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The article presents new tools for investigating the statistical properties of the harmonic signal autocorrelation function
(ACF). These tools enable identification of the ACF estimator errors in measurements in which the triggering of the mea-
surements is non-synchronized. This is important because in many measurement situations the initial phase of the measured
signal is random. The developed tools enable testing the ACF estimator of a harmonic signal in the presence of Gaussian
noise. These are the formulas on the basis of which the statistical properties of the estimator can be determined, including
the bias, the variance and the mean squared error (MSE). For comparison, the article also presents the ACF statistical anal-
ysis tools used in the conditions of synchronized measurement triggering, known from the literature. Operation of the new
tools is verified by simulation and experimental studies. The conducted research shows that differences between the MSE
results obtained with the use of the developed formulas and those attained from simulations and experimental tests are not
greater than 1 dB.
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1. Introduction

The autocorrelation function (ACF) is a tool for describing
the dynamic properties of signals. The main application
of the ACF is in the investigation of the degree to which
the value of a signal at a given moment affects the value
of this signal at a certain moment in the future (Bendat
and Piersol, 2010). Unlike the ACF of a random signal
(noise), which tends to zero with an increase in time shifts
(delays), the ACF of periodic signals lasts for all time
shifts. This implies that the ACF constitutes a good tool
for detecting periodic signals occurring in the presence of
noise.

The ACF and its generalized counterpart in the
form of the cross-correlation function have many
practical applications. They are used in radio
astronomy, radar technology, and radiolocation (Beck
and Plaskowski, 1987; Spiesberger, 1996; Roberts, 1997;
Kogan, 1998; Weber et al., 1997); in ionosphere scatter
investigations (Nielsen and Rietveld, 2003); in the
measurement of the surface velocity of materials (Zeitler,
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1997), distance measurements (Hussein et al., 2020), and
the measurements of transport delays (Kowalczyk et al.,
2016); in anti-collision systems (Menhaj et al., 1998); in
spectroscopy (Hołyst et al., 2017); in optics (Peng and
Boscolo, 2016); in optical and scanning microscopy and
interferometry (Kalvani et al., 2019); in nuclear physics
and metallurgy for radioisotope measurements (Hanus,
2019); in sports and medicine (Iqbal et al., 2015; Stodółka
et al., 2017; Rahman et al., 2018); in mathematical
statistics for studying regression models (Box et al.,
2008); in signal processing for signal frequency
analysis (Vaseghi, 2008), as well as for determining the
time of signal passage through a linear circuit (Zhang
et al., 2018); in electrical engineering for investigating
signal energy parameters (Chen, 2004); and in economics
for analyzing the seasonality of the results and of the
recurring standards in the results of time-series model
analyses (Akkucuk, 2019).

Nowadays, numerous examples are observed of the
application of the ACF and of its properties to the
study of the discrete-time estimators of harmonic signal
parameters (Cao et al., 2012; Martinez and Ashrafi, 2018;
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Elasmi-Ksibi et al., 2010; Tu and Shen, 2017; Wang
et al., 2018). Such estimators are calculated on the
basis of ACF signal samples. One of such estimators is
the reformed covariance for half-length autocorrelation
(RC-HLA) (Sienkowski and Krajewski, 2020). The
investigation of RC-HLA includes the determination of
the variance of the theoretical estimator. One of the
most important components of such the variance is the
covariance matrix, whose elements on the main diagonal
are calculated on the basis of the ACF estimator variance.

In the paper by Sienkowski and Krajewski (2020),
formulas for calculating the variance of the ACF estimator
under conditions of synchronized measurement triggering
and synchronous sampling are given. Under these
measuring conditions, the initial phase of the signal takes
a constant value, e.g., equal to zero. In order to obtain
the initial signal phase close to zero at each measurement
repetition, the triggering of the measurements must be
synchronized, e.g., by means of a clock signal (TTL) from
the measured signal source (Sienkowski and Krajewski,
2018). Such a signal is connected to the digital input
of the measuring device and has a frequency equal to
the measured signal frequency. Then a change in the
signal state at the digital input results in a measurement
initialization (external triggering). It can be a single
measurement or a series of measurements. For example,
such a clock source is present in the Agilent 33220A
functional generator used in experimental research.

Another method of triggering the measurement start
(sampling) is based on the software detection of exceeding
the specified voltage level by the signal. Such a
method of triggering the measurement can be realized
with, e.g., the Keysight 3458A sampling voltmeter.
However, in practical measurements, triggering is often
non-synchronized (the initial phase of the measured signal
is random in each repetition of the measurement). The
literature lacks a description of the tools for investigating
the ACF estimator properties of a periodic signal with
noise measured under random triggering measurement
conditions.

Knowledge of the statistical values of the ACF
estimator obtained using these tools can be helpful in
determining the bias, the variance and the MSE of
other estimators, e.g., frequency, amplitude, phase, which
are based on the ACF and used in many measurement
applications mentioned above. For such an evaluation,
one can use, for example, recommendations presented
in the international document JCGM (2008), which
deals with the expression of measurement uncertainty
(a statistical parameter that determines a measurement
inaccuracy). This document includes, among other things,
the laws of uncertainty propagation, which are also valid
for the bias, the variance and the MSE.

In the past few years, many works presenting the
results of the studies on the ACF estimators of various

signal classes have been published. Attention has been
focused mainly on the ACF of random signals (Bendat
and Piersol, 2010). The current state of knowledge
on this subject has been extensively presented in the
monograph by Broersen (2006). Certain works present
formulas that make it possible to determine the expected
value and the variance of the ACF estimators of such
signals (Broersen, 2006; Pfeifer and Deutsch, 1981;
De Gooijer and Anderson, 1985). Such formulas are not
comparable with those given in this paper. Moreover,
in previous works the estimation of the ACF focused
on a special case of this function, i.e., the mean
squared value (MSV) of random signals (Lal-Jadziak and
Sienkowski, 2008; 2009) or a single realization of the
ACF of a sinusoidal signal without noise (Sienkowski
and Kawecka, 2013). In the paper by Lal-Jadziak and
Sienkowski (2009), it was shown that the variance of
the MSV estimator can be calculated using moments of
random variables. Moments of a random variable were
also used by Sienkowski and Kawecka (2013). On this
basis, the variance of the theoretical ACF was determined.
However, this variance cannot be applied to comparative
studies because it is not related to the samples of the ACF
estimator.

