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třída 3. května 1180, 763 02 Zlín, Malenovice, Czech Republic

e-mail: plukasik@tajmac-zps.cz

This work presents an original model for detecting machine tool anomalies and emergency states through operation data
processing. The paper is focused on an elastic hierarchical system for effective data reduction and classification, which
encompasses several modules. Firstly, principal component analysis (PCA) is used to perform data reduction of many input
signals from big data tree topology structures into two signals representing all of them. Then the technique for segmentation
of operating machine data based on dynamic time distortion and hierarchical clustering is used to calculate signal accident
characteristics using classifiers such as the maximum level change, a signal trend, the variance of residuals, and others.
Data segmentation and analysis techniques enable effective and robust detection of operating machine tool anomalies and
emergency states due to almost real-time data collection from strategically placed sensors and results collected from previ-
ous production cycles. The emergency state detection model described in this paper could be beneficial for improving the
production process, increasing production efficiency by detecting and minimizing machine tool error conditions, as well as
improving product quality and overall equipment productivity. The proposed model was tested on H-630 and H-50 machine
tools in a real production environment of the Tajmac-ZPS company.
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1. Introduction

Modern production processes are based on the digitization
of machine tools with numerical control (CNC) and
programmable logic controllers (PLC) throughout
obtaining various data from the machines, their storage,
evaluation, display, and analytics performed using big
data sets obtained from a wide range of sources using
dedicated computer systems. This work presents a method
to reduce and analyze data from a large n-dimensional
environment into two data components with minimal loss
and quality of the original information.

The conceptual structure of collected data from the
machine tools given by many records and attributes has
triggered the development of several big data platforms as
a parallel data analytics algorithm. An essential aspect is
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the usage of data dimensionality reduction procedures.
The analysis of a large tree hierarchical node and its

components is not a trivial matter. An important task
investigated in this work is making the monitored data
node a single data unit. In such a case, the data tree
that looks like a matrix with many rows and columns
(the matrix can contain up to tens and hundreds of data
columns) is transformed as a wiped data matrix into a
single vector without losing the original information. The
first milestone of such a project is then to reduce the
number of columns in the data set and to lose the smallest
amount of information possible at the same time. The
essential step is to choose the proper method for data
reduction. The most popular techniques and algorithms
and their results are listed below (see Section 2).

Research on big data analytics is entering the
new phase called fast data, where multiple gigabytes
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of data are collected in the big data systems every
second (ur Rehman et al., 2016). Modern big data
systems collect complex data streams. The complexity
of the systems is given by the volume, velocity, value,
variety, variability, and veracity in the acquired data, thus
defining the 6Vs of big data. As stated by ur Rehman
et al. (2016), the reduced and relevant data streams
are perceived to be more beneficial than collecting raw,
redundant, inconsistent, and noisy data. Another critical
perspective for big data reduction is that the vast number
of variables and features in big data sets cause the
famous phenomenon called the “curse of dimensionality,”
resulting in requirements for unbounded computational
resources to analyze the data.

Figure 1 shows that the original data node of the
machine tool contains many different signals. The number
of data signals can vary from a few tens to hundreds or
even more. In this case, it is not very convenient to process
each signal separately to calculate some deviation from
the normal state. Another disadvantage is the required
agreement in advance on what signals will be processed
and in which order. Therefore, this work aims to develop
a model that will be able to process at once a large number
of data signals obtained using a data collector design,
similarly as described by Pathria and Beale (2011). These
signals must be collected in a data node and stored in a
data repository as in the work of Zhang et al. (2019b). The
developed model then must be able to analyze these data
using mathematical calculations, obtain a deviation from
the normal, and the output must be a signal spectrogram.
Figure 1 also shows that the 3D data model contains
a large amount of data exceeding some maximum and
minimum limits, which by mistake can be understood
as the detection of an emergency state (or anomaly);
nevertheless, as shown in case studies, they do not detect
an emergency condition or a deviation from the normal on
the machine tool at all.

