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Atanassov’s intuitionistic fuzzy sets and especially his intuitionistic fuzzy relations are tools that make it possible to model
effectively imperfect information that we meet in many real-life situations. In this paper, we discuss the new concepts of the
transitivity problem of Atanassov’s intuitionistic fuzzy relations in an epistemic aspect. The transitivity property reflects the
consistency of a preference relation. Therefore, transitivity is important from the point of view of real problems appearing,
e.g., in group decision making in preference procedures. We propose a new type of optimistic and pessimistic transitivity
among the alternatives (options) considered and their use in the procedure of ranking the alternatives in a group decision
making problem.
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1. Introduction

In this paper, Atanassov’s intuitionistic fuzzy relations
(A-IFRs) are studied, especially preference relations
based on a new epistemic concept. These Atanassov’s
intuitionistic fuzzy relations were introduced by
Atanassov (1999) as a generalization of the concept
of a fuzzy relation (FR) defined by Zadeh (1965).
Fuzzy sets and fuzzy relations found applications in
diverse types of areas, for example, in databases, pattern
recognition, neural networks, fuzzy modeling, economy,
medicine, multicriteria decision making, etc.

∗Corresponding author

Atanassov’s intuitionistic fuzzy relations can be
interpreted as a tool that may help to model in a better
way imperfect information, particularly with imperfectly
defined facts and imprecise knowledge, especially in
optimistic or pessimistic aspects. Diverse properties
of Atanassov’s intuitionistic fuzzy relations or other
extensions of fuzzy sets theory have been studied by a
range of authors (Atanassov, 1999; 2021; 2016; Burillo
and Bustince, 1995; Pradhan and Pal, 2017; Xu and Yager,
2009; Pękala, 2009; Pękala et al., 2015; 2018; 2016;
Dudziak and Pękala, 2011; Xu et al., 2014).

Among other things, research concerns the properties
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of transitivity or consistency and their impact on
the preferences relations. This allows Atanassov’s
intuitionistic fuzzy relations to be applied in group
decision making problems in a situation when a solution
from the individual preferences over some set of options
should be derived. We will consider here group decision
making while each option fulfills a set of criteria to some
extent and, on the other hand, it does not fulfill the
same set of criteria to some extent. This clearly suggests
that the alternatives can be conveniently expressed via
Atanassov’s intuitionistic fuzzy sets (intuitionistic fuzzy
alternatives).

Transitivity is a fundamental notion in decision
theory. It is most universally assumed in disciplines of
decision theory and generally accepted in the principle of
rationality. Transitivity of a fuzzy preference relation has
received great attention in the past decades.

In this paper, we concentrate on the new idea
of transitivity, in particular, we consider the following
objectives:

1. To introduce transitivity in the optimistic and
pessimistic issues of Atanassov’s intuitionistic fuzzy
relations.

2. To introduce intuitionistic negation in the optimistic
and pessimistic issues.

3. To study properties and dependences of new
transitivity with aggregation and negation
intuitionistic functions.

4. To use in the preference structure aggregation and
negation intuitionistic functions, especially in the
optimistic and pessimistic issues.

5. To show an application where the introduction of the
new concept of transitivity is justified.

The introduced notions of transitivity reflect
uncertainty, expressed by a degree of hesitation. Hence,
these notions are compatible with the new model of
Atanassov’s intuitionistic fuzzy sets where we consider
intervals that can be formally employed to represent
Atanassov’s intuitionistic fuzzy sets (A-IFSs). Another
approach is proposed by Deschrijver and Kerre (2003), for
whom the representations of IFSs (assumptions leading
to their conclusion) are different—only two terms, i.e.,
memberships values and non-membership values, are
taken into account. We consider a different model, i.e.,
taking into account all three terms: membership values,
non-membership values and the hesitation margins. Both
models are correct but they are not the same. As a result,
our conclusion is different—IVFSs and IFSs are not
equivalent (Szmidt and Kacprzyk, 2017). Moreover,
the above-mentioned new transitivity and intuitionistic
fuzzy negation also initiated in optimistic and pessimistic

aspects are used together with the adequate aggregation
functions for the preference model and, in consequence,
for the decision making model.

The paper is organized as follows. First, some
concepts and results useful in further considerations
are recalled (Section 2). Then, results concerning
comparability relations are given (Section 3). Next,
intuitionistic operations, such as aggregation and
negations are presented and later proposed for use in the
preference model (Sections 4 and 5). Section 6 consists
of the new concept of transitivity and its connection with
intuitionistic aggregation and negation functions. Finally,
an example of an application using the algorithm with the
new transitivity in a group decision making problem is
presented (Section 7).

2. Basic notions

At the beginning, let us recall the concept of a fuzzy
relation. A fuzzy relation in X �= ∅ (Zadeh, 1965) is given
by

ρ′ = {((x, y), R′(x, y))|x, y ∈ X}, (1)

where R′(x, y) ∈ [0, 1] is the membership function of the
fuzzy relation ρ′.

One of the possible extensions of the fuzzy relation
(1) is Atanassov’s intuitionistic fuzzy relation (Atanassov,
1999) ρ given by

ρ = {((x, y), R(x, y), Rd(x, y))|x, y ∈ X}, (2)

where: R : X × X → [0, 1] and Rd : X × X → [0, 1]
such that

0 ≤ R(x, y) +Rd(x, y) ≤ 1, (x, y) ∈ (X ×X) (3)

and R(x, y), Rd(x, y) ∈ [0, 1] denote the degree of
membership and the degree of nonmembership of (x, y) ∈
ρ, respectively. The value πρ : X × Y → [0, 1] is
associated with each of Atanassov’s intuitionistic fuzzy
relations ρ, where

πρ(x, y) = 1−R(x, y)−Rd(x, y), x ∈ X, y ∈ Y.

Obviously, each fuzzy relation may be represented by the
following intuitionistic fuzzy relation:

ρ′ = {((x, y), R′(x, y), 1 −R′(x, y))|x, y ∈ X}.

The family of all Atanassov’s intuitionistic fuzzy
relations in a set X is denoted by AIFR(X), where we
may represent intuitionistic fuzzy relations ρ in short as
(R,Rd, πρ).