The main aim of this paper is to present new
tools to determine the expected value, the bias, the
variance, and the mean squared error (MSE) of the ACF
estimator of a harmonic signal under random triggering
measurement conditions. The harmonic signal is called
a sinusoidal signal. It was assumed that the sinusoidal
signal occurred in the presence of Gaussian noise. This
class of signal with noise is measured in radar and sonar
technology (Al-Qudsi et al., 2017; Hague and Buck,
2019), wireless communications (Rice et al., 2001), and
speech signal analysis (Toth and Kocsor, 2003). The next
objectives of the paper are simulation and experimental
verification of the developed tools.

This paper is divided into six sections. Section 2
presents a mathematical model of a sinusoidal signal
disturbed by Gaussian noise. Section 3 presents the
properties of the signal ACF estimator. Formulas
obtained under both random and synchronized triggering
measurement conditions are given for the MSE of the
estimator. Sections 4 and 5 present and discuss the
results of the simulation and the experimental studies,
respectively. Section 6 contains the summary of the
research results. Appendix related to Section 3 can be
found at the end.

2. Signal model and its measurement
conditions

Let y(t) be the sum of a sinusoidal signal x(t) =
A sin(2πft+ϕ) with amplitude A, frequency f , initial
phase ϕ ∈ [0, 2π), and additive Gaussian noise q(t) with
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the zero mean value μq and the standard deviation σq . The
signal x(t) and the noise q(t) are independent.

If y(t) is uniformly sampled at the sampling
frequency fs, then its samples can be described by the
following formula:

y [n] = x [n] + q [n] , n = 0, . . . , 2M − 1, (1)

where
x [n] = A sin (ω0n +ϕ) (2)

and q[n] are samples of the signal x(t) and the noise q(t),
respectively. Significant relationships exist between ω0,
f , and fs as detailed below,

ω0 = 2π
f

fs
, fs =

2M

N
f, (3)

where ω0 ∈ (0, π) is the angular frequency, wherein 2M
and N represent the number of samples and the periods
of the signal x(t), respectively. Let M ′ = 2M and ω =
ω0/π. Then N = Mω. Moreover, let us denote by T =
1/f and Ts = 1/fs the signal period and the sampling
period, respectively.

The analysed signal model results from the general
measurement models based on pointwise observations
(Uciński, 2000). For the assumed signal model, the
following combinations of measurement conditions were
considered:

• synchronized triggering measurement conditions and
synchronized or non-synchronized sampling,

• random triggering measurement conditions and
synchronized or non-synchronized sampling.

Random triggering measurement conditions implied
that after each measurement repetition, the samples
y[n] in the measurement window had a different/new
initial phase ϕ. Synchronized triggering measurement
conditions implied that after each measurement repetition
a set of samples y[n] had the same initial phase ϕ.
Synchronized sampling means that M ′ Ts = N T
(where N and M ′ refer to natural numbers). For example,
if M = 100 and ω = 0.02, then M ′ = 200 and N =
Mω = 2. This means that sampling is synchronized.
If, however, ω = 0.021, then N = 2.1 and sampling is
non-synchronized. Examples of measurements carried out
under synchronized triggering measurement conditions
are presented by Sienkowski and Krajewski (2018).
Section 5 presents examples of measurements carried
out under random triggering measurement conditions.
Both articles also considered different signal sampling
conditions.

3. Signal ACF and its properties

Let Rs(τ) represent the ACF of the signal s(t) occurring
in the form of a periodic signal, a random signal (noise),

or a sum of both of these types of signals. Samples of
the ACF of the signal s(t) can be determined by using the
following formula:

R̃s [k] =
1

M

M−1∑

n=0

s [n] s [n+ k],

k = 0, . . . ,M − 1. (4)

Formula (4) is an estimator of the ACF calculated on the
basis of the samples s[n] of the signal s(t) and of the
samples s[n + k] of the signal s(t+ τ) delayed by time
τ (Bendat and Piersol, 2010).

The mean squared error (MSE) of the estimator (4)
can be determined as follows:

MSE
[
R̃s [k]

]
= Var

[
R̃s [k]

]
+ b2s

[
R̃ [k]

]
. (5)

This error results from the bias

b
[
R̃s [k]

]
= E

[
R̃s [k]

]−Rs (k · Ts) (6)

and the variance

Var
[
R̃s [k]

]
= E

[
R̃
2
s [k]

]
− E2

[
R̃s [k]

]
(7)

of the estimator, where E[·] is the expected value operator.
The bias (6) and the variance (7) are the systematic
and the random components of error (5), respectively.
The method of determining the error (5) is consistent
with JCGM (2008). It should be noted that there are
also other ways of determining estimation errors based
on bootstrap (Grzegorzewski et al., 2020) and Monte
Carlo methods (Tagade and Choi, 2017; Krajewski, 2018),
among others.