Thus principal component analysis (PCA) (Abdi and
Williams, 2010) as a multi-dimensional reduction method
is used here to detect an emergency (anomalous) state in
a data node that has a hierarchical graph structure, and it
is analyzed as a whole. Therefore, it would be possible to
determine what part of the machine has failed precisely
(i.e., a place on the spindle or where the machine tool
dropped the ball screw, etc.). We assume that the data
analysis can also reveal the level of criticality and whether
it is required to perform an immediate replacement of
the part. For such a type of decision making, the use of
vibration selection methods, acceleration, and vibration
shifts will be required, and it will be discussed in detail
in further scientific research.

Data reduction is also is very useful when PCA
is combined in the model with classifiers to determine
the emergency state and the correct calculation of signal
peaks, with high accuracy on the machine data node.

Fig. 1. Condition monitoring node.

For further comparing and confirming that there was a
real failure in the data node, it is possible to combine
the obtained data analysis with the graph of temperature
development measured on the nodes of the machine
tool. When the temperature graph shows a sharp
temperature jump, assuming that the PCA analysis shows
an anomalous state, there was most likely a failure at a
particular measurement data node. As far as machine tools
are concerned, the PCA reduction-based method must not
include quantities or data nodes such as temperature and
vibrations. The main goal of the presented research is
to create an effective reduction and classification model
based on ideas presented by Żabiński et al. (2019), Cooper
et al. (2020a; 2020b) or Zhang et al. (2019a) that enables
us to process a big data tree topology matrix, and to detect
a data anomaly and an emergency state.

1.1. Motivation and originality. The motivation,
originality, and contribution of this research can be
summarized as follows

• The objective consists in creating a robust efficient
system using a parallel modular structure of any
number and types of classifiers for faster detection of
anomalies and emergency states from big data tree
structures.

• Thus originality is given by replacing the DBSCAN
algorithm with an elastic modular system of fast
classifiers.

• The results also show sufficient accuracy of the
proposed model for the use of only one PCA
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component, enabling more efficient data processing
and prediction.

2. Related work

As stated in the previous section, and considering the
clearly defined originality of this paper, the presented
research is partly based on that by Hankerson et al.
(2000), Żabiński et al. (2019), Pathria and Beale (2011)
or Cooper et al. (2020b). Hankerson et al. (2000) present
developed models and algorithms, which use a similar
methodology and a basic concepts like our research. The
mentioned paper represents the direction and a basis for
creating component analysis for machine tools developed
in our work. In the paper by Żabiński et al. (2019), a
methodology is designed for the evaluation and detection
of an emergency condition on a machine tool. The
basis of the method is the data reduction of the data
node signal. PCA has been used to construct a neural
network prediction model (LSTM type) for detecting a
future anomaly in the system. The task was to create
mathematical models and classifiers for calculating the
emergency characteristics of the data signal. In work of
Zhang et al. (2019b) classifiers have been used to calculate
the anomaly in the reduced signal of the rim input data
node.

The research presented by Żabiński et al. (2019)
introduces an algorithm for data anomaly detection based
on PCA components and further processing by the
DBSCAN algorithm (Ester et al., 1996).

In general, The PCA processes a multidimensional
matrix and distills it into its main components by
capturing the directions of various deviations. As given
by Zhang et al. (2019b) and Żabiński et al. (2019), this
means that 70% of the variance of a data set can be
captured in one dimension and 95% can be captured in
two dimensions; removing all other variables will result
in a loss of only 5% of the information compared with
the original data. The result is a combination of variables
that can best represent data, and from these combined
variables implicit information can often be derived that is
the basis of the data set.

Within our research, a multidimensional matrix is
obtained from a machine tool by collecting all positions,
displacements, speeds, and loads (53 variables for a
given machine, may be even more or less). All these
variables are reduced to two main components, capturing
important information from 53 original variables. The
data method must identify and decode the relationships
because the values in the main signals (components) and
must be sensitive to cases where unusual relationships
arise between the original 53 signals.

