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The paper studies the output observer design problem for a linear infinite-dimensional control plant modelled as an abstract
boundary input/output control system. It is known that such models lead to an equivalent state space description with
unbounded control (input) and observation (output) operators. For this class of infinite-dimensional systems we use the
Cayley transform to approximate the sophisticated infinite-dimensional continuous-time model by a discrete-time infinite-
dimensional one with all involved operators bounded. This significantly simplifies mathematical aspects of the observer
design procedure. As is well known, the essential feature of the Cayley transform is that it preserves various system
theoretic properties of the control system model, which may be useful in analysis. As an illustration, we consider an
example of designing an output observer for the one-dimensional heat equation with measured controls (inputs) in the
Neumann boundary conditions, measured outputs in the Dirichlet boundary conditions and an unmeasured output at a fixed
point within the domain. Numerical simulations of this example show that the interpolated continuous-time signal, obtained
from the discrete-time observer, can be successfully used for tracking the continuous-time plant output.

Keywords: boundary control systems, output observers, infinite-dimensional discrete-time systems.

1. Introduction

The aim of this paper is to develop an efficient method of
designing output observers for linear infinite-dimensional
control systems described by an abstract boundary
input/output model. Here by an output observer we mean
an observer which makes use of available (measured)
plant inputs and outputs to track asymptotically another
plant output which is unavailable for measurement. Such
observers are also called functional observers (Trinh and
Fernando, 2012).

The output or state observer for a linear,
infinite-dimensional control system is usually
an infinite-dimensional system and its design is
mathematically very intricate. However, a practical
implementation of this type of observer almost always
relies on finite-dimensional approximations. The are two
main ways to approach the problem. One is to develop
an observer as an infinite-dimensional system, e.g., in
the state space or boundary input/output form, and then
apply finite-dimensional approximations, both in spatial
and temporal variables. As a starting point, this general
approach requires a sophisticated theory on how to

design an infinite-dimensional observer and one can use
various methods described in the literature. In the case
of boundary control systems or, more precisely, systems
described by partial differential equations with boundary
control and observation, the popular backstepping method
seems to be most successful (e.g., Smyshlayev and Krstic,
2005; 2008; Hasana et al., 2016). More direct methods,
exploring the relation between the boundary control
models and the more familiar state space models or
simply dealing with the latter can be found in the works
of Demetriou and Rosen (2005),Vries et al. (2010),
Demetriou (2013), Ferrante et al. (2020), Emirsajłow
(2012; 2020; 2021) and the references cited therein.
For a short survey on the observer design methods for
infinite-dimensional control systems, see the work of
Hidayat et al. (2011).

Another way to approach the observer design
problem is to start with an approximation of the
infinite-dimensional plant model, both in the spatial
and temporal variables (see, e.g., Bartecki, 2020;
Oprzędkiewicz and Mitkowski, 2018) and then design
a finite-dimensional observer using well-developed
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finite-dimensional techniques (see, e.g., the work of Trinh
and Fernando (2012) and the references cited therein).

In this paper we propose in some sense a
third way by starting with a partial approximation
of an infinite-dimensional boundary control system by
means of the Cayley transform, which leads to an
infinite-dimensional discrete-time model, and then solve
the general output observation problem for this simplified,
but still infinite-dimensional, plant. As a justification
of this approach we claim that in the digital era it
seems inevitable that all practical implementations will
eventually require algorithms that are discrete in time.

This way of simplifying an infinite-dimensional
control model is already known in the literature but
interest of researchers has been rather focused on
system theoretic properties preserved under the Cayley
transformation and not on using such models in
developing control and observation algorithms (e.g., Ober
and Montgomery-Smith, 1990; Curtain and Oostveen,
1997; Guo and Zwart, 2006; Havu and Malinen,
2007). However, recently this approach has been also
successfully used by Dubljevic and Humaloja (2020) to
handle model predictive control of infinite-dimensional
systems and by Xie et al. (2021) to handle output
regulation of fluid flow systems. The idea was also
involved in the discrete-time stabilization problem of a
heat equation by Mitkowski et al. (2017). In the present
paper we show that the approach based on the Cayley
transform as the initial step leads to a successful design
procedure of output observers for infinite-dimensional
control systems described by boundary input/output
models.

