevsky et al.,
2017; Koziarski and Cyganek, 2018; Wang et al., 2020),
this network finds its usage when the input signals emerge
as labeled feature patterns (Azizjon et al., 2020) and
time series records (Abdeljaber et al., 2018; Kiranyaz
et al., 2021). Such a model is known as a one dimensional
CNN (1D–CNN).

From a structural point of view, three distinct layer
types are utilized in the 1D–CNN:

• convolutional (CONV), where a one-dimensional
convolution operation is applied to the input signals;

• pooling, where information down-sampling occurs
and similar features are merged into one;

• dense, that fully connects the last processing layer
with the final output.

The last type is also known as the multilayer perceptron
(MLP) layer due to its similarity to an MLP’s structure.
A 1D–CNN is adjusted by means of the following
hyper-parameters: the number of CONV and MLP
neurons and layers, the filter size in each CONV layer,
the pooling factor and the choice of pooling and activation
functions.

Operationally, during the forward propagation, each
k-th neuron of the l-th layer in a 1D–CNN accepts the
following signal:

x(f)
e =

G∑

g=1

C(y(f−1)
g ,w(f−1)

eg

)
+ b(f)e , (7)

where

• y
(f−1)
g denotes the output signal of the g-th neuron

in layer f − 1;

• w
(f−1)
eg stands for the filter array (kernel) from the

g-th neuron in the (f − 1)-th layer to the e-th neuron
in layer f ;

• b
(f)
e indicates the bias coefficient of the e-th neuron

in the f -th layer;

• G is the number of neurons in layer f − 1.

In (7), C is a convolution generally defined as:

C = (y � w)(x) =

∞∑

i=−∞
y(i) · w(x − i), (8)

where x and i refer to the indices of the elements
occurring in the signal y and the filter w. The inner
f -th activation computed on x

(f)
e is then determined as

follows:
y(f)
e = ReLU

(
x
(l)
k

)
. (9)

Next, the signal (9) undergoes down-sampling based on
a selected pooling operation. The 1D–CNN’s training
process is based on backpropagating the error from the
MLP layer to the input layer, and is realized by computing
the gradients of an error function with respect to both the
input signal and the filter.

1D–CNNs have become the state-of-the-art
application tools in engineering fields such as automatic
speech recognition (Abdel-Hamid et al., 2014b),
electrocardiogram monitoring (Kiranyaz et al., 2015b) or
bearing fault detection (Eren, 2017).

The specification (structure and hyper-parameters) of
a 1D–CNN used in this study is presented in Section 6.

4. Proposed method

In this section, we introduce a new approach that allows
us to isolate the most relevant subset of attributes out
of the entire set of available variables. The idea is
universal; therefore, it can be tested on multiple databases.
Generally, in the proposed method, we fuse the outcomes
of three different FS methods, which are expressed in
terms of the ranking of features’ significance. Based on
the ordered feature indices and the appropriate selection
criterion, a weighted combined ranking that considers the
performance of the classifier is propounded. It establishes
a suboptimal subset of attributes ordered from the most to
least significant ones.

Due to the common use of the accuracy in evaluating
the FS performance (Cannas et al., 2013; Rodrigues et al.,
2014; Wuniri et al., 2019), this measure is also applied in
the current study. It is determined as

Acc =
1

L

L∑

l=1

δ [y(xl) = tl] , (10)

where y(xl) is the network’s output obtained for xl. In
(10), δ [·] = 1 when y(xl) = tl, and 0 otherwise. The
accuracy (10) is determined so as to ensure the highest
generalization ability.

In order to select some feature as important, two
definitions need to be introduced.

Definition 1. Let P, R and T stand for the subsets
of indices of the attributes ordered in terms of their
significance obtained by the PC, RF and DT methods,
respectively. Also, let Pj , Rj and Tj denote the subsets
of the first j elements of P, R and T, respectively. Then
the set of common feature indices is defined as follows
(Kusy et al., 2020):

Cj = [(Pj ∪Rj) ∩T] ∪Tj , (11)

where j = 1, . . . , |T|.
The set T plays a role of a filter that allows the

elements of P and R to be included in Cj .
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Definition 2. Given the set of common feature indices
Cj defined in (11). Let (i) Cjk indicate some feature
that is the k-th element of Cj , (ii) X {Cjk} denote some
natural number that is a direct reference to the index of
Cjk in X, where X is any of predefined sets of feature
indices. The weighted combined ranking score, which is
determined for the feature Cjk selected in Pj , Rj and Tj

simultaneously, is defined as follows:

RCjk
= w

Cj

k

3∑

s=1

(|T| −Xs {Cjk}+ 1) (12)

for Xs {Cjk} ≤ |T| and

w
Cj

k =

∣
∣ACj − Â

Cj

k

∣
∣

ACj
, (13)

where ACj is the accuracy computed for the data
composed of the features’ indices in Cj and Â

Cj

k is the
accuracy determined for the same data but when the values
of the k-th feature are permuted across all records.

If |Cj | = 1, there is no need to permute the values of

a single feature over all input examples; then w
Cj

k = 1.
In (12), X1 = P, X2 = R, X3 = T and k =
1, . . . , |Cj |. For any Xs {Cjk} > |T|, the s-th summand
is not considered in computing RCjk

. Adding 1 ensures
the assignment of the score from the set {1, . . . , |T|} for
each s. The final weighted combined ranking set Γj for
common feature indices stored in Cj is established as
Γj = Cj(Θj) where Θj is a collection of k-indices
sorted according to descending order RCjk

’s.
The next step is to consider whether or not all

features included in Γj constitute an optimal set of
attributes. In other words, there could be a subset
of Ψγ

j ⊂ Γj , γ = 1, . . . , |Γj | for which a given
classifier achieves a higher accuracy. For this purpose,
it is desirable to successively increase Ψγ

j and determine
classifier performance on data composed of Ψγ

j . The
aforementioned can be simply achieved as follows: Let
Ψ0

j = ∅. Now, the determination of Ψγ
j = Ψγ−1

j ∪ Γjγ ,
for each γ, allows for computing the accuracy Ajγ on the
data set consisting of the increasing subset of features in
Ψγ

j . In this way, we can sooner detect a higher classifier
performance. Finally, finding both γ� and j� parameters,
optimal in terms of the highest accuracy, yields

Ψγ�

j� = arg max
j=1,...,|T|,
γ=1,...,|Γj |

Ajγ . (14)

The method is summarized in the form of the
pseudocode in Algorithm 1. This algorithm is composed
of two parts. In the first (Steps 1–12), we compute the final
weighted combined ranking set Γj . The second part of the
algorithm, embraced by Steps 13–19, leads to determining
an optimal subset of features extracted from Γj .

Algorithm 1. Weighted wrapper approach to feature
selection.
Require: Input data 〈xl, tl〉 for l = 1, . . . , L

1: Determine ordered sets of indices P, R and T using
filter methods: PC, RF and the DT

2: for j = 1 to |T| do
3: Select first j features’ indices: Pj , Rj and Tj

4: Provide the set of common features’ indices Cj

according to (11)
5: Determine accuracy ACj

6: for k = 1 to |Cj | do
7: Determine accuracy Â

Cj

k

8: Calculate weight wCj

k according to (13)
9: Yield weighted combined ranking score RCjk

according to (12)
10: end for
11: Assign to vector Θj k-indices from RCjk

’s sorted
in descending order

12: Γj = Cj(Θj)
13: Ψ0

j = ∅
14: for γ = 1 to |Γj | do
15: Ψγ

j = Ψγ−1
j ∪ Γjγ

16: Determine accuracy Ajγ

17: end for
18: end for
19: return Ψγ�

j� according to (14)

The proposed approach that provides an optimal (in
terms of classification accuracy) subset of ordered feature
indices Γj is henceforth called a Γ method or simply Γ.

5. Case study

In this section, we apply the Γ method to the exemplary
diagnostic breast cancer (DBC) database (Dua and Graff,
2017). DBC consists of 30 features, and currently holds
the smallest number of attributes among all examined data
sets. This will result in a simplification of the analysis.

Consider the 1D–CNN classifier and the sets of
attribute indices ordered with respect to their significance
provided by the PC, RF and DT methods for the DBC data
set (Table 1). As shown, only 12 features are specified
by the DT as significant since the tree chooses only 12
attributes as nodes and rejects the remaining 18 variables.