After finding the latent signals, they can be plotted,
and it is possible to find that these are relatively consistent
signals. With such a cleaned signal, it is possible to

start detecting anomalies on a specific time period in the
machine tool and combine the obtained PCA intermediate
results into a global PCA. Representation of data by
several principal components significantly limits data
transmissions with minimal degradation of accuracy. It
is assumed that most high dimensional data has a lower
internal dimensionality allowing a good representation
of the lower dimension. The numerous experiments
performed revealed that the additional implementation of
DBSCAN (Żabiński et al., 2019) does not affect the final
results, meaning that the results are almost identical, and
less time is required for the algorithm to run.

Feature selection is an important factor in the success
of the data mining process through selecting the useful
or relevant attributes in the data set. Bartenhagen et al.
(2010) present a comparison between feature selection
methods and their impact on learning algorithms. The
authors claimed that most methods of selecting the
features improved the accuracy and the performance of
the classification techniques. Popular feature selection
and reduction models, similar to those that are currently
used in our research for processing and reduction of
large amounts of data, include factor analysis, random
forests, the missing values ratio, low variance filter,
high correlation filter, backward feature elimination,
forward feature construction, latent Dirichlet allocation
(LDA), canonical analysis (CCA) or their types KCCA,
mCCA, or using (deep) convolutional neural networks
(DCNNs/CNNs) and many others (Bansal and Bansal,
2016; ur Rehman et al., 2016; Hyndman et al., 2015;
Schleinkofer et al., 2019; Filter and Filter, 2014). The
work of ur Rehman et al. (2016) presents a review
of methods that are used for big data reduction. It
also presents a detailed taxonomic discussion of big
data reduction methods including network theory, big
data compression, dimension reduction, redundancy
elimination, data mining, and machine learning methods.
The open research issues pertinent to the big data
reduction are also highlighted there.

It is the subject of further research and comparison
of these methods with each other according to time
performance and algorithmic complexity.

3. Reduction and detection model algorithm

This section contains a comprehensive explanation of the
developed algorithm (a reduction and detection model),
as well as experiments with different parallel frameworks
and a comparison of sequential vs. parallel execution of
an emergency state classifier ensemble (see Section 3.7)
. The whole reduction model can be simplified into the
following six steps taking into account the information
given in the previous section and a workflow diagram
presented in Fig. 2:

1. Get an input big data matrix from input tree
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Fig. 2. Research workflow.

hierarchical data.

2. Normalize the input data matrix.

3. Calculate the PCA components.

4. Form the emergency classifier in parallel threads.

5. Calculate resulting PCA components from
emergency (crash) classifiers signals.

6. Get the final reduced data matrix.

The complete process (workflow diagram) is also
depicted in Fig. 2: each step is described in detail in
Sections 3.1 to 3.6. The core algorithm for building
the final PCA components and the parallel processing of
emergency classifiers is also given as a pseudo-code (see
Algorithm 1).

3.1. Input data reading. A big data m× n matrix
of is obtained from input tree topology data, stored in a
database as a JSON object. This data does not contain
values such as temperature and vibration according to
recommendations of Zhang et al. (2019a). The next steps
represent the z-normalization.

3.2. Data normalization. Z-data normalization
(Goldin and Kanellakis, 1995) is necessary as a
preprocessing method before further analysis can be

performed. Calculations in each column of matrices were
performed using the statistical method of the z-score:

z =
x− μ

σ
, (1)

where x denotes processed data, μ stands for the mean
value of the column in the data file and σ is the standard
deviation of the column, that were normalized. If σ of
a given column did not equal zero, each individual data
point in the column was processed according to (1).

3.3. PCA reduction. Within this workflow step,
the PCA-based input data matrix reduction provides a
transformation from the m× n matrix size to a single
vector (size n) with all information saved.

PCA is a statistical method suitable for big data
reduction and data processing. The data processing
is performed by data set removal, observation and
conversion to a set of linearly uncorrelated principal
components for further analysis. PCA is performed
here by using singular value decomposition (SVD) and
obtaining the matrix M. The SVD technique has been
selected due to the high effectiveness in common parallel
frameworks. The matrix M ∈ R

m×n is defined as

M = UΣVT , (2)

where U ∈ R
n×n is a unitary matrix, Σ ∈ R

m×n, and
V ∈ R

m×n is also a unitary matrix. Diagonal items
σi of Σ are known as singular values of the matrix M,
and are similar, but not always the same as eigenvalues.
Singular values are equivalent only to eigenvalues when
the given matrix is a real, symmetric, square, positive
definite matrix.