Assume that s(t) is the signal x(t). If the signal x(t)
is measured under synchronized triggering measurement
conditions, then the substitution of (2) in (4) yields the
following formula (Sienkowski and Krajewski, 2020):

R̃x [k] =
1

M

M−1∑

n=0

x [n] x [n+ k]

=
A2

2
cos (kω0) +ρ(k) ,

(8)

where

ρ (k) = − A2

2M

sin (Mω0) cos ((M + k − 1)ω0 + 2ϕ)

sin (ω0)
(9)

is the bias component of the estimator (8). Since

Rx (τ) =
1

T

T∫

0

x (t)x (t+ τ) dt

=
A2

2
cos

(
2π

T
τ

)
,

(10)
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we have
R̃x [k] = Rx (kTs) +ρ(k) . (11)

This implies that

b
[
R̃x [k]

]
= E

[
R̃x [k]

]−Rx (kTs) = ρ(k) . (12)

From

Var
[
R̃x [k]

]
= E

[
R̃
2
x [k]

]
− E2

[
R̃x [k]

]
= 0 (13)

it follows (Sienkowski and Krajewski, 2020) that

MSE
[
R̃x [k]

]
= Var

[
R̃x [k]

]
+ b2

[
R̃x [k]

]

= ρ2 (k) .
(14)

From (12) and (13) we deduce that (8) is a biased
estimator with zero variance.

The paper by Martinez and Ashrafi (2018) presents
the result of calculating R̃x [k] for ϕ = 0 and k = 1, . . . ,
M , according to which

R̃x [k] =
1

M

M∑

n=1

x [n] x [n+ k]

=
A2

2
cos (kω0) +ρ0 (k) ,

(15)

where

ρ0 (k) =
A2

2M

sin ((M + 1)ω0) cos ((M + k)ω0)

sin (ω0)
(16)

is the bias component of the estimator (15). This implies
that

MSE0

[
R̃x [k]

]
= ρ20 (k) . (17)

For the assumed synchronized triggering measurement
conditions, one may additionally consider synchronized
or non-synchronized sampling conditions. Under
synchronized sampling conditions, sin(Mω0) = 0.
Consequently, ρ(k) = 0. This implies that the error (14)
is zero for any k and ϕ. Thus, (8) is unbiased. At the
same time, sin((M+ 1)ω0) �= 0 and cos((M + k)ω0) �=
0 for k �= π/(2ω0) and k �= π/(2ω0) + M /2. Thus,
ρ0(k) �= 0. This implies that under synchronized sampling
conditions, the estimator (15) is biased. If the sampling is
non-synchronized, both the estimators are biased.

If the signal x(t) is measured under random
triggering measurement conditions, then

R̃x [k] =
1

M

M−1∑

n=0

x [n] x [n+ k] =
A2

2
cos (kω0) . (18)

Furthermore (see Appendix),

b
[
R̃x [k]

]
= 0, (19)

Var
[
R̃x [k]

]
=

A4

16M2

1− cos (2Mω0)

sin2 (ω0)
. (20)

This implies that

MSE
[
R̃x [k]

]
= Var

[
R̃x [k]

]
. (21)

Note that the estimator (18) is unbiased and has a
non-zero variance, and its error (21) does not depend on
k and ϕ. Under synchronized sampling conditions, the
error (21) is zero (note that cos(2Mω0) = 1). If the
sampling conditions are non-synchronized, then error (21)
is non-zero and depends on the variance (20).

Assume that s(t) is the signal y(t). If the signal y(t)
is measured under synchronized triggering measurement
conditions, then

R̃y [k] =
1

M

M−1∑

n=0

y [n] y [n+ k]

= R̃x [k] + R̃q [k]

+
1

M

M−1∑

n=0

(x [n] q [n+ k])

+
1

M

M−1∑

n=0

(x [n+ k] q [n]),

(22)

where

R̃q [k] =
1

M

M−1∑

n=0

q [n] q [n+ k]. (23)

The paper by Martinez and Ashrafi (2018) presents
the formula

Var0
[
R̃y [k]

]
=

σ4q
M

+
A2σ2q
M

+
A2σ2q
M2

(M − k) cos (2kω0)

=
σ4q
M

+
2σ2q
M

(
A2

2

)

+
2σ2q
M2

(M − k)

(
A2

2
cos (2kω0)

)

(24)

making it possible to calculate the error

MSE0

[
R̃y [k]

]
= Var0

[
R̃y [k]

]
(25)

of estimator R̃y [k] whose bias is negligibly small, in the
case when k > 0, and ϕ = 0 (triggering is synchronized).
The bias is omitted because for k > 0, the MSV that
accumulates the noise information is not calculated.

Equation (24) is valid under synchronized sampling
conditions. In this formula, components A2/2 and
(A2/2) cos (2kω0) are distinguished, which under these
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sampling conditions can be obtained from (8) by
calculating R̃x [0] and R̃x [2k]. But the sampling need not
be synchronous. Then the variance of the estimator (22)
takes a new form

Var
[
R̃y [k]

]
=

σ4q
M

+
2σ2q
M

(
A2

2
+ρ(0)

)

+
2σ2q
M2

(M − k)
(
A2

2
cos (2kω0) +ρ(2k)

)
.

(26)

where ρ(·) is given by (9). Equation (26) is valid for k >
0. It follows from the work of Lal-Jadziak and Sienkowski
(2009) that, if k = 0, then

Var
[
R̃y [0]

]
=

2σ4q
M

+
4σ2q
M

(
A2

2
+ρ(0)

)
. (27)

Therefore (Sienkowski and Krajewski, 2020),

Var
[
R̃y [k]

]

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2σ4q
M

+
4σ2q
M

R̃x [0] , k = 0,

σ4q
M

+
2σ2q
M

R̃x [0]

+
2σ2q
M2

(M − k) R̃x [2k] , k > 0.

(28)

As

b
[
R̃y [k]

]
=

{
R̃x [0] +σ2q −Rx (0) , k = 0,

R̃x [k]−Rx (kTs) , k > 0,
(29)

on the basis of (28) and (29) we obtain

MSE
[
R̃y [k]

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2σ4q
M

+
4σ2q
M

R̃x [0]

+
(
R̃x [0] +σ2q −Rx (0)

)2
, k = 0,

σ4q
M

+
2σ2q
M

R̃x [0]

+
2σ2q
M2

(M − k) R̃x [2k]

+
(
R̃x [k]−Rx (kTs)

)2
, k > 0.