Let us regard j = 1 first feature indices provided by
each FS method: P1 = {28}, R1 = {22} and T1 =
{21}. Then, according to (11), cf. Step 4 of the algorithm

C1 = [(P1 ∪R1) ∩T] ∪T1

= [(28 ∪ 22) ∩T] ∪ 21 = {21, 22, 28}.

The 1D–CNN’s accuracy for the data set composed of the
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Table 1. Indices of the attributes of the DBC database ordered
with respect to their significance provided in the sets
P, R and T. The column denoted as N presents the
ranking position of the variable starting from the most
significant.
N P R T N P R

1 28 22 21 13 11 13
2 23 25 28 14 13 1
3 8 2 22 15 14 17
4 21 21 8 16 22 14
5 3 27 2 17 25 19
6 24 23 11 18 29 3
7 1 28 24 19 2 4
8 4 29 25 20 18 12
9 7 8 5 21 5 18
10 27 7 6 22 9 30
11 6 24 14 23 30 26
12 26 11 15 24 16 16

25 17 5
26 20 20
27 19 15
28 12 6
29 10 10
30 15 9

features from the set C1 is equal to AC1 = 0.9666.1 Now,
for k = 1, . . . , |C1|, each k-th feature is permuted across
all records. For k = 1 (Feature 21), the 1D–CNN yields
ÂC1

1 = 0.9121 and therefore (Step 8 of the algorithm)

wC1
1 =

|AC1 − ÂC1

1 |
AC1

=
|0.9666− 0.9121|

0.9666
= 0.0564.

In the case when k = 2 (Feature 22 is only permuted
over all the records), we obtain ÂC1

2 = 0.9455 and
wC1

2 = 0.0211. If k = 3 (the 28th attribute
is solely permuted across the patterns), one obtains
ÂC1

3 = 0.9367 and wC1
3 = 0.0309. Having wC1 =

{0.0564, 0.0211, 0.0309} and |T| = 12, the weighted
combined ranking score (12) for each feature in C1 can
be obtained (Step 9 of the algorithm). In particular, for
Feature 21, it takes the value of

RC11 = wC1
1 · [12−P {C11}+ 1

+ 12−R {C11}+ 1 + 12−T {C11}+ 1]

= 0.0564 · [12−P {21}+ 1

+ 12−R {21}+ 1 + 12−T {21}+ 1]

= 0.0564 · (12− 4 + 1

+ 12− 4 + 1 + 12− 1 + 1)

= 1.6920.

1The accuracy values provided in this example are real and computed
as the results of the experiments for the DBC data set.

Similarly, in the case of Features 22 and 28, we get
RC12 = 0.4642 and RC13 = 0.8961, respectively. Thus,
after sorting the weighted ranking scores RC11 , RC12 and
RC13 in descending order, the sequence of k = 3 indices
equal to Θ1 = {1, 3, 2} imposes Γ1 = C1(Θ1) =
{21, 28, 22}, as indicated in Step 12 of the algorithm.
Computing Γ1 for j = 1 finishes the first part of the
algorithm. Table 2 presents the attribute indices stored
in Γj for j = 1, . . . , 12. We can see that some indices,
which appear in the top rows of the table (i.e., are the most
significant), change their ranking places. This results from
the introduced weights.

Steps 13–19 of Algorithm 1 realize the choice of the
feature subset Ψγ�

j� which is optimal in terms of Ajγ , ∀j,γ .
For the DBC data set, the highest accuracy is obtained for
Γ5 where only 4 features are involved in representing the
input records; therefore Ψ4

5 = {21, 22, 25, 2}, which is
shown in boldface in Table 2.

In Fig. 1, we demonstrate the impact of j and
the number of the elements in the ranking sets Γj

on the accuracy of a 1D–CNN in a three-dimensional
visualization (top drawing) and a plane projection (bottom
drawing). The plot presenting the best network’s
performance is marked with a dashed line. Each
dependency is created by successive inclusion of a single
less significant feature into both subsets.

6. Experimental results

This section shortly highlights the input data sets, the
decision tree parameters and the 1D–CNN configuration
used in the experiments. However, the main emphasis
of this part of the article is placed on the analysis of the
results obtained after the application of the Γ method and
wrapper approaches SFS and SBS in the task of reducing
the analyzed data sets. All the results are expressed in
terms of accuracy (10) computed with the use of a 10-fold
cross validation procedure. The simulations are repeated
10 times, and all results are averaged.