As already mentioned, PCA can be used to reduce the
dimensions and project matrices onto a lower-dimensional
subspace, which would be more convenient in finding
anomalies in machine tools. The disadvantage of PCA is
that each principal component is a linear combination of
all the original observations, making it difficult to interpret
the results and be prone to outliers.

For the subset of data that has been obtained from the
machine tool during the time interval of approximately.
3 hours and analyzed after preliminary processing, the
resulting matrix of data signals is M ∈ R

10038×52.
The next step is to construct the SVD matrix from

this not-reduced data (Pathria and Beale, 2011; Zhang et
al., 2019b). Very often the situation of a lost weight of
values σi can be observed. This means that in the matrix
Σ, which is obtained from the input data hierarchical tree
structure, the values of this matrix can lost their weights
that are largest singular values and in this case it will be
more complicated to predict other singular values for other
matrix data. Values σi can also be displayed in descending
order, and further analysis of the obtained data was then
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performed using the first two singular values of the matrix
Σ as the x and y axes. The first two singular values
were chosen above the others because the results of the
matrix Σ are returned in descending order, so that the
first two singular values represent two values that change
the scale of unitary SVD matrices U and VT to recreate
the original matrix. The first two singular values were
multiplied by the unitary matrix U and returned data with
a slightly lower number of input data matrix rows with 2
columns. This was also done for unitary matrix VT , and
the results were transposed into the same form as in the
previous case (Bansal and Bansal, 2016).

The columns of two matrices U and VT were
divided into fields, the values were sent to lists, and the
lists were then combined to create data points that will be
rendered.

The singular values, according to the graph U,
projected all the data in a concatenated matrix, which
shows the linear relationship between the data, and
individual data points falling above and below the general
trend line.

PCA works in conjunction with the SVD method
on different unit and diagonal matrices, which gives the
optimization problem as follows:

min(L,S)||L||∗ + Λ||S||1, (3)

which is transformed into the form:

M − (L+ S) ≥ ε. (4)

In (3), there is a lower order matrix L, which can
be factorized as an SVD matrix, ||L||∗ is a transformed
matrix from matrix L as the sum of singular values. Λ is
the coupling constant between L and S, ||S||1 is the sum
of the items of L and ε, where ε is a matrix of point error
constants that improve noise generated from real data.

3.4. Emergency classifiers. After the data reduction, it
is necessary to evaluate emergency signals which include
information detecting emergency states from the obtained
singular vector (PCA signal vector decomposition). Due
to the modular and elastic architecture, any number of
PCA components is fed to the input of the emergency
classifier calculations.

For efficient execution of the model, it is necessary
to use emergency classifiers to determine the detection or
anomalous situation on the time series (i.e., on the data
node). Emergency (anomaly) classifiers are represented
by mathematical statistical quantities obtained with the
help of different computational models, and which
exclude from the data signal unnecessary values and leave
only these, which can be used to construct a signal that
has in its system processes or values that are responsible
for the state data signal).

Table 1. Execution time of eigenvectors and eigenvalues calcu-
lation for different data sizes and the H-630 machine
tool.

Time interval ApacheCommon ApacheSpark
[min] [ms] [ms]

45 72 78
60 61 66
80 78 89

100 90 94
120 78 83
140 83 74
160 91 96
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Fig. 3. Comparison of frameworks with respect to time perfor-
mance.

Regarding these classifiers, further research will be
devoted to developing and elaborating classifier models
for easier detection of an emergency. Below are just some
of the most used classifiers for the emergency state of a
data signal.