The value πρ(x, y) is called an intuitionistic fuzzy
index of a pair (x, y) in Atanassov’s intuitionistic fuzzy
relation ρ. It is also described as an index (a degree)
of hesitation whether or not x and y are in relation ρ.
This value is also regarded as a measure of the lack of
knowledge and is useful in applications.
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2.1. Representation of A-IFSs by intervals. We will
consider here the consequences of the fact that A-IFSs
can be represented in the form of intervals (Szmidt and
Kacprzyk, 2017; Szmidt, 2014). Using all three terms we
may build two-intervals which represent the intuitionistic
fuzzy relation ρ = (R,Rd, πρ) in the following way:

[R,R+ απρ], [Rd, Rd + (1− α)πρ], (4)

where α ∈ [0, 1].

Example 1. Jon and Bob (x and y) can cooperate
well, i.e., R(x, y) = 0.7; sometimes they disagree
so Rd(x, y) = 0.2, and as we are not sure of their
behaviour concerning a new project, the hesitation margin
πρ(x, y) = 0.1 concerning their cooperation. Such data
can be important from the point of view of building a well
cooperating team working on an important project. In the
best situation (α = 1) we have R(x, y) = 0.7+0.1 = 0.8,
and Rd(x, y) = 0.2. In the worst situation (α = 0)
we have R(x, y) = 0.7 and Rd(x, y) = 0.2 + 0.1 =
0.3. Other scenarios analyzing the same time R(x, y) and
Rd(x, y) are also possible.

For example, for α = 0.4, we have R(x, y) = 0.7 +
0.04 = 0.74, and Rd(x, y) = 0.2+ 0.06 = 0.26. Similar
analyses are done in real life. Taking into account the two
term representation of AIFSs does not make it possible
(Szmidt and Kacprzyk, 2017) (only one interval can be
built then). �

Considering such scenarios might be useful when
decisions are to be made about some future events which
can be described only to some extent, such as, e.g., in
voting processes, introducing a new product into a market,
looking for a new job, or buying a house. The success
or failure then strongly depends on the values of the
hesitation margins. It is worth stressing that three-term
representation is different from the representation used
in IVFSs (Szmidt, 2014; Szmidt and Kacprzyk, 2017).
In other words, the IFSs expressed by the two-term
representation and IVFSs are, like Atanassov and Gargov
stated in 1989, “equipollent”, that is, deducible from each
other, but still not “the same” (e.g., because of different
operators), whereas the A-IFSs expressed via a three-term
representation are equivalent to considering two intervals
which certainly means that they are not “the same” as
IVFSs (Szmidt and Kacprzyk, 2017).

3. Intuitionistic fuzzy setting

3.1. Comparability relations. Note that Atanassov’s
intuitionistic fuzzy sets can be represented by the
L∗-fuzzy sets in the sense of Goguen, where

L∗ = {x = (xμ, xν) : xμ, xν ∈ [0, 1], xμ + xν ≤ 1},

with the uncertainty value for each intuitionistic element
x:

πx = 1− xμ − xν ,

and the following partial order using shortly presentations
of x = (x1, x2), y = (y1, y2) ∈ L∗:

(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1 andx2 ≥ y2.

A partial order in the family (L∗,≤L∗) means that
we can have incomparability intuitionistic fuzzy values.
Moreover, uncertainty is not included. This was the
inspiration for considerations of the issue of comparing
the intuitionistic fuzzy elements and searching for new
methods of comparability.

Due to the imprecise or incomplete information
presented by intuitionistic values we have a problem with
the comparability of the above-mentioned values. We
may use the above-mentioned comparability relations, for
example, in the decision making model to represent the
uncertainty or fuzziness of the trust relationship among
a group of experts. In this case, decision making
involves individuals generating problems, providing
potential solutions, voting for solutions, and the software
aggregating individual votes ultimately derives the final
decision. Many decision making processes take place
in an environment in which the information is not
precisely known. As a consequence, experts may feel
more comfortable using an interval number, rather than
a precise numerical value to represent their preference.
Therefore, intuitionistic fuzzy preference relations can
be considered as an appropriate representation format to
capture experts’ uncertain preference information, hereby
optimistic and pessimistic comparability relations.

3.1.1. Optimistic and pessimistic relations. In the
sequel we shall focus on comparability relations used
for intuitionistic values and intuitionistic fuzzy relations
connected with epistemic and ontic settings (Dubois
and Prade, 2012; Dubois et al., 2014). An epistemic
(disjunctive) set S contains an ill-known actual value of
a point-valued quantity x, so we can write x ∈ S. It
represents the epistemic state of an agent, hence does not
exist per se. Sets representing collections of elements
forming composite objects are called ontic (conjunctive).
A conjunctive set is the precise representation of an
objective entity. An ontic set S is the value of a set-valued
variable X , so we can write X = S. These relations
are realized by optimistic and pessimistic comparability
relations, respectively. Next to the standard relation ≤L∗ ,
which does not respect the uncertainty put in intuitionistic
fuzzy values, we will consider more general, i.e.,
optimistic and more restrictive (pessimistic comparability
relations). Representations of the above-mentioned
optimistic and pessimistic comparability relations in
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interval interpretations and their dependences with partial
order were considered and partially presented by Pękala
et al. (2016) and Pękala (2019).

Optimistic comparability relation. An optimistic
relation describes a more general situation, which we
may write for x = (x1, x2), y = (y1, y2) ∈ L∗ and we
define the comparability measure in an optimistic idea in
the following way:

x ≤O y ⇔ x1 ≤ y1 + πy.

Remark 1. By analogy, for Atanassov’s intuitionistic
fuzzy relations ρ = (R,Rd), σ = (S, Sd) we have

ρ ≤O σ ⇔ R ≤ S + πσ.

The relation ≤O is more suitable for the epistemic
(disjunctive) setting of the intuitionistic values.
Consequently, if (x1, x2) is an unprecise description
of a variable x and (y1, y2) is an unprecise description of
a variable y, then x ≤O y means that it is possible that
the true value of x is less than or equal to the true value
of y. Thus the relation ≤O has a possibility interpretation
(Dubois and Prade, 1988) which we call optimistic.

Pessimistic comparability relation. We define the
following restricted case of comparability intervals,
i.e., a necessary relation, which we may interpret as a
conjunctive (ontic) relation and show that one interval
contains a collection of true values of each variable less
than or equal to all true values from the second interval.