6.1. Data sets. For the purpose of the experimental
analysis, six machine learning repository (UCI–MLR)
data sets the of the University of California, Irvine, are
used:

• Sports articles—a collection of articles identified by
a crowd sourcing website (Hajj et al., 2019): 1000
cases, 57 attributes, 2 classes;

• Diagnostic breast cancer (DBC)—a set of
characteristics of the cell nuclei in the image
(Dua and Graff, 2017): 569 cases, 30 attributes, 2
classes.

• QSAR—a database of molecular descriptors used
to classify chemicals (Mansouri et al., 2013): 1055
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Table 2. Weighted combined ranking sets for the indices of particular common features stored in Γj for the DBC data set. The subset
of indices Ψ4

5 for which the maximum accuracy of a 1D–CNN is determined is marked with boldface.

N Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9 Γ10 Γ11 Γ12

In
di

ce
s

1 21 21 21 21 21 25 25 21 22 28 28 21
2 28 22 2 8 22 21 8 22 8 25 25 28
3 22 25 22 28 25 28 24 25 25 2 8 2
4 28 28 2 2 8 2 28 24 21 2 25
5 25 22 28 22 22 2 21 6 22 11
6 8 25 8 24 11 8 28 8 11 22
7 2 28 24 5 22 24 8
8 11 21 11 11 24 21 6
9 2 5 6 24

10 11 5 14
11 14 5
12 15

(a) (b)

Fig. 1. Changes in a 1D–CNN’s performance in the classification of the DBC data set after application of the Γ method for feature
selection. Plot (a) reveals the influence of both parameter j and the number of the elements in the ranking sets Γj on the
network’s accuracy, plot (b) is its 2-dimensional projection stressing the value of j for which the highest accuracy value is
attained.

cases, 41 attributes, 2 classes;

• Spam base—a collection of spam e-mails (Dua and
Graff, 2017): 4601 cases, 57 attributes, 2 classes;

• Statlog—a set of pixels values in a satellite image
(Dua and Graff, 2017): 4435 cases, 36 attributes, 6
classes;

• Optical digits—a data set of normalized bitmaps
of handwritten digits (Dua and Graff, 2017): 3823
cases, 62 attributes, 10 classes.

The characteristics of benchmark data sets (number of
records, features and classes) are summarized in the
second column of Table 3.

All i = 1, . . . , I data features are normalized to

[−1, 1] interval according to the formula

x′
li = 2

xli − xmin
li

xmax
li − xmin

li

− 1, (15)

where xli, xmin
li and xmax

li represent given, minimum and
maximum feature values, respectively.

6.2. Neural network structure. The 1D–CNN applied
in this research has an experimentally selected structure
of a single CONV layer and three fully connected layers.
The final network’s architecture is adjusted as follows:

• I-length input layer with zero-center normalization:

xnorm
li =

x′
li − μi

σi
, (16)
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where μi and σi are respectively the mean and the
standard deviation computed for the i-th feature;

• A convolution layer that consists of filters selected
from the set {5, 10, 15, 20, 25}, where the filter sizes
and the stride are equal to 4 and 1, respectively; the
padding is set so as the output and the input signal
have the same size; the ReLU function is used as
activation;

• MLP layer with 4J neurons;

• MLP layer with 2J neurons;

• MLP layer with J neurons;

• the output layer that computes the final response
based on the softmax transfer function.

The size of the output layer depends on the number of
classes in the data set. Also, the number of neurons in all
MLP layers is influenced by J . Due to the use of a single
CONV layer, no pooling operation is applied.

6.3. Decision tree parameters. For the attribute
selection by means of the decision tree, the CART
algorithm (Breiman et al., 1984) is applied. The
following parameters are adjusted experimentally for tree
growing: feature splitting criterion (Gini index, entropy),
maximum tree depth: {3, 4, 5}, minimum number of leaf
node observations: [1,max(2, L/2�)]. No tree pruning
procedure is applied.

6.4. Results and a discussion. According to the main
idea behind the Γ method, for all six data sets, the value
of j and the corresponding Γj subsets are determined for
which the 1D–CNN’s accuracy attains the highest value.