These signals are entropy (Żabiński et al., 2019;
Siboni and Cohen, 2020; Yao et al., 2019), the maximum
number of consecutive observations, the maximum
level change, the maximum change of rolling means,
autocorrelation (ACF1) (Kamat and Sugandhi, 2020;
Mühlbauer et al., 2020; Basora et al., 2019), the variance
of residuals or a signal trend. As given in Algorithm
1, a reduced data matrix containing n rows and two
columns is extended to six dimensions, i.e., from a matrix
with two columns and n rows, we obtain a matrix with
six columns and n rows. Each column of the reduced
data matrix is processed in parallel for a given number
of emergency classifiers (six in this paper). For each
emergency classifier, both the PCA1 data vector and the
PCA2 data vector are evaluated with the classifier, and
then we evaluate the simple moving average (SMA) for
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Algorithm 1. Parallel evaluation of emergency classifiers
and secondary PCA reduction.

INPUT: PCAComponents �= ∅

DECLARE:
PCLength: number of PCA Components (number of
columns of input data matrix PCAComponents)
n: Length of data of single PCA Component (number
of rows of input data matrix PCAComponents)
k: number of classifiers used
ClassifiersVectorsDimExt: n × k × PCLength
matrix
ClassifiersVectors: n× k matrix
FinalComponents: n× PCLength matrix

ALGORITHM:
for i← 1 TO PCLength do
ClassifiersVectorsDimExt(All, k) ← parallel
processing of k emergency classifiers for input data
PCAComponents(All, i) ; k = 1, . . . , k

end for
for i← 1 TO k do
ClassifiersVectors(All, k) ← parallel processing
of SMA(ClassifiersVectorsDimExt(All, i);
ClassifiersVectorsDimExt(All, i+ k))

end for
FinalComponents ←
PCAConstructModuleFunction(ClassifiersVectors)

OUTPUT: FinalComponents

the corresponding classifier, thus reducing the output to
a 1-dimensional vector. This process is repeated for
all selected classifiers, resulting in six-dimensional data
from the reduced data matrix (PCA components). We
can process either 2 PCA components (the default case
here) for each classifier using parallel calculation or any
selected number of PCA components.

3.5. Secondary PCA reduction. The next step is
represented by the secondary PCA-based data reduction,
which is applied again for a k-dimensional data according
to k emergency signals (classifiers). This process uses
the very same algorithm as the primary PCA reduction
and in Algorithm 1 it is represented by the function
PCAConstructModuleFunction.

3.6. Final data. As a result of the secondary PCA
reduction, data from emergency signals (classifiers) are
transformed into a single data vector of size n. Such a
vector represents the output of the proposed reduction and
detection model and can be used as an input of another

Table 2. Execution time of six emergency classifiers for reduced
data and for different data sizes.

Execution time building classifiers
Count of Parallel Sequence Difference

data records mode mode time
(thousands) [ms] [ms] [ms]

10 12 8 −4
20 10 16 6
50 12 40 28

100 11 55 44
1000 18 414 396
3000 37 1067 1030
6000 78 2035 1957

10000 144 3304 3160
16000 152 3433 3281
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200180160140001 021806045

Fig. 4. Total execution time of the algorithm (including prepro-
cessing, classification and data reduction).

machine/statistical learning-based prediction algorithm
for further processing.

3.7. Parallel architecture. We have chosen libraries in
the Java platform to calculate decomposition, eigenvectors
and eigenvalues (considering the data node structures).
Apache Common and Apache Spark were investigated
and tested for this purpose. The task was to choose the
most reliable implementation for the core calculations.
According to the test results presented in Table 1
and Fig. 3, the Apache Common library works faster
than Apache Spark. Thus we have decided to select
Framework Apache Common as the kernel for calculating
decomposition, eigenvectors and eigenvalues. Figure 4
depicts the complete algorithm execution time, including
all necessary steps.

Further we have tested the influence of parallel
calculation of emergency classifiers on the overall
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model performance. Table 2 shows that the parallel
processing of multiple classifiers allows us to use
bigger data matrices from more data nodes, and to
implement complex ensembles of anomaly detectors and
classification techniques without a significant increase in
computational time.

4. Results analysis

The experiments encompass two case studies, i.e., data
from two different machine tools are analyzed. The
organization of this section is the following.