(30)

Equations (26)–(30) are valid when sampling is
synchronized or non-synchronized and the initial phase
ϕ has any constant value in repeated measurements
(triggering is synchronized). Moreover, Eqns. (28)
and (29) show that (22) is a biased estimator with a
non-zero variance. Equation (28) is used to investigate the
properties of discrete-time algorithms for the sinusoidal
signal frequency estimation (see Appendix A in the paper
by Sienkowski and Krajewski (2020)).

Note that if ϕ = 0 for each measurement repetition
and k > 0, then under synchronized sampling conditions,
errors (25) and (30) assume the same values. Unlike
(25), Eqn. (30) makes it possible to calculate the MSE
irrespective of the sampling conditions. Moreover, (30)
makes it possible to calculate the MSE of the MSV (the
ACF estimator calculated for the delay k = 0).

If the signal y(t) is measured under random
triggering measurement conditions, then

R̃y [k] = R̃x [k] + R̃q [k]

+
1

M

M−1∑

n=0

(x [n] q [n+ k])

+
1

M

M−1∑

n=0

(x [n+ k] q [n]).

(31)

Then (see Appendix)

b
[
R̃y [k]

]
=

{
σ2q, k = 0,

0, k > 0,
(32)

Var
[
R̃y [k]

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Var0
[
R̃y [k]

]

+
A4

16M2

1− cos (2Mω0)

sin2 (ω0)
+

σ4q
M

, k = 0,

Var0
[
R̃y [k]

]

+
A4

16M2

1− cos (2Mω0)

sin2 (ω0)
, k > 0.

(33)

On the basis of (32) and (33), we obtain

MSE
[
R̃y [k]

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Var0
[
R̃y [k]

]
+σ4q

(
1 +

1

M

)

+
A4

16M2

1− cos (2Mω0)

sin2 (ω0)
, k = 0,

Var0
[
R̃y [k]

]

+
A4

16M2

1− cos (2Mω0)

sin2 (ω0)
, k > 0.

(34)

It follows from (32) and (33) that if k > 0, then (31)
is an unbiased estimator with a non-zero variance. The
error (34) does not depend on ϕ and under synchronized
sampling conditions is reduced by the value of the
variance (20).

To sum up, Eqns. (30) and (25) known from
the literature are used under synchronized triggering
measurement conditions. At the same time, formula
(30) can be used when sampling is synchronized or
non-synchronized. Moreover, Eqn. (30) enables the
determination of the MSE of the MSV estimator. Equation
(25) is used when sampling is synchronized. Under
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these measurement conditions, Eqns. (30) and (25) are
equivalent. Equation (30) can be used for any value of ϕ,
while Eqn. (25) only for ϕ = 0. The new formula (34)
is used under random triggering measurement conditions.
At the same time, Eqn. (34) can be used under
synchronized or non-synchronized sampling conditions.
The components of the MSE are the bias and the variance.
These components in the literature are described by (28)
and (29) for the constant initial phase of the signal, while
the paper presents new equations (32) and (33) for the
random initial phase of the signal.

4. Simulation studies

In order to verify the formulas for the ACF estimator
errors presented in Section 3, simulation studies were
conducted, which consisted of the determination of K
results of the estimation of the ACF Rs(τ) of the signal
s(t) and of the calculation of the following error:

M̃SE
[
R̃s [k]

]
=

1

K

K−1∑

j=0

(
R̃
(j)
s [k]−Rs (kTs)

)2
, (35)

where R̃
(j)
s [k] is the j-th result of the ACF estimation,

which was obtained using (4) and the signal samples
obtained under synchronized or random triggering
measurement conditions and synchronized or
non-synchronized sampling.

If s(t) is the signal y(t), then

M̃SE
[
R̃y [k]

]
=

1

K

K−1∑

j=0

(
R̃
(j)
y [k]−Rx (kTs)

)2
. (36)

The components of the error (36) are the bias

b̃
[
R̃y [k]

]
=

1

K

K−1∑

m=0

R̃
(m)
y [k]−Rx (k Ts) (37)

and the variance

Ṽar
[
R̃y [k]

]

=
1

K

K−1∑

j=0

(
1

K

K−1∑

m=0

R̃
(m)
y [k]− R̃

(j)
y [k]

)2

.
(38)

The simulations were carried out using the MathCAD
computer program.

Firstly, the error characteristics (25), (30), (34),
and (36) for a fixed M , ω (or N ) and SNR (SNR
= 10log(0.5A2/σ2

q )), and for a changing delay k were
determined. The sampling conditions were assumed to be
non-synchronized. Synchronized measurement triggering
was achieved by assuming ϕ = 0 in each repetition of
the simulation (Figs. 1(a) and 1(c)). The simulation of
random measurement triggering was conducted such that

the phase ϕ of the sinusoidal signal x(t) was randomized
by means of a pseudo-random number generator of a
uniform distribution over the [0, 2π) interval (Figs. 1(b)
and 1(d)). This means that ϕ ∼ U[0, 2π). Moreover, it
was assumed that A = 3

√
2 V, f = 50 Hz, ω = 0.021

(N = 2.1), M = 100, SNR = 20 dB, and SNR = 70
dB, K = 1000. For comparison, Fig. 2 also shows the
test results for the bias, (29) and (32), and the variance,
(28) and (33), which were compared, similarly to the
MSE, with the results obtained on the basis of (37) and
(38). However, in the sequel the results are limited to
presenting only the results of the MSE, which combines
the bias and the variance of estimator ACF. The results of
the MSE obtained from Eqns. (30) and (34) presented
in the following work also confirm the correctness of
operations of the formulas on the bias, (29) and (32), and
the variance, (28) and (33).