Figure 2 includes a graphical summary of all the
experiments conducted on six databases. Each illustration
presents the winning plot for Γ, i.e., for such a value of
j that contributes to the highest accuracy of a 1D–CNN.
As reference, we delineate the characteristics for SFS
and SBS methods. If we consider the proposed method,
we can see that for each data set, the highest network’s
accuracy is always provided when the number of features
is smaller than the dimensionality of the input set. This, in
turn, can be significant in the context of a prediction for an
unknown sample, since fewer attributes are required for
the computation of the 1D–CNN’s output signal. Next,
one can also observe that it is always possible to find
at least one point in the plot (i.e., a subset of features)
where the accuracy of Γ method is higher than that for
SFS and SBS. In fact, such an outcome is always obtained
“earlier”—for a smaller number of the attributes. Finally,
it is true that in five out of six cases, for a smaller number
of features, the accuracy results for SFS and SBS are
higher than those obtained by the proposed method, but

these are still small enough values; therefore, they may be
considered insignificant.

In Table 3, we present the highest accuracy values of
a 1D–CNN obtained in all classification tasks when data
features are established by SFS, SBS and the combined
ranking subsets Γj . To make the analysis comprehensive,
the number of features found for a given outcome is added
below. Based on the results, the following major remarks
can be made:

1. The 1D–CNN’s accuracy obtained for the data sets
with the attributes reduced by the Γ method is always
higher than the accuracy computed in the original
input space. This is not the case for the remaining
methods.

2. The application of the Γ method makes a 1D–CNN
attain the highest accuracy in all classification tasks.

3. The use of the Γ method results in the highest
decrease in the input features for all data sets. The
optimal subsets of features Ψγ�

j� for sports articles,
DBC, QSAR, spam base, Statlog and optical digits
data sets are represented by Ψ19

12, Ψ4
5, Ψ23

22, Ψ49
43,

Ψ31
36 and Ψ39

35, respectively.

Table 3 also presents a statistical comparison
evaluated by means of pairwise T-tests between the
accuracies computed when the feature subsets are
provided by the Γ method against the SFS, SBS and when
all attributes are included. The tests are determined for
0.95 confidence intervals. The outcomes are revealed to
be statistically significant in all but two classification cases
which is indicated with the ‘+′ label placed next to the
standard deviation value.

The very concise comments specified above confirm
that, despite the availability of well-known FS methods,
it is worth searching for other, new solutions which
generate ordered attribute rankings. This can be realized
twofold: either by merging state-of-the-art approaches,
or by developing new strategies. The effectiveness of
novel ideas does not have to be necessarily the highest.
However, they must find a certain balance between
being highly accurate and capable of reducing data
dimensionality at the same time. This goal is achieved
in this study.

7. Conclusions

The essence of the feature selection methods lies in
the choice of the attribute subset that is the most
representative for the entire database. Constraining the
set of features to the smallest possible collection, while
maintaining a high classification accuracy, is required by
all FS methods. Numerous FS methods, both filters and
wrappers, are known for not only producing a ranking,
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Averaged accuracy values attained by a 1D–CNN for a particular number of input features in the classification of the data
sets considered: sports articles (a), DBC (b), QSAR (c), spam base (d), Statlog (e) and optical digits (f). Each dependency
illustrates, in succession, SFS, SBS and Γ. For the proposed wrapper approach, the accuracy is plotted for the set of attributes
stored in Γj where the value of j indicates the highest 1D–CNN performance.
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Table 3. Highest accuracy (in %) achieved by a 1D–CNN in the classification of the examined databases with the attributes given by
SFS, SBS and the proposed Γ method. The number of features for the presented result is shown below each outcome. The
last column outlines the performance of the network on each data set with all features. The accuracies are averaged over 10
simulation runs; standard deviations are added alongside.