Firstly, the illustrative example of distribution
analysis of both PCA components (noted PCA1 and
PCA2) is given here. Both principal components (PCA1
and PCA2) depicted in histograms, Figs. 5 and 6, are
roughly normally distributed. At a first glance, it is not
possible to detect significant deviations to the left or right,
and obviously, the data do not contain anomalies.

Subsequently, the analysis and graphical
visualizations1 for both the case studies is presented,
containing reduced data (signal) from the input matrix
as spectral density in Figs. 7(a), 7(b), 8(a), and 8(b),
further detection of the highest peak in Figs 7(c), 7(d),
8(c), and 8(d), and other significant peaks in Figs. 7(e),
7(f), 8(e), 8(f). These visualizations are always depicted
for both principal components PCA1 and PCA2. Finally,
another step is to perform a PCA reduction for a data
matrix obtained from an ensemble of six emergency
classifiers (see Section 3 for details). Again two principal
components are obtained (noted as PCA1f and PCA2f).
Their visualization can be seen in 3D plots in Figs. 9(a)
and 9(b). Finally, we provide a brief analysis of
differences between both the case studies.

4.1. Case Study 1. Figure 7(a) shows the PCA1
component signal obtained from the data reduction input
big data matrix of the H-630 machine tool. Within the
time ranges from 0 [s] to 800 [s] and from 800 [s]
to 820 [s] this signal contains a gaps and long straight
lines. In Fig. 7(c), we can see that the system detected
one large signal peak based on the maximum dominant
signal deviation. Figure 7(e) shows other two significantly
large deviation peaks marked with a star symbol. The
third peak was not considered a significant anomaly,
i.e., not marked. The next step was to analyze the
PCA2 component of the condition monitoring tree node.
Figures 7(b), 7(d) and 7(f) confirm the same situation as
for the PCA1 component. The obtained final PCA1f and
PCA2f components are depicted in Fig. 9(a).

As a partial conclusion of Case Study 1, we can claim
that an emergency state (anomaly) has been detected on

1Full resolution figures are available at https://ailab.fai.u
tb.cz/resources/.
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Fig. 5. PCA1 distributed plot.
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Fig. 6. PCA2 normally distribution plot.

the data node of the condition monitoring tree structure
of the H-630 machine tool based on the developed model.
Numerous experiments lend weight to the argument that
if a large gap can be seen on the PCA components
(Figs. 7(a) and 7(b)) with a significant anomaly (peak),
and these observations are similar to visualizations of final
components, Fig. 9(a), this determines a high accuracy
of the anomalies detection of the machine. In general,
if the analyzed signal contains both significant gaps
on the PCA components graphs and the maximum or
minimum signal peaks and there are not many such signal
peaks, this supports anomaly detection in an analyzed
data node. However, not in all cases. The decision
about anomaly detection is precisely determined by the
final steps in the presented developed workflow, which
are the processing of PCA components with emergency
classifiers and subsequent secondary data reduction and
final visualization in Fig. 9(a).

4.2. Case Study 2. The second case study represents
the completely different observations for the H-50
machine tool data node. Figure 8(a) shows the PCA1
component, which does not have any long gaps or long
straight lines, but on the contrary, it has a bigger number
of signal peaks (Fig. 8(c)). Further analysis in Fig. 8(e)
reveals a smaller gap and a large number of signal peaks

https://ailab.fai.utb.cz/resources/
https://ailab.fai.utb.cz/resources/
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Fig. 7. Graphical outputs for Case Study 1: PCA1 (left) and PCA2 (right) signals. The first row: an emergency state PCA1 (a), PCA2
(b), the second row: emergency state, the highest peak detection PCA1 (c), PCA2 (d), the third row: an emergency state, the
highest peaks PCA1 (e), PCA2 (f).

(anomalies).

A similar observable pattern occurs with the second
PCA2 component (Figs. 8(b), 8(d) and 8(f)). However,
compared with the PCA1, the deviation was only to
a minimal extent, which in the end resulted only in a
minimal possible collision and a further operation of the
machine tool. This collision may not have a substantial
effect.