The values of the error (36) show that Eqns. (30) and
(34) are correct. From the conducted simulations, it also
follows that under non-synchronized sampling conditions,
the application of (25) can signify underestimation of the
MSE, irrespective of how the measurement was triggered.
It is worth noticing, that the greatest difference between
the relative errors (30) and (36) (for ϕ = 0) and (34) and
(36) (for ϕ ∼ U[0, 2π)) does not exceed 1 dB (see the
sample error values in Table 1).

The subsequent studies involved the determination
of characteristics (25), (30), (34), and (36) for a fixed
delay k0 and for changing values of the SNR, M , ϕ,
and ω (or N). The sampling conditions were assumed
to be non-synchronized (this only applied to the error
characteristics as a function of M , ϕ and SNR). The
simulations were conducted for A = 3

√
2 V, f = 50 Hz,

ω = 0.021 (N = 2.1), M = 100, SNR = 20 dB, and
SNR = 70 dB, k0 = 7, K = 1000. Figures 3(a), 3(c),
and 3(e) present the relative MSE characteristics obtained
under synchronized triggering measurement conditions
(ϕ = 0). The remaining figures present the relative
MSE characteristics obtained under random triggering
measurement conditions (ϕ ∼ U[0, 2π)). Moreover, Fig. 4
presents the relative MSE characteristics obtained under
synchronized triggering measurement conditions for ϕ ∈
[0, 2π).

Table 1. Sample relative error values (25), (30), (34), and (36)
from Figs. 1(a) and 1(b).

MSE
[dB]

ϕ/k k = 20 k = 50 k = 80

(25) ϕ = 0 –30.08 –35.18 –31.94
(30) ϕ = 0 –30.21 –26.60 –23.33
(34) ϕ ∼ U[0, 2π) –17.28 –28.45 –23.50

(36)
ϕ = 0 –30.26 –26.74 –23.31

ϕ ∼ U[0, 2π) –17.21 –28.49 –23.43
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The error values (36) confirm the earlier conclusions
(Tables 2 and 3). Equations (30) and (34) function
properly in all the considered measurement situations.
The greatest differences between the relative errors (30),
(34), and (36) do not exceed 1 dB. Error (25) is often
significantly lower than the remaining errors, but the
values of error (36) prove that it is underestimated. Note
that if SNR � 0, then a further increase in the SNR does
not cause a decrease in the MSE. As SNR → ∞ and
under synchronized triggering measurement conditions,
the boundary value of the error (30) amounts to

MSE
[
R̃y [k0]

]
= MSE

[
R̃x [k0]

]
= ρ2 (k0) . (39)

When the measurement triggering is random and SNR →
∞, then the boundary value of error (34) is

MSE
[
R̃y [k0]

]
= Var

[
R̃x [k0]

]

=
A4

16M2

1− cos (2Mω0)

sin2 (ω0)
.

(40)

In the measurement situations shown in Figs. 3(a)
and 3(b), the relative errors (39) and (40) are equal to
–28.03 dB and –28.64 dB, respectively (c.f. the results
from Tables 2 and 3 for SNR = 70 dB). Moreover,
it was observed that if SNR � 0, then under the
conditions of a synchronized triggering measurement
and non-synchronized signal sampling, the phase ϕ
significantly affects the MSE (Table 3, Fig. 4(d)). If the
sampling is synchronized, then phase changes do not have
a significant impact on the MSE (Figs. 4(a) and 4(b)).

Note that at certain points of the characteristics in
Figs. 3(e) and 3(f), the relative errors (30) and (34) assume
the same values as the relative error (25). This is attributed
to the occurrence of synchronized sampling conditions at
these points. At these points, the estimator errors are also
the smallest. For example, if ω = 0.12 (N = 12), then,
relative errors (25), (30), and (34) in Figs. 3(e) and 3(f)
assume a value of −84.09 dB (Table 2). In the case of
the error (34), it results from the fact that cos(2Mω0) =
cos(24π) = 1, whereas in the case of the error (30),
from the fact that R̃x[0] = A2/2 = 9 V2 and R̃x[2k0]
= (A2/2)cos(2k0ω0) = 4.83 V2.

5. Experimental studies

In order to verify the formulas for the errors of the ACF
estimator presented in Section 3, measurements consisting
of the acquisition of the samples u[n] of a sinusoidal
voltage u(t) were conducted. Based on the samples u[n]
and Eqn. (4), K results of the estimation of the ACF

Ru(τ) (R̃
(0)
u [k], R̃

(1)
u [k], . . . , R̃

(K−1)
u [k]) of the voltage

u(t) were determined. Then, the bias

b̃
[
R̃u [k]

]
=

1

K

K−1∑

m=0

R̃
(m)
u [k]−Ru

(
k

fs

)
, (41)

the variance

Ṽar
[
R̃u [k]

]

=
1

K

K−1∑

j=0

(
1

K

K−1∑

m=0

R̃
(m)
u [k]− R̃

(j)
u [k]

)2

,
(42)

and the mean squared error

M̃SE
[
R̃u [k]

]
= Ṽar

[
R̃u [k]

]
+ b̃

2 [
R̃u [k]

]
, (43)

where
Ru (τ) = V2

RMSref
cos (2πfrefτ) , (44)

were determined, and the error values were compared to
those obtained using the formulas presented in Section 3.
The quantities VRMSref and fref are, respectively, the
reference voltage and the reference frequency.

The sinusoidal voltage u(t) with the RMS value
VRMS = 3 V and the frequency value f = 50 Hz was
generated using an Agilent 33220A function generator.
The accuracy of setting the values of both parameters
resulted from the function generator inaccuracy. The
AC voltage was sampled using a National Instruments
PCI-6024E 12 Bit data acquisition card. The sampling
rate was set at fs = 50 kHz. This sinusoidal signal
frequency was assumed due to the limited maximum
sampling frequency of the measuring card used (200
kS/s) and greater generator voltage stability in the low
frequency range. The measurement results were obtained
using LabVIEW. Subsequently, these measurement results
were processed using MathCAD. A simple Matlab script
was also written and added to MathCAD as a plug-in. This
script allowed the SNR to be determined on the basis of
the voltage samples.