Data set Input size (classes) SFS SBS Γ All

Sports articles 1000× 57 (2)
83.63 ± 0.35+ 83.46 ± 0.27+ 84.36 ± 0.33 83.00± 0.43+

46 56 19 57

DBC 569× 30 (2)
97.37 ± 0.26+ 97.65 ± 0.15+ 97.86 ± 0.15 97.15± 0.28+

29 29 4 30

QSAR 1055× 41 (2)
86.66± 0.62 86.56 ± 0.12+ 87.11 ± 0.38 86.58± 0.55+

41 40 23 41

Spam base 4601× 57 (2)
93.85 ± 0.15+ 93.78 ± 0.12+ 94.19 ± 0.12 93.95± 0.16+

56 56 49 57

Statlog 4435× 36 (6)
89.76± 0.42 89.56 ± 0.12+ 90.02 ± 0.29 89.50± 0.36+

35 35 31 36

Optical digits 3823× 62 (10)
97.57 ± 0.08+ 97.50 ± 0.18+ 97.77 ± 0.08 97.58± 0.23+

62 61 39 62

but also selecting a subset of features. For example, the
PC, RF and DT methods select attributes on the basis of
various relationships between features and a given class.
Their final outcomes are therefore reflected in different
attribute rankings. However, since these state-of-the-art
filters have the value of universality, the proper fusion
of the rankings they provide can result in other forms of
significance.

For this particular reason, we proposed a new feature
selection solution, i.e., the Γ method. It belongs to
the class of wrapper approaches and relies on assigning
the weight coefficients to particular features based on
the combined ranking criterion that involves sub-ranking
generated by PC, RF and the DT. The weights were
established on the basis of the accuracy determined by a
one-dimensional convolutional neural network throughout
successive variable permutations across all input records.
On the one hand, the use of the DT allowed us to constrain
the sizes of feature collections; on the other hand, the
application of PC and RF yielded high classification
correctness.

In this work, the experimental analysis consisted
in computing the 1D–CNN’s accuracy on six, high
dimensional repository databases for which the features
were reduced by the proposed method and state-of-the-art
sequential attribute selection procedures. As a point
of reference, the classification results obtained by the
network in the original input space were taken into
account. The effectiveness of the feature ranking
methods was estimated by comparing not only the highest
correctness of classification, but also the number of the
attributes where the best performance was observed. The
presented results have demonstrated that the Γ method
achieved top results in all cases in the context of the
accuracy, as well as the smallest number of the input

features.
Future work will focus on incorporating feature

selection into reduction of the data records so that the
entire input space is to be decreased in size. Both
approaches will work in parallel, and this will allow
us to establish representative and pruned collections of
available samples.

Acknowledgment

This work is partially financed by the Polish Ministry
of Science and Higher Education under the program Re-
gional Initiative of Excellence in 2019–2022, project no.
027/RID/2018/19, and by the Rzeszów University of
Technology, within the subsidy for the maintenance and
development of research potential (UPB).

References
Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn,

G. and Yu, D. (2014a). Convolutional neural networks
for speech recognition, IEEE/ACM Transactions on Audio,
Speech, and Language Processing 22(10): 1533–1545.

Abdel-Hamid, O., Mohamed, A.-R., Jiang, H., Deng, L., Penn,
G. and Yu, D. (2014b). Convolutional neural networks
for speech recognition, IEEE/ACM Transactions on Audio,
Speech, and Language Processing 22(10): 1533–1545.

Abdeljaber, O., Avci, O., Kiranyaz, M.S., Boashash, B.,
Sodano, H. and Inman, D.J. (2018). 1-D CNNs
for structural damage detection: Verification on a
structural health monitoring benchmark data, Neurocom-
puting 275: 1308–1317.

Abdeljaber, O., Avci, O., Kiranyaz, S., Gabbouj, M. and Inman,
D.J. (2017). Real-time vibration-based structural damage
detection using one-dimensional convolutional neural
networks, Journal of Sound and Vibration 388: 154–170.



A weighted wrapper approach to feature selection 695

Awada, W., Khoshgoftaar, T.M., Dittman, D., Wald, R. and
Napolitano, A. (2012). A review of the stability of feature
selection techniques for bioinformatics data, IEEE 13th In-
ternational Conference on Information Reuse & Integra-
tion (IRI), Las Vegas, USA, pp. 356–363.

Azizjon, M., Jumabek, A. and Kim, W. (2020). 1D CNN
based network intrusion detection with normalization on
imbalanced data, International Conference on Artificial In-
telligence in Information and Communication (ICAIIC),
Fukuoka, Japan, pp. 218–224.

Benesty, J., Chen, J., Huang, Y. and Cohen, I. (2009). Pearson
correlation coefficient, in J. Benesty and W. Kellermann
(Eds.), Noise Reduction in Speech Processing, Springer
Topics in Signal Processing, Springer, Berlin, pp. 1–4.