The last step is to perform the final analysis
using the developed model, which includes emergency
signal classifiers and secondary data reduction to detect
emergency states or anomalous collisions. The results are
depicted in a diagram, Fig. 9(b), a brief analysis is given

in the next section.

4.3. Comparison of case studies. The experiments
encompass two different case studies confirming the
necessity and accuracy of the proposed reduction and
classification model.

In the first case (Fig. 7), the reduced signal from
the data node contains one significant peak and, at the
same time, a stable section (gap). The second case
(Fig. 8) shows a complex signal with a number of
peaks. If we focused on the number of peaks and the
complexity of the signal, at the first glance, the second
case would rather evoke the impression that there is
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Fig. 8. Graphical outputs for Case Study 2: PCA1 (left) and PCA2 (right) signals. The first row: an emergency state PCA1 (a), PCA2
(b), the second row: an emergency state, the highest peak detection PCA1 (c), PCA2 (d), the third row: an emergency state, the
highest peaks PCA1 (e), PCA2 (f).

an emergency state (anomaly). However, subsequent
multi-level classification, secondary data reduction and
visualization will confirm the opposite (Fig. 9).

Compared with the first case study (Fig. 9(a)),
where we can see a similarity between PCA1, PCA2
observations and final reduced data after classification, the
final analysis for the second case study (Fig. 9(b)) does
not show a significant agreement of the classifiers and
an explicit confirmation of the emergency state. For this
reason, all graphical outputs of the second case study are
referred to as “normal state.”

Nevertheless, to be sure, it is necessary to examine
the data for another time period and perform quality

vibration diagnostics on monitored data (signal) nodes.

5. Conclusions

The developed model based on the PCA reduction with
parallel processed core functions build on the Java
platform has been inspired by the calculation of accident
characteristics or detection of anomalous state principles
in recent research (Zhang et al., 2019b; Liang et al., 2019;
Żabiński et al., 2019). Our work has presented several
original approaches, mainly in the overall workflow,
analyses, effectiveness and modular structure with parallel
processing and selection of emergency classifiers. The
main findings are listed as follows:
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Fig. 9. 3D diagrams for PCA1f and PCA2f: top—emergency
state detection, Case Study 1 (a), bottom—normal state
detection, Case Study 2 (b).

• Supported by the numerous experiments,
investigation, measurements, and research, we
can claim that the created model is robust, effective,
and able to analyze data and detect emergency states
in the production process with a machine tool.

• The presented model and algorithms can process
large data frames, which are collected in a dedicated
big data node with a tree structure topology and
stored in a database repository which supports
hierarchical tree topology structures.

• The selected emergency classifiers were entropy, the
maximum number of consecutive observations, the
maximum level change, the maximum change in
rolling means, autocorrelation (ACF1), the variance
of residuals or the signal trend.

• Regarding the computational complexity, as an

optimal variant for the detection of an emergency
state of the machine, one of the classifiers can
be chosen, which determines the probability of
occurrence of a non-standard behavior of the
machine tool. In such a case, the time complexity
will be O(n). In the worst case, it is possible to use all
classifiers at once, which is presented in this paper. In
such a case the accuracy of calculation or detection
of an emergency or machine failure will be higher,
the time complexity of the algorithm will be greater
O(n · logn).

• As discussed in the partial conclusions for
investigated two-case studies, the necessity and
accuracy of the whole proposed reduction and
classification model including the secondary PCA
reduction and an ensemble of emergency classifiers
is confirmed by differences in diagrams depicted in
Figs. 9(a) and 9(b). These diagrams show different
situations, leading to different decisions for H-630
(Case Study 1) and H-50 (Case Study 2) machines
tools connected to condition monitoring big data
nodes.

Overall, the developed model is able to determine
with great accuracy whether or not an anomaly has really
occurred on the machine tool. Finally, it is necessary
to mention that the presented reduction model and
emergency state detection apply only when the machine
is operating in normal mode. Because in the unique
triggered load modes of the machine, situations arise that
cause the machine’s components to be overloaded, and the
system will recognize this as an anomalous condition. In
normal mode, the machine operates so that the machine
load mode is not invoked, and therefore situations can be
detected when a component fails.
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