For x = (x1, x2), y = (y1, y2) ∈ L∗ we define
the comparability measure in a pessimistic idea in the
following way:

x ≤P y ⇔ x1 + πx ≤ y1.

Remark 2. Similarly to the optimistic relation, by
analogy to Atanassov’s intuitionistic fuzzy relations ρ =
(R,Rd), σ = (S, Sd), we have

ρ ≤P σ ⇔ R+ πρ ≤ S.

Moreover, we observe the following connections
between the mentioned comparability relations:

Proposition 1. Let x, y ∈ L∗. Then

x ≤P y ⇒ x ≤L∗ y ⇒ x ≤O y.

Thus, considerations of necessary and possible
comparability relations give a wider outlook than the
description of the situation by classical order. In each
aspect, we will use the following notation respectively for
the largest and smallest element in L∗:

1 = (1, 0), 0 = (0, 1).

4. Intuitionistic fuzzy operations

4.1. Intuitionistic fuzzy aggregation functions. We
recall the concept of an aggregation function on L∗, which
is a crucial definition for this paper, because it is important
in decision making problems and other applications.

Definition 1. (Beliakov et al., 2021; Zapata et al., 2017)
Let n ∈ N, n ≥ 2.An operationA : (L∗)n → L∗ is called
an Atanassov’s intuitionistic fuzzy aggregation function if
it is increasing with respect to the order ≤, i.e.,

∀xi,yi∈L∗xi ≤ yi ⇒ A(x1, . . . , xn) ≤ A(y1, . . . , yn)
(5)

and
A(0, . . . , 0

︸ ︷︷ ︸

n×
) = 0, A(1, . . . , 1

︸ ︷︷ ︸

n×
) = 1.

Note that the special case of Atanassov intuitionistic
fuzzy aggregation operation is a representable
Atanassov’s intuitionistic fuzzy aggregation function
with respect to ≤L∗ .

Definition 2. (Drygaś, 2011; Deschrijiver et al., 2004)
Atanassov’s intuitionistic fuzzy aggregation function A :
(L∗)n → L∗ is called representable if there exist
aggregation functions A1, A2 : [0, 1]n → [0, 1] such that

A(x1, . . . , xn)

= (A1(xμ1, . . . , xμn), A2(xν1, . . . , xνn))

for all x1, . . . , xn ∈ L∗.

Moreover, we have the following characterization.

Theorem 1. (Drygaś, 2011; Deschrijiver et al., 2004) An
operationA : (L∗)n → L∗ is a representable Atanassov’s
intuitionistic fuzzy aggregation function with respect to
≤L∗ if and only if there exist aggregation functions
A1, A2 : [0, 1]n → [0, 1] such that for all x1, . . . , xn ∈ L∗

and A1 ≤ AN
2 , i.e., AN

2 (a, b) = 1−A2(1− a, 1− b),

A(x1, . . . , xn)

= (A1(xμ1, . . . , xμn), A2(xν1, . . . , xνn)).

Example 2. Examples of representable aggregation
functions with respect to ≤L∗ are

• A∨(x, y) = (max(xμ, yμ),min(xν , yν)),

• A∧(x, y) = (min(xμ, yμ),max(xν , yν)),

• Ap(x, y) = (xμyμ, xν + yν − xνyν),

• Amean(x, y) = (xμ + yμ/2, xν + yν/2),

• Agmean(x, y) = (
√
xμyμ, 1−

√

(1− xν)(1− yν)),

for x, y ∈ L∗. �



New transitivity of Atanassov’s intuitionistic fuzzy sets in a decision making model 567

4.1.1. Optimistic and pessimistic aggregation func-
tions. We present here new types of aggregation
functions on L∗. In the monotonicity condition in
Definition 1 we replace the partial order with the relations
�O and �P . Note that the obtained aggregation functions
are not special cases of aggregation functions on lattices
(well described in the literature), since relations �O and
�P may be not partial orders and represent the optimistic
and pessimistic point of view.

Definition 3. (Bentkowska, 2018) Let n ≥ 2, n ∈ N. An
operation A : (L∗)n → L∗ is called an optimistic aggre-
gation function (we shall write the O-aggregation function
for short) if for xi, yi ∈ L∗, i = 1, . . . , n

xi �O yi ⇒ A(x1, . . . , xn) �O A(y1, . . . , yn), (6)

A(0, . . . , 0
︸ ︷︷ ︸

n×
) = 0, A(1, . . . , 1

︸ ︷︷ ︸

n×
) = 1.

Definition 4. (Bentkowska, 2018) Let n ≥ 2, n ∈ N. An
operation A : (L∗)n → L∗ is called a pessimistic aggre-
gation function (we shall write the P-aggregation function
for short) if for xi, yi ∈ L∗, i = 1, . . . , n

xi �P yi ⇒ A(x1, . . . , xn) �P A(y1, . . . , yn), (7)

A(0, . . . , 0
︸ ︷︷ ︸

n×

) = 0, A(1, . . . , 1
︸ ︷︷ ︸

n×

) = 1.

The family of all O-aggregation functions will be
denoted by AO and the family of all P-aggregation
functions will be denoted by AP . For the simplicity
of notation, we include all results for two argument
functions. We will present dependencies between the
families of known aggregation functions onL∗ and O- and
P-aggregation functions.

Example 3. (Bentkowska, 2018; Pękala, 2019) The
intuitionistic fuzzy representable aggregation function is
an O-aggregation function. For example, by aggregation
A : [0, 1]2 → [0, 1] we have

AO1 (x, y) =

{

0 if (x, y) = (0,0),

(A(xμ, yμ), 1) otherwise,

AO2(x, y) =

{

1 if (x, y) = (1,1),

(0, A(xν , yν)) otherwise.

are also O-aggregation function (but they are not
P-aggregation functions).

Moreover, the following functions on L∗ are
O-aggregation functions but they are neither aggregation
functions nor P-aggregation functions (in AO3 we use the
convention 0/0 = 0):

AO3(x, y) =

{

0 if (x, y) = (0,0),
(

xμ
2+yμ

2

xμ+yμ
, 0
)

otherwise,

AO4(x, y) = (xμ · |2yμ − 1|, xν),

AO5(x, y) = (
√
xμyμ,

xν + yν
2

).