Bolón-Canedo, V., Sánchez-Maroño, N. and Alonso-Betanzos,
A. (2013). A review of feature selection methods
on synthetic data, Knowledge and Information Systems
34(3): 483–519.

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984).
Classification and Regression Trees, CRC Press, Boca
Raton.

Broughton, R., Coope, I., Renaud, P. and Tappenden, R. (2010).
Determinant and exchange algorithms for observation
subset selection, IEEE Transactions on Image Processing
19(9): 2437–2443.

Cannas, L.M., Dessı̀, N. and Pes, B. (2013). Assessing similarity
of feature selection techniques in high-dimensional
domains, Pattern Recognition Letters 34(12): 1446–1453.

Devijver, P. and Kittler, I. (1982). Pattern Recognition: A Statis-
tical Approach, Prentice-Hall, Englewood Cliffs.

Dua, D. and Graff, C. (2017). UCI Machine Learning Reposi-
tory, http://archive.ics.uci.edu/ml.

El Aboudi, N. and Benhlima, L. (2016). Review on wrapper
feature selection approaches, International Conference on
Engineering & MIS (ICEMIS), Agadir, Morocco, pp. 1–5.

Eren, L. (2017). Bearing fault detection by one-dimensional
convolutional neural networks, Mathematical Problems in
Engineering 2017: 1–9.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable
and feature selection, Journal of Machine Learning Re-
search 3: 1157–1182.

Hajj, N., Rizk, Y. and Awad, M. (2019). A subjectivity
classification framework for sports articles using cortical
algorithms for feature selection, Neural Computing and
Applications 31: 8069–8085.

Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj, M.
and Inman, D.J. (2021). 1D convolutional neural networks
and applications: A survey, Mechanical Systems and Sig-
nal Processing 151: 107398.

Kiranyaz, S., Ince, T. and Gabbouj, M. (2015a). Real-time
patient-specific ECG classification by 1-D convolutional
neural networks, IEEE Transactions on Biomedical Engi-
neering 63(3): 664–675.

Kiranyaz, S., Ince, T. and Gabbouj, M. (2015b). Real-time
patient-specific ECG classification by 1-D convolutional
neural networks, IEEE Transactions on Biomedical Engi-
neering 63(3): 664–675.

Kohavi, R. and John, G.H. (1997). Wrappers for feature subset
selection, Artificial Intelligence 97(1): 273–324.

Koziarski, M. and Cyganek, B. (2018). Impact of low resolution
on image recognition with deep neural networks: An
experimental study, International Journal of Applied
Mathematics and Computer Science 28(4): 735–744, DOI:
10.2478/amcs-2018-0056.

Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017). Imagenet
classification with deep convolutional neural networks,
Communications of the ACM 60(6): 84–90.

Kusy, M., Zajdel, R., Kluska, J. and Zabinski, T. (2020). Fusion
of feature selection methods for improving model accuracy
in the milling process data classification problem, Inter-
national Joint Conference on Neural Networks (IJCNN),
Glasgow, UK, pp. 1–8.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning,
Nature 521(7553): 436–444.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998).
Gradient-based learning applied to document recognition,
Proceedings of the IEEE 86(11): 2278–2324.

Li, Y., Hsu, D.F. and Chung, S.M. (2013). Combination of
multiple feature selection methods for text categorization
by using combinatorial fusion analysis and rank-score
characteristic, International Journal on Artificial Intelli-
gence Tools 22(02): 1350001.

Lu, J., Zhao, T. and Zhang, Y. (2008). Feature selection based-on
genetic algorithm for image annotation, Knowledge-Based
Systems 21(8): 887–891.

Mansouri, K., Ringsted, T., Ballabio, D., Todeschini, R. and
Consonni, V. (2013). Quantitative structure–activity
relationship models for ready biodegradability of
chemicals, Journal of Chemical Information and Modeling
53(4): 867–878.

Narendra, P.M. and Fukunaga, K. (1977). A branch and bound
algorithm for feature subset selection, IEEE Transactions
on Computers 26(09): 917–922.

Pes, B. (2020). Ensemble feature selection for high-dimensional
data: A stability analysis across multiple domains, Neural
Computing and Applications 32(10): 5951–5973.
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