During the experiment, no additional controlling
signal was applied for measurement triggering. This
implied that the studies were conducted under random
triggering measurement conditions. As a result of the
measurements, a file containing K = 100 measurement
series was obtained. Each measurement series contained
5000 samples u[n]. The SNR was determined for each
series. It was obtained that SNR ∈ [SNRmin, SNRmax],
where SNRmin = 67.73 dB and SNRmax = 68.53 dB.
An Agilent 34401A multimeter and an AIM-TTI TF930
frequency meter (the measurement time was set at 100
s) were additionally connected to the generator. Their
task was to measure the reference RMS value VRMSref and
the reference frequency value fref required to determine
the errors of the estimators. In the presented example,
VRMSref = 2.9930 V (the value of VRMSref was determined
on the basis of an average of 10 measurement results),
and fref = 49.9984 Hz. The standard uncertainty of
the signal sample resulting from the resolution of the
data acquisition card (12 Bit) was equal to 7.05·10−4 V,
while the relative standard uncertainty of the ACF sample
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Table 2. Sample relative errors defined by (25), (30), (34), and (36) corresponding to Fig. 3.
MSE [dB] (25) (30) (34) (36)
SNR, M , ω/ϕ ϕ = 0 ϕ = 0 ϕ ∼ U[0, 2π) ϕ = 0 ϕ ∼ U[0, 2π)
SNR = 20 dB
(Figs. 3(a) and 3(b))

–34.09 –27.10 –27.55 –27.01 –27.55

SNR = 70 dB
(Figs. 3(a) and 3(b))

–84.10 –28.03 –28.64 –28.03 –28.60

M = 100
(Figs. 3(c) and 3(d))

–34.09 –27.10 –27.55 –27.06 –27.47

ω = 0.021 (N = 2.1)
(Figs. 3(e) and 3(f))

–84.10 –28.03 –28.64 –28.03 –28.66

ω = 0.12 (N = 12)
(Figs. 3(e) and 3(f))

–84.09 –84.09 –84.09 –84.19 –83.78
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√
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for k = 0 due to quantization was equal to –86.55
dB. The standard uncertainty of the voltage measurement
resulting from the multimeter inaccuracy was equal to
2.78·10−3 V, while the relative standard uncertainty of
the ACF sample for k = 0 caused by this inaccuracy
was equal to –90.27 dB. The standard uncertainty of the
frequency measurement was equal to 2.89·10−5 Hz and
was mainly due to the occurrence of noise in the voltage
from the generator (systematic errors of the frequency
meter were negligibly small). This implied that the errors
due to quantization and measurement inaccuracy were
negligibly small compared with the error values (43) (see
Fig. 5 and Table 5).

After taking the measurements, an operation
consisting of selecting every D-th sample from each
measurement series was conducted. In this way, K =
100 series consisting of 5000/D voltage samples (M ≤
5000/(2D) samples per period) were obtained. Then, new

values f
(D)
s = fs/D, ω

(D)
0 = 2πfref/f

(D)
s , N (D) =

Mω
(D)
0 /π (Table 4) and R̃

(0)
u [k], R̃

(1)
u [k], . . . , R̃

(K−1)
u [k]

were determined. On this basis, relative errors (25), (34),
and (43) were determined (Table 5) and their diagrams
(Fig. 5) were made.

The experimental studies showed that under the
assumed measurement conditions, the difference between
errors (34) and (43) in each of the considered cases did
not exceed 1 dB (see sample results in Table 5). Similar
values of errors (34) and (43) followed from the fact
that both the errors depended to a greater degree on
the variance (related to noise), rather than on the bias
(related to systematic errors) of an ACF estimator. For
example, for the results shown in Fig. 5(a) and k =
20, 50, 80, the squared bias (32) was equal to zero,
and the squared bias (41) was equal to 1.13·10−4 V4,
4.07·10−4 V4, and 3.61·10−4 V4. At the same time, the
variance (33) was equal to 0.062 V4, while the variance
(50) was equal to 0.058 V4, 0.065 V4, and 0.060 V4.
The error (34) calculated for SNRmin and SNRmax had
values close to each other. A similar situation was
observed in the case of the error (25), but this error
was underestimated, which confirmed the results of the
simulation studies. The experimental studies showed that
Eqn. (34) could successfully model the actual MSE under
the conditions of a random triggering measurement and
non-synchronized signal sampling.

6. Conclusion

In this paper, the results of a study on the ACF estimator
of a harmonic signal occurring in the presence of Gaussian
noise were presented. New formulas making it possible
to calculate the bias, the variance and the MSE of
the ACF estimator measured under random triggering
measurement conditions were designed in the reported

study. Moreover, the variance of the ACF estimator
of a signal measured under synchronized triggering
measurement conditions known from the literature was
presented.

The simulation studies confirmed the correct
functioning of the designed formulas. The experimental
studies showed that the new formulas could be applied
to the modeling of the real errors of ACF estimators.
The results showed that the difference between theoretical
errors and the errors of ACF estimators calculated on
the basis of signal samples did not exceed 1 dB. The
presented tools enable, among other things, determination
of corrections to eliminate systematic errors of the ACF
estimator and minimization of MSEs as a result of
appropriate selection of the number of samples and the
sampling frequency for a fixed signal frequency. In
addition, the values of the bias, the variance and the MSE
obtained with the developed tools can be used to evaluate
the statistical properties of various estimators, such as
the amplitude, the frequency and the phase of harmonic
and polyharmonic signals, which are built on the basis of
the ACF.

Table 3. Sample relative error values (25), (30), and (36) from
Figs. 4(c) and 4(d).