Moreover, AP and Amean are IV aggregation and O-
and P-aggregation functions what is more; the following
aggregations are also P-aggregation functions:

AP1(x, y)

= (A(xμ, yμ),min(A(1 − xμ, yν), A(xν , 1− yμ)),

AP2(x, y)

= (min(A(xμ, 1− yν), A(1 − xν , yμ)), A
N (xν , yν)),

where A is the aggregation function and

AN (a, b) = 1−A(1 − a, 1− b) for a, b ∈ [0, 1],

AP3(x, y) =
(yμ +

xμ+1−xν

2

2
,
xν + yν

2

)

for x = (xμ, xν , πx), y = (yμ, yν , πy) ∈ L∗. �
New types of aggregation functions have possible

applications in practical models, where the process of
aggregation of interval data is involved. It would be
interesting to check the effectiveness of applying O-
and P-aggregation functions and this will be presented
in Section 7. For notational simplicity we include all
results for two-argument functions. We will present
dependencies between the families of known aggregation
functions on L∗ and O- and P-aggregation functions.
Inspired by a study on an interval-valued setting (cf.
Bentkowska, 2018) we observe the following properties.

Theorem 2. Let A1, A2 : [0, 1]2 → [0, 1]. If A :
(L∗)2 → L∗ is a representable aggregation function,
A = (A1, A2), A1 ≤ AN

2 , then A is a (representable)
O-aggregation function.

We observed (in the above examples) representable
aggregation functions, A, which are O-aggregation
functions but may not be aggregation functions. That is
not the case for P-aggregation functions which is shown
in the next theorem.

Theorem 3. Let A : (L∗)2 → L∗ be a representable
aggregation function. A is a P-aggregation function if and
only if A1 = AN

2 .

Remark 3. By the assumption of A1 = AN
2 we

also observe that aggregation functions AP2 and AP3 are
P-aggregation functions.

Remark 4. Let us pay attention to the fact that the
three classes of aggregation functions mentioned above
have a common part, i.e., there are optimistic aggregation
functions that are not classic and, on the other hand
similarly, there are classic aggregation functions that are
not optimistic. A similar situation may be observed for a
pair of the pessimistic and classic aggregation functions
or optimistic and pessimistic aggregation functions.
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4.2. Intuitionistic fuzzy negation. Now we shall
analyse the notion of an intuitionistic fuzzy negation.
Firstly, we recall the definition of intuitionistic fuzzy
negation with respect to partial order.

Definition 5. (Atanassov, 2008; Asiain et al., 2018) An
intuitionistic fuzzy negation is a function N : L∗ → L∗

that decreases with respect to ≤L∗ with N(1) = 0 and
N(0) = 1. An intuitionistic fuzzy negation is said to be
involutive if it fulfills N(N(x)) = x for any x ∈ L∗.

We will refer to on intuitionist fuzzy negation if it
fulfills Definition 5 in a classic sense.

Example 4. (Atanassov, 2008; Zapata et al., 2017) The
functions N1, N2 : L∗ → L∗ defined by

• N1(x) = N1((xμ, xν)) = (xν , xμ),

• N2(x) = N2((xμ, xν)) = (2xν + x2
ν , x

2
μ)

are interval-valued fuzzy negations with respect to the
order ≤L∗ . �
Proposition 2. (Deschrijiver et al., 2004) Let N be an
involutive intuitionistic fuzzy negation. Then there exist
an involutive fuzzy negations n1, n2 (n1 ≤ n2) that satisfy
N(x) = (n1(1 − xν), 1 − n2(xμ)), x ∈ L∗ and N
is said to be a representable involutive intuitionistic fuzzy
negation with respect to ≤L∗ .

For example, N1 is an involutive intuitionistic fuzzy
negation, called the standard intuitionistic fuzzy negation
for standard fuzzy negationsn1 and n2, i.e., n1(a) = 1−a
and n2(a) = 1− a, a ∈ [0, 1].

4.2.1. Optimistic and pessimistic intuitionistic fuzzy
negation functions. We present here new types of
negation functions on L∗. We replace the partial order
in the monotonicity condition in Definition 5 with the
relations �O and �P . Note that the obtained negation
functions are connected with optimistic and pessimistic
points of view.

Definition 6. An optimistic intiutionistic fuzzy negation is
a function N : L∗ → L∗ that decreases with respect to
≤O with N(1) = 0 and N(0) = 1.

Definition 7. A pessimistic intuitionistic fuzzy negation is
a function N : L∗ → L∗ that decreases with respect to
≤P with N(1) = 0 and N(0) = 1.

Example 5. (New intuitionistic fuzzy negations) The
operations N1 and N2 are also intuitionistic fuzzy
negations with respect to ≤O and ≤P (optimistic and
pessimistic). Moreover, the following operations:

NO1(x) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1 if x = 0,

0 if x = 1,
(1− xμ

2
, 1− 1− xν

2

)

otherwise,

NO2(x) =

{

1 ifx = 0,

(0, 1− xν) otherwise,

NO3(x) =

{

0 ifx = 1,

(1− xμ, 0) otherwise

are optimistic intuitionistic fuzzy negations (non
representable) with respect to the order ≤O but not with
respect to ≤P . This contrasts with the operation

NP (x) = (xν , 1− xν)

for x ∈ L∗ which is an intuitionistic fuzzy negation
(non- representable) and a pessimistic intuitionistic fuzzy
negation, i.e., with respect to the order ≤P and ≤L∗ but
not with respect to ≤O.

Moreover, the operation

NO4(x) =

⎧

⎪
⎨

⎪
⎩

1 ifx = 0,

0 ifx = 1,

(0, 1− xμ) otherwise,

is an optimistic intuitionistic fuzzy negation with respect
to the order ≤O but not with respect to ≤L∗ . �

Proposition 3. Let n1, n2 be fuzzy negation functions and
x ∈ L∗. The representable intuitionistic fuzzy negation
N(x) = (n1(1− xν), 1− n2(xμ))

(i) is a representable (optimistic) intuitionistic fuzzy
negation with respect to ≤O;

(ii) is a representable (pessimistic) intuitionistic fuzzy
negation with respect to ≤P if n1 = n2.