The paper is organized into five sections. Section 1 is
an introduction to the subject. In Section 2 the boundary
input/output model used for the infinite-dimensional plant
is characterized together with its relation to the familiar
state space model with unbounded control and observation
operators. In Section 3 we introduce the Cayley transform
and explain what approximation scheme is behind it and
then apply this approximation to the time-continuous
infinite-dimensional plant which results in a simplified
discrete-time infinite-dimensional plant model with all
operators in the model being bounded. Section 4 is
devoted to the discrete-time infinite-dimensional output
observer design where the so-called observer equation is
derived. The obtained general results are numerically
tested in Section 5 on an example of designing an output
observer for the plant described by a one-dimensional heat
equation with boundary inputs and outputs. The paper is
completed with Section 6 containing some conclusions.

2. Plant model

A large class of practically important infinite-dimensional
systems is described by partial differential equations

with control and observation in the boundary conditions.
For those readers who want to become familiar with
the sophisticated control theory of such systems, we
recommend the recent textbook by Curtain and Zwart
(2020) and the more specialized monograph by Tucsnak
and Weiss (2009). Since we want the above class to
be covered by our continuous-time control plant model
we choose the abstract boundary input/output system
description. Our approach follows Emirsajłow and
Townley (2000) as well as Tucsnak and Weiss (2009).

2.1. Boundary input/output model. In order to
describe the plant mathematical model precisely, we need
to introduce the following spaces (they all are Hilbert
spaces with appropriate scalar products 〈·, ·〉 and induced
norms ‖ · ‖ := 〈·, ·〉1/2; identified with their duals): X is
the state space of the plant, U is the space of the control
input , Y is the space of the measured output, Yz is the
space of the umeasured output. The spaces U , Y and Yz
can be infinite- or finite-dimensional, but the state space
X is always assumed to be infinite-dimensional.

The plant is described by the following abstract
boundary input/output system

ΣP :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) =Mx(t), x(0) = x0,
Kx(t) = u(t),
z(t) = C1x(t),
y(t) = C2x(t).

(1)

where (x(t))t≥0 ⊂ X is the state, (u(t))t≥0 ⊂ U is the
control input (available to the observer), (z(t))t≥0 ⊂ Yz
is the unmeasured output (unavailable to the observer) and
(y(t))t≥0 ⊂ Y is the measured output (available to the
observer). The control input signal u(t) enters the system
at the boundary and the outputs y(t) and z(t) leave the
system at the boundary.

Next, we impose several assumptions on the
operators involved in the model (1). These assumptions
will guarantee the existence of a strong solution to
the differential equation with boundary conditions and
this will be obtained by transforming the boundary
input/output system description to the more familiar
abstract state space model (Emirsajłow and Townley,
2000).

In the following two sections we apply the Cayley
transform to obtain a discrete-time infinite-dimensional
approximation of the obtained continuous-time
infinite-dimensional state space model (Havu and
Malinen, 2007). Then, for the discrete-time state space
model we consider the general output observation
problem which is also called the functional observation
problem (Trinh and Fernando, 2012).

First we start with imposing the following
assumptions:

1. (M,D(M)) is a linear, unbounded and closed operator
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on X , Z = D(M) is a Banach space equipped with the
graph norm, so M ∈ L (Z,X) and is called the plant
maximal system operator, where L (Z,X) denotes the
Banach space of linear, bounded operators from Z to X .

2. K ∈ L (Z,U) is surjective and called the plant input
boundary operator.

3. C1 ∈ L (Z, Yz) is called the unmeasured output
boundary operator.

4. C2 ∈ L (Z, Y ) is called the measured output boundary
operator.

5. A is a linear, unbounded operator onX , called the plant
system operator, defined as follows: D(A) := kerK ,
Ah := Mh, h ∈ D(A), A generates a strongly
continuous semigroup (T (t))t≥0 ⊂ L (X), ρ(A) ⊂ C

denotes its resolvent set.

6. X1 := D(A) is a Hilbert space, equipped with the
scalar product 〈·, ·〉X1 := 〈(μI−A) ·, (μI−A) ·〉X , where
μ ∈ ρ(A). Part of A in X1, denoted by A1, generates
a semigroup (T1(t))t≥0 ⊂ L (X1), a restriction