MSE
[dB]

ϕ/ SNR SNR = 20 dB SNR = 70 dB

(25)
ϕ = 0 –34.09 –84.10
ϕ = π/4 –34.09 –84.10

(30)
ϕ = 0 –27.10 –28.03
ϕ = π/4 –28.05 –29.34

(36)
ϕ = 0 –27.02 –28.03
ϕ = π/4 –28.01 –29.34

Table 4. Parameters of the voltage u(t) processing under the
conditions of a random triggering measurement and
non-synchronized signal sampling.

D M f
(D)
s [kHz] ω

(D)
0 /π N (D)

24 100 50/24 24/500 24/5
49 50 50/49 49/500 49/10
99 25 50/99 99/500 99/20

249 10 50/249 249/500 249/50

Table 5. Sample relative error values (25), (34), and (43) from
Fig. 5(a).

MSE
[dB]

SNR/k k = 20 k = 50 k = 80

(25)
SNRmin –82.17 –76.78 –83.14
SNRmax –82.96 –77.58 –83.93

(34)
SNRmin –31.09 –20.97 –30.006
SNRmax –31.09 –20.97 –30.01

(51) — –31.40 –20.74 –30.10
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Appendix

This appendix details formulas used to obtain the expected
value, the variance, and the MSE of the estimator R̃y[k]
of the Rx(τ) ACF. The obtained formulas offer good
quality under random triggering measurement conditions.
This corresponds to a measurement situation in which the
phase ϕ of the sinusoidal signal x(t) is random in each
measurement repetition.

Consider samples R̃
(0)
y [k], . . . , R̃

(K−1)
y [k] of the

ACF Ry(τ) of the signal y(t). Then, on the basis of (22),
we can obtain

1

K

K−1∑

j=0

(
R̃
(j)
y [k]

)2

=
1

K

K−1∑

j=0

(
g(j) (k) + h(j) (k)

)2

=
1

K

K−1∑

j=0

(
g(j) (k)

)2
+

1

K

K−1∑

j=0

(
h(j) (k)

)2

+
2

K

K−1∑

j=0

g(j) (k)h(j) (k),

(A1)

where

g(j) (k) = R̃
(j)
x [k] + R̃

(j)
q [k] ,

h(j) (k) =
( 1

M

M−1∑

n=0

x [n] q [n+ k]
)

j

+
( 1

M

M−1∑

n=0

q [n] x [n+ k]
)

j
.

(A2)
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From basic algebra it follows that
(
g(j) (k)

)2
+

(
h(j) (k)

)2 ≥ 2g(j) (k)h(j) (k). If the SNR is
sufficiently large (SNR � 0), then for almost every k ≥
0,
(
g(j) (k)

)2
+
(
h(j) (k)

)2 � 2g(j) (k)h(j) (k). This
implies

1

K

K−1∑

j=0

(
g(j) (k)

)2
+

1

K

K−1∑

j=0

(
h(j) (k)

)2

� 2

K

K−1∑

j=0

g(j) (k)h(j) (k). (A3)

Thus,

1

K

K−1∑

j=0

(
R̃
(j)
y [k]

)2

≈ 1

K

K−1∑

j=0

(
g(j) (k)

)2
+

1

K

K−1∑

j=0

(
h(j) (k)

)2
.

(A4)

Let us first consider the case where k = 0. The first
term of the sum in (A.4) then assumes the form

1

K

K−1∑

j=0

(
g(j) (0)

)2

=
1

K

K−1∑

j=0

(
R̃
(j)
x [0]

)2
+

2

K

K−1∑

j=0

R̃
(j)
x [0] R̃

(j)
q [0]

+
1

K

K−1∑

j=0

(
R̃
(j)
q [0]

)2
.

(A5)

The phase ϕ(j) affects the component ρ(j) (0) in (9) such
that

1

K

K−1∑

j=0

R̃
(j)
x [0] =

A2

2
+

1

K

K−1∑

j=0

ρ(j) (0) ≈ A2

2
. (A6)

Since

R̃
(0)
q [0] ≈ · · · ≈ R̃

(K−1)
q [0] ≈ R̃q [0] ≈ σ2q, (A7)

we get

1

K

K−1∑

j=0

R̃
(j)
x [0] R̃

(j)
q [0] ≈ A2

2
σ2q . (A8)

Moreover,

1

K

K−1∑

j=0

(
R̃
(j)
x [0]

)2

=
1

K

K−1∑

j=0

(A2

2
+ρ(j) (0)

)2

≈ A4

4
+

A4

16M2sin2 (ω0)

1

K

K−1∑

j=0

(
sin
(
2ϕ(j) −ω0

)

− sin
(
(2M − 1)ω0 + 2ϕ(j)

))2

≈ A4

4
+

A4

16M2

1− cos (2Mω0)

sin2 (ω0)
.

(A9)

Therefore,

1

K

K−1∑

j=0

(
g(j) (0)

)2
≈ A4

16M2

1− cos (2Mω0)

sin2 (ω0)

+
A4

4
+A2σ2q

+
M + 2

M
σ4q .

(A10)

Since we have (Martinez and Ashrafi, 2018)

1

K

K−1∑

j=0

(( 1

M

M−1∑

n=0

x [n] q [n]
)
j

)2
≈ σ2q

M
R̃x [0] , (A11)

for k = 0 the second term in (A.4) reduces to

1

K

K−1∑

j=0

(
h(j) (0)

)2

=
4

K

K−1∑

j=0

(( 1

M

M−1∑

n=0

x [n] q [n]
)
j

)2

≈ 2

M
A2σ2q.

(A12)

Thus,

1

K

K−1∑

j=0

(
R̃
(j)
y [0]

)2

≈ A4

16M2

1− cos (2Mω0)

sin2 (ω0)

+
A4

4
+

(
1 +

2

M

)
A2σ2q +

M + 2

M
σ4q .