Remark 5. From the above observations, we can
conclude that the three classes of intuitionistic fuzzy
negations mentioned above are connected in the part
between them, so that, e.g., there are intuitionistic fuzzy
negations and also optimistic ones. But there are also
optimistic negation functions that are not intuitionistic
fuzzy negation or vice versa. Similar dependencies
may be observed for pairs of pessimistic and classic
negation functions and optimistic and pessimistic negation
functions.

5. Preference structure

Considering decision making problems in the
intuitionistic fuzzy environment, we are dealing with a
finite set of alternatives X = {x1, . . . , xn} (X �= ∅) and
an expert providing his/her preference information over
alternatives. In the sequel, we will consider a preference
relation on the set X which makes it possible to represent
Atanassov’s intuitionistic fuzzy relations by matrices.
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Definition 8. (Xu, 2007) Let card(X) = n. An in-
tuitionistic fuzzy preference relation ρ on the set X is
represented by a matrix ρ = (ρij)n×n with ρij =
(R(i, j), Rd(i, j), πρ), for all i, j = 1, . . . , n, where ρij
is an intuitionistic fuzzy value, composed by the degree
R(i, j) to which xi is preferred to xj , the degree Rd(i, j)
to which xi is non-preferred to xj , and the lack of
knowledge degree π(i, j) concerning both R(i, j) and
Rd(i, j), as follows:

• ρij = (0.5, 0.5, 0) indicates indifference between xi

and xj (xi ∼ xj),

• ρij > (0.5, 0.5, 0) represents an uncertain preference
of xi over xj (xi � xj (xi � xj for ρij ≥
(0.5, 0.5, 0))),

• ρij = (1, 0, 0) when xi is definitely (certainly)
preferred to xj ,

• ρij = (0, 1, 0) when xj is definitely (certainly)
preferred to xi.

A preference structure can be characterized by a
weak preference relation called the large preference
relation. It has been mentioned that it is possible to
construct a preference structure from a large preference
relation ρ in the classical case and this was also examined
in the fuzzy case by Fodor and Roubens in 1994.

We continue these examinations and we propose
their generalization to the intuitionistic fuzzy structure.
Then for an intuitionistic fuzzy relation, ρ = (ρij),
we build the corresponding intuitionistic fuzzy strict
preference (P), intuitionistic fuzzy indifference (I),
and intuitionistic fuzzy incomparability (J) by using
intuitionistic fuzzy aggregation functions instead of
intuitionistic fuzzy t-norms and general negations instead
of classic negations.

We propose the following method for building
the preference structure by using intuitionistic fuzzy
aggregation functions A and B and intuitionistic fuzzy
negation N (cf. Pękala, 2019):
• intuitionistic fuzzy strict preference

Pij = A(ρij , N(ρji)), (8)

• intuitionistic fuzzy indifference

Iij = B(ρij , ρji), (9)

• intuitionistic fuzzy incomparability

Jij = B(N(ρij), N(ρji)) (10)

for all i, j ∈ {1, . . . , n}.

6. Transitivity properties for Atanassov’s
intuitionistic fuzzy relations

Now we will consider the transitivity property and its
connection with Atanassov’s operators and reciprocal
property. We observe that for Atanassov’s intuitionistic
fuzzy relation ρ the condition R(i, j) ≥ 0.5 implies
Rd(i, j) ≤ 0.5, so that ρij ≥ (0.5, 0.5, 0). The
transitivity property of interval-valued fuzzy relations is
now examined. This property is important because of its
possible applications in the preference procedures. The
accuracy of the final ranking of the alternatives must
be based on consistent judgments, as an inconsistent
preference relation may lead to incorrect conclusions.

Traditionally, the consistency of a preference relation
is characterized by transitivity, in the sense that if an
alternative A is preferred to or equivalent to alternative B,
and B is preferred to or equivalent to alternative C, then A
must be preferred to or equivalent to C. The transitivity
assumption can be used to check for the judgmental
consistency of the group decision making. Therefore, the
study of the consistency of a preference relation is very
important. Another detailed discussion on the transitivity
of reciprocal relations (for fuzzy setting) was presented by
De Baets in 2005 and 2006 or by Switalski in 2003.

Remark 6. The transitivity of ρ ∈ AIFR(X) may
be characterized by the property involving composition,
namely ρ2 ≤ ρ. In the context of preference relations, for
X = {x1, . . . , xn}, transitivity captures the fact that, if
the alternative xi is preferred to xk and xk is preferred to
xj , then xi should be preferred to xj .

Here we recall B-transitivity by partial order, but we
are concerned with optimistic and pessimistic transitivity.
Thus ρ is B-transitive (in the classical point of view, and
called a standard transitivity) if

B(ρ(x, z), ρ(z, y)) ≤ ρ(x, y). (11)

For the order ≤L∗ and the representable intuitionistic
fuzzy aggregation we may write B-transitivity in the
following way:

B1(R(x, z), R(z, y)) ≤ R(x, y),

B2(R
d(x, z), Rd(z, y)) ≥ Rd(x, y)

for B = (B1, B2) and B1 ≤ BN
2 (see Theorem 1).

Due to the lack of considerations in the previous
definitions of transitivity of uncertainty, i.e., the index π,
it seems justified to look at the optimistic and pessimistic
points of view of transitivity.

6.1. Optimistic and pessimistic transitivity. For ρ =
(R,Rd, πρ) concerning uncertainty, i.e., by the use of
interpretation (4) naturally a new concept of transitivity
has emerged, especially in optimistic and pessimistic
issues:
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• ρ is optimistic B-transitive if

B(R(x, z), R(z, y)) ≤ R(x, y) + πρ(x, y)

and

B(Rd(x, z), Rd(z, y)) ≤ Rd(x, y) + πρ(x, y);

• ρ is pessimistic B-transitive if

B(R(x, z) + πρ(x, z), R(z, y) + πρ(z, y))

≤ R(x, y)

and

B(Rd(x, z) + πρ(x, z), R
d(z, y) + πρ(z, y))

≤ Rd(x, y)

for the aggregation function B : [0, 1]2 → [0, 1].

These new transitivities are different from others
known in the literature, for example, the weak transitivity
studied by Pękala et al. (2018) or Xu et al. (2014) and
0.5-transitivity (Bentkowska et al., 2015) or possibly and
necessary transitivity created only with the first conditions
of both proposed: optimistic and pessimistic but in the
interval-valued setting (Pękala et al., 2016).

6.2. Interdependence between optimistic, pessimistic
or standard properties. Directly by the definitions
of optimistic-B-transitivity and pessimistic-B-transitivity,
we observe the following implications:

Corollary 1. Let R ∈ AIFR(X) and B be a representable
intuitionistic fuzzy aggregation function.

• If R is pessimistic-B-transitive, then R is B-
transitive, where B = (B,BN ).

• If R is B-transitive, then R is optimistic-B1-
transitive, where B = (B,BN ).

Example 6. The relation ρ = (R,Rd, πρ), where

R =

[

0.5 0.5
0.8 0.9

]

, Rd =

[

0.5 0.2
0.1 0

]

,

is optimistic-min-transitive, but not (min,min)-transitive
and the relation σ = (S, Sd, πσ), where

S =

[

0.5 0.6
0.5 0.5

]

, Sd =

[

0 0.3
0.5 0.5

]

,

is (min,max)-transitive and optimistic-min-transitive.
�

Thus the optimistic transitive property is the weakest;
hence, from a practical point of view, we would like to
use the optimistic or pessimistic transitive property in the
decision making model.

For two operations, one less than or equal to the
other, transitivity by a larger operation implies transitivity
by a smaller operation.

Proposition 4. Let B1, B2 : [0, 1]2 → [0, 1] be ag-
gregations and B1 ≤ B2. If R ∈ AIFR(X) is
optimistic-B2-transitive (pessimistic-B2-transitive), then
R is optimistic-B1-transitive (pessimistic-B1-transitive).

6.3. Preservation of optimistic-B-transitivity and
pessimistic-B-transitivity properties by intuitionistic
fuzzy operations.

6.3.1. Preservation of transitivity by intuitionistic
fuzzy aggregation. We will also examine an arbitrary
aggregation of intuitionistic fuzzy relations having
optimistic-B-transitivity and pessimistic-B-transitivity
properties and the problem of the preservation of these
properties. We generally intend to consider the same type
of property and aggregation function, namely based on the
same type of comparability relation �O or �P . However,
to complete the information, we also present the mixture
of aggregation type and the type of comparability relation
(Bentkowska, 2018).

To preserve transitivity we will need to use the
concept of domination (Saminger et al., 2002).

Proposition 5. Let n ∈ N, B be an aggregation function
and ρ1, ρ2, . . . , ρn ∈ AIFR(X).

1. If ρ1, ρ2, . . . , ρn are pessimistic-B-transitive re-
lations, then A(ρ1, ρ2, . . . , ρn) is pessimistic-
B-transitive for the representable pessimistic-
aggregation function A = (A1, A2), where A2 �
B, AN

2 � B and A1 = AN
2 .

2. If ρ1, ρ2, . . . , ρn are optimistic-B-transitive re-
lations, then A(ρ1, ρ2, . . . , ρn) is optimistic-
B-transitive for the representable optimistic-
aggregation function A = (A1, A2), where
A2 � B, A1 � B and A1 ≤ AN

2 .

6.3.2. Preservation of transitivity by an intuitionis-
tic fuzzy negation. For the representable intuitionistic
fuzzy negation we may observe the following conditions:

Proposition 6. Let N be a representable intuitionis-
tic fuzzy negation such that N(x) = (n1(1 − xν), 1 −
n2(xμ)), where n1 = n2 be a standard fuzzy negation
and x ∈ L∗. Then

1. N preserves optimistic-B-transitivity,
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2. N preserves pessimistic-B-transitivity.

These considerations have possible applications in
multi-criteria (or similarly multi-agent) decision making
problems with intervals (not just numbers in [0, 1]).
By virtue of using all possible approaches of the
interpretation of the intervals, we may have applications
depending on the presented problem from real-life
situations. In such cases, for aggregation of the given
data (gathered as interval-valued fuzzy relations) it can
be interesting to use an adequate type of aggregation
function, which follows from the assumed interpretation.

7. Note of application

The presented “optimistic” and “pessimistic” approach
(aggregations, negations, transitivity) can be tested and
compared with classical aggregations, negations, and
transcendence in decision Algorithm 1.

7.1. Practical example. Consider a group decision
making example illustrating some problems which can be
overcome by Algorithm 1.

Using data from Taylor (2005), as well as Pękala
et al. (2018), we have a department with three members
of recruitment, one of them being the manager. They
are in the process of filling a position in the department
and have interviewed three finalists for a job. We
need some procedure for passing from the preferences
of the individuals in the department to the “preferences”
(decision) of the group. A ballot would have several
names, intuitively representing either a group that this
department member feels is tied for the top, or those
candidates that the department member finds acceptable.
But such ballots could allow each department member to
rank-order the candidates from best to worst, in his or her
opinion, perhaps allowing ties (representing indifference
(0.5, 0.5, 0)) in the individual ballots and perhaps not.

Moreover, we can obtain the voting paradox (also
known as Condorcet’s paradox), which is a situation
in which collective preferences can be cyclic (i.e., not
transitive), even if the preferences of individual voters are
not cyclic. This is paradoxical because this means that
a majority allows the possibility of conflict with others.
When this occurs, this is because the conflicting majorities
are each made up of different groups of individuals.

Thus an expectation that transitivity on the part of
all individuals’ preferences should result in the transitivity
of societal preferences may be false. For our three
candidates, A, B, and C, there are three voters with
preferences as follows:

Voter 1: A � B � C,

Voter 2: B � C � A,

Voter 3: C � A � B.

Algorithm 1. Preference_Structure.

Inputs : X = {x1, . . . , xn} set of alternatives;
ρ1, . . . , ρn ∈ AIFR(X): intuitionistic fuzzy preference
relations; method of selection of intuitionistic fuzzy
values; intuitionistic fuzzy optimistic (pessimistic or
classic) aggregation functions A,B.
Output : Solution alternative: xselection of the objects.
Step 1. Aggregation of given relations ρ1, . . . , ρn ∈
AIFR(X) by the usage of one of the aggregations to
obtain ρ ∈ AIFR(X).

Step 2. Building P, I, J intuitionistic fuzzy relations
based on ρ∗.

Step 3. Calculation of

Mij = A(Pij , Iij , Jij).

Step 4. Building optimistic (pessimistic) transitive
relation ρ∗ from ρ.

Step 5. Finding

xi = B1≤j≤n(Mij),

where B ≥ max.