(A13)

Simultaneously,

1

K

K−1∑

j=0

R̃
(j)
y [0] ≈ A2

2
+σ2q. (A14)
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This implies that for k = 0, the expected value and
variance of the estimator R̃y[k] can be expressed as
follows:

E
[
R̃y [k]

]
=

A2

2
+σ2q,

Var
[
R̃y [k]

]
=

A4

4
+

A4

16M2

1− cos (2Mω0)

sin2 (ω0)

+A2σ2q

(
1 +

2

M

)
+

M + 2

M
σ4q

−
(
A2

2
+σ2q

)2

=
A4

16M2

1− cos (2Mω0)

sin2 (ω0)
+

2σ4q
M

+
2A2σ2q
M

.

(A15)

Consider the case of k > 0. The first term of the sum
in (A.4) then has the form

1

K

K−1∑

j=0

(
g(j) (k)

)2
=

1

K

K−1∑

j=0

(
R̃
(j)
x [k]

)2

+
2

K

K−1∑

j=0

R̃
(j)
x [k] R̃

(j)
q [k]

+
1

K

K−1∑

j=0

(
R̃
(j)
q [k]

)2
.

(A16)

Similarly, as in (A.6)–(A.9), we obtain

1

K

K−1∑

j=0

R̃
(j)
x [k] =

A2

2
cos (kω0) +

1

K

K−1∑

j=0

ρ(j) (k)

≈ A2

2
cos (kω0) ,

(A17)

1

K

K−1∑

j=0

(
R̃
(j)
x [k]

)2

=

⎛

⎝A2

2
cos (kω0) +

1

K

K−1∑

j=0

ρ(j) (k)

⎞

⎠
2

≈ A4

4
cos2 (kω0) +

A4

16M2

1− cos (2Mω0)

sin2 (ω0)
.

(A18)

On the basis of

1

K

K−1∑

j=0

R̃
(j)
q [k] ≈ 0,

1

K

K−1∑

j=0

(
R̃
(j)
q [k]

)2
≈ σ4q

M
,

(A19)

and (A.16)–(A.18), we can obtain

1

K

K−1∑

j=0

(
g(j) (k)

)2
≈ A4

4
cos2 (kω0)

+
A4

16M2

1− cos (2Mω0)

sin2 (ω0)
+

σ4q
M

.

(A20)

The second term of the sum in formula (A.4) then takes
the form

1

K

K−1∑

j=0

(
h(j) (k)

)2

=
1

K

K−1∑

j=0

⎛

⎝
(

1

M

M−1∑

n=0

x [n] q [n+ k]

)

j

⎞

⎠
2

+
1

K

K−1∑

j=0

⎛

⎝
(

1

M

M−1∑

n=0

q [n] x [n+ k]

)

j

⎞

⎠
2

+
2

K

K−1∑

j=0

⎧
⎨

⎩

(
1

M

M−1∑

n=0

x [n] q [n+ k]

)

j

·
(

1

M

M−1∑

n=0

q [n] x [n+ k]

)

j

⎫
⎬

⎭ .

(A21)

When

1

K

K−1∑

j=0

⎛

⎝
(

1

M

M−1∑

n=0

x [n] q [n+ k]

)

j

⎞

⎠
2

≈ A2σ2q
2M

,

1

K

K−1∑

j=0

⎛

⎝
(

1

M

M−1∑

n=0

q [n] x [n+ k]

)

j

⎞

⎠
2

≈ A2σ2q
2M

,

1

K

K−1∑

j=0

⎧
⎨

⎩

(
1

M

M−1∑

n=0

x [n] q [n+ k]

)

j

·
(

1

M

M−1∑

n=0

q [n] x [n+ k]

)

j

⎫
⎬

⎭

≈ A2σ2q
2M2

(M − k) cos (2kω0) ,

(A22)
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then

1

K

K−1∑

j=0

(
h(j) (k)

)2

≈ A2σ2q
M

+
A2σ2q
M2

(M − k) cos (2kω0) . (A23)

Therefore,

1

K

K−1∑

j=0

(
R̃
(j)
y [k]

)2

≈ A4

4
cos2 (kω0) +

A4

16M2

1− cos (2Mω0)

sin2 (ω0)

+
σ4q
M

+
A2σ2q
M

+
A2σ2q
M2

(M − k) cos (2kω0) .

(A24)

Simultaneously,

1

K

K−1∑

j=0

R̃
(j)
y [k] ≈ A2

2
cos (kω0) . (A25)

This implies that for k > 0, the expected value and the
variance of the estimator R̃y[k] can be expressed as

E
[
R̃y [k]

]
=

A2

2
cos (kω0) ,

Var
[
R̃y [k]

]
=

A4

16M2

1− cos (2Mω0)

sin2 (ω0)

+
A2σ2q
M2

(M − k) cos (2kω0)

+
σ4q
M

+
A2σ2q
M

.

(A26)

Finally, based on (A.15) and (A.26), we obtain

E
[
R̃y [k]

]
=

⎧
⎪⎪⎨

⎪⎪⎩

A2

2
+σ2q, k = 0,

A2

2
cos (kω0) , k > 0,

(A27)

Var
[
R̃y [k]

]

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A4

16M2

1− cos (2Mω0)

sin2 (ω0)

+
2σ4q
M

+
2A2σ2q
M

, k = 0,

A4

16M2

1− cos (2Mω0)

sin2 (ω0)

+
A2σ2q
M2

(M − k) cos (2kω0)

+
σ4q
M

+
A2σ2q
M

, k > 0.

(A28)

Note that, as SNR → ∞, we get

E
[
R̃x [k]

]
=

A2

2
cos (kω0) ,

Var
[
R̃x [k]

]
=

A4

16M2

1− cos (2Mω0)

sin2 (ω0)
.

(A29)
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