Step 6. Ordering the alternatives.

If C is chosen as the winner, it can be argued that B
should win instead, since two voters, 1 and 2, prefer B
to C and only one voter, 3, prefers C to B. However, by
the same argument A is preferred to B, and C is preferred
to A, by a margin of two to one in each case. Thus the
society’s preferences show cycling: A is preferred over
B which is preferred over C, which is preferred over A.
A paradoxical feature of relations between the voters’
preferences described above is that although the majority
of voters agree that A is preferable to B, B to C and C to
A, all three coefficients of rank correlations between the
voters’ preferences are negative.

If the above preferences of our voters are represented
by intuitionistic fuzzy relations and we use the presented
algorithm, then we omit Condorcet’s paradox in the voting
problem and we see a different solution from Pękala et al.
(2018), cf. Fig. 1.

To solve the problem of selection of a worker with
the best relationships in a corporation, we use Algorithm 1
with the following assumptions:

1. We use aggregation and negation functions with the
same class, such as the kind of transitivity. Thus
we study three classes: optimistic “AO”, pessimistic
“AP ” and classic “AC” to build the preference
structure: P, I and J and in Steps 3 and 5 of
Algorithm 1.
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Voter 1

| A B C

A | (0.5, 0.5, 0) (0.7, 0.1, 0.2) (0.6, 0.3, 0.1)
B | (0.1, 0.7, 0.2) (0.5, 0.5, 0) (0.8, 0.2, 0)
C | (0.3, 0.6, 0.1) (0.2, 0.8, 0) (0.5, 0.5, 0)

,

Voter 2

| A B C

A | (0.5, 0.5, 0) (0.2, 0.6, 0.2) (0.1, 0.7, 0.2)
B | (0.6, 0.2, 0.2) (0.5, 0.5, 0) (0.8, 0.2, 0)
C | (0.7, 0.1, 0.2) (0.2, 0.8, 0) (0.5, 0.5, 0)

,

Voter 3

| A B C

A | (0.5, 0.5, 0) (0.8, 0.1, 0.1) (0.1, 0.9, 0)
B | (0.1, 0.8, 0.1) (0.5, 0.5, 0) (0.2, 0.6, 0.2)
C | (0.9, 0.1, 0) (0.6, 0.2, 0.2) (0.5, 0.5, 0)

.

Fig. 1. Solution to the practical example.

2. We use the following method (Szmidt and Kacprzyk,
2009) for the ranking of the alternatives Yi:

SK(Yi) = 0.5(1 + πYi)dH(M,Yi), (12)

where M is the ideal positive alternative (1, 0, 0).
This equation tells us about the “quality” of an
alternative Yi – the lower the value of SK(Yi), the
better the alternative Yi in the sense of the amount of
positive information included, and reliability of the
information.

In (12) the normalized Hamming distance between
the AIFRs (Szmidt and Kacprzak, 2000; 2006) is used.

Definition 9. Let ρ = (R,Rd, πρ), σ = (S, Sd, πσ) ∈
AIFR(X), card(X) = n, n ∈ N. Set

dH(ρ, σ)

=
1

2n

n
∑

i,j=1

|R(i, j)− S(i, j)|

+ |Rd(i, j)− Sd(i, j)|+ |πρ(i, j)− πσ(i, j)|.

(13)

If we assume equal ranges of each expert and use
in Step 1 of Algorithm 1 the arithmetic mean Amean (the
arithmetic mean preserves reciprocal property) then after
aggregation of the above three relations:

Amean(ρi) =
(1

3

∑

i

Ri,
1

3

∑

i

Rd
i ,

1

3

∑

i

πi

)

for i = 1, 2, 3 we obtain relation AgV of Table 2.
Then by the above assumptions, we observe the

influence kind of transitivity, i.e., optimistic-B-transitivity
(I), pessimistic-B-transitivity (II) (Table 1) in the solution.

7.2. Results and a discussion. We will focus on
presenting the conclusion of the algorithm analysis in the
following aspects:

(i) using different aggregation functions in two classes
of transitivity (optimistic (I) and pessimistic (II)) and
their influence on the ranking of alternatives;

(ii) using different aggregation functions to build the
preference structure (P, I, J) and to aggregate them.

In Table 1 we present the results for
different aggregation functions used to create the
preference structure and in Step 3 of the algorithm
Preference_Structure. Moreover, in Step 5 of the
algorithm, we used B = max and in the adequate
transitivity B = min. We can observe that for a more
restrictive pessimistic transitivity we have a unequivocal
solution, i.e.,

C � B � A,

also for optimistic transitivity with optimistic aggregation
functions by the majority method the alternative, C, wins.

On the other hand, it is not surprising that there is
an ambiguous solution for classical aggregations, which
indicates the necessity to use the same class of transitivity
and aggregation.

We can also support this solution by analysing the
AgV relation. Namely, for each row, i.e., for each
alternative, we measure the uncertainty, i.e., the entropy,
and we can observe

EA = 0.26 ≥ EB = 0.23 ≥ EC = 0.17,

where from (Burillo and Bustince, 1996) we recall

EF =
∑

i=1,...,n

πF (xi) for F ∈ AIFS(X),

and card(X) = n. This also suggests alternative C is the
best.

The above reasoning explains why the new
transitivity, and so the new approach, is a better solution
than methods based on weak transitivities, such as in the
work of Pękala et al. (2018). We may conclude that for
pessimistic transitivity we obtain an unequivocal winner
from among the candidates.

8. Conclusions

In this article, we discuss the new concepts of the
transitivity problem of Atanassov’s intuitionistic fuzzy
relations, in an epistemic aspect. We propose a
new optimistic and pessimistic transitivity among the
preference of alternatives (options) considered and their
use in the procedure of ranking the alternatives in a group
decision making problem.
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Table 1. Results of Algorithm 1.
Aggregation/Transitivity P I J Step 3 Order of alternatives

AO/I
AO1 AO2 AO2 AO5 C � B � A
AO3 AO4 AO4 AO5 C � B � A
AO4 AO5 AO5 Amean B � C � A

AP /II
AP3 Amean Amean Amean C � B � A
Amean AP3 AP3 Amean C � B � A
AP AP3 AP3 AP C � B � A

AC /I
∧ ∨ ∨ Amean C � B � A

Amean AP AP Agmean B � C � A
Amean Agmean Agmean Amean B � C � A

AC /II
∧ ∨ ∨ Amean C � B � A

Amean AP AP Agmean C � B � A
Amean Agmean Agmean Amean C � B � A

Table 2. Relation Aqv of the practical example.

AgV A B C
A (0.5, 0.5, 0) (0.57, 0.27, 0.16) (0.27, 0.63, 0.1)
B (0.27, 0.57, 0.16) (0.5, 0.5, 0) (0.6, 0.33, 0.07)
C (0.63, 0.27, 0.1) (0.33, 0.6, 0.07) (0.5, 0.5, 0)

In particular, the mentioned new transitivity and
intuitionistic fuzzy negation, also initiated in optimistic
and pessimistic aspects, are used together with the
adequate aggregation functions for the preference model
and, as a consequence, for the decision making model.
In the future, we would like to study the effectiveness
of the algorithm presented in this paper with a new
transitivity for other data. We will study the proposed
transitivity properties in other real-world problems, e.g.,
to construct an equivalence measure that we may use
in image processing. Moreover, in the future, we will
also consider the possibility of using the transitivity
and interval interpretation used in the work, taking
into account the uncertainty in such interesting areas as
the recommender systems (Rutkowski et al., 2019) or
bootstrap methods (Grzegorzewski et al., 2020).
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Appendix

A1. Proof of Proposition 3

Let x = (xμ, xν), y = (yμ, yν) ∈ L∗ and πx = 1 −
xμ − xν , πy = 1 − yμ − yν . We prove first Condition 1.
If x ≤O y, i.e., xμ ≤ 1 − yν , then for n1 ≤ n2 (see
Proposition 2)

n2(xμ) ≥ n1(xμ) ≥ n1(1− yν),

i.e., N(y) ≤O N(x). Thus the representable intuitionistic
fuzzy negation decreases with respect to ≤O and the
following boundary conditions holds:

N(1) = N((1, 0))

= (n1(1− 0), 1− n2(1)) = (0, 1) = 0,

N(0) = N((0, 1))

= (n1(1− 1), 1− n2(0)) = (1, 0) = 1,

which means that the representable intuitionistic fuzzy
negation is an intuitionistic fuzzy negation with respect
to ≤O.

Now we consider Condition 2. Let x ≤P y, i.e.

1− xν ≤ yμ,

so
n2(yμ) ≤ n2(1− xν) ≤ n1(1− xν),

i.e., N(y) ≤P N(x).
Thus the representable intuitionistic fuzzy negation

decreases with respect to ≤P and the boundary conditions

hold, which means that the representable intuitionistic
fuzzy negation is an intuitionistic fuzzy negation with
respect to ≤P .

A2. Proof of Proposition 5

If A2 and AN
2 dominates B and (ρi) = (Ri, R

d
i , πρi) is

a family of pessimistic- B-transitive relations, then using
notation R+ πρ = 1−Rd we have

B(A(ρ1, ρ2, . . . , ρn)μ(x, y) + πρ(x, y),

A(ρ1, ρ2, . . . , ρn)μ(y, z) + πρ(y, z))

= B(A1(R1(x, y), . . . , Rn(x, y)) + πρ(x, y),

A1(R1(y, z), . . . , Rn(y, z))) + πρ(y, z)

= B(1 −A2(R
d
1(x, y), . . . , R

d
n(x, y)),

1−A2(R
d
1(y, z), . . . , R

d
n)(y, z))

= B(AN
2 (1−Rd

1(x, y), . . . , 1−Rd
n(x, y)),

AN
2 (1−Rd

1(y, z), . . . , 1−Rd
n(y, z)))

≤ AN
2 (B(1−Rd

1(x, y), 1−Rd
1(y, z)), . . . ,

B(1−Rd
n(x, y), 1 −Rd

n(y, z)))

≤ AN
2 (R1(x, z), . . . , Rn(x, z))

= A1(R1(x, z), . . . , Rn(x, z))

= A(ρ1, ρ2, . . . , ρn)μ(x, z).

For the second condition of pessimistic transitivity, using
the notation Rd + πρ = 1−R, we obtain

B(A(ρ1, ρ2 . . . , ρn)ν(x, y) + πρ(x, y),

A(ρ1, ρ2, . . . , ρn)ν(y, z) + πρ(y, z))

= B(1 −AN
2 (R1(x, y), . . . , Rn(x, y)),

1−AN
2 (R1(y, z), . . . , Rn)(y, z))

= B(A2(1− R1(x, y), . . . , 1−Rn(x, y)),

A2(1−R1(y, z), . . . , 1−Rn)(y, z))

≤ A2(B(1− R1(x, y), 1−R1(y, z)), . . . ,

B(1−Rn(x, y), 1 −Rn(y, z)))

≤ A2(R
d
1(x, z), . . . , R

d
n(x, z))

= A(ρ1, ρ2, . . . , ρn)ν(x, z).

The proof of optimistic-B-transitivity is similar.

A3. Proof of Proposition 6

Let ρ be a optimistic-B-transitive interval-valued fuzzy
relation (ρ ∈ IVFR(X)), i.e.,

B(R(x, z), R(z, y)) ≤ R(x, y) + πρ(x, y)

and

B(Rd(x, z), Rd(z, y)) ≤ Rd(x, y) + πρ(x, y).
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We check if

N(ρ)(x, y) = (n1(1 −Rd(x, y)), 1 − n2(R(x, y)))

is optimistic-B-transitive for all x, y, z ∈ X. Thus

B(N(ρ)μ(x, y), N(ρ)μ(y, z))

= B(n1(1−Rd(x, y)), n1(1− Rd(y, z)))

= B(Rd(x, y), Rd(y, z))

≤ Rd(x, z) + πρ

= 1−R(x, z)

= 1− (1− n2(R(x, z)))

= N(ρ)μ(x, z) + πNρ(x, z);

By analogy, for the second condition of optimistic
B-transitivity we have

B(1 − n1(R(x, y)), 1 − n1(R(y, z)))

= B(R(x, y), R(y, x))

≤ 1−Rd(x, z)

= 1− n1(1−Rd(x, z))

= N(ρ)ν(x, z) + πNρ(x, z),

completing the proof for the standard fuzzy negationn1 =
n2. We can prove the second condition in a similar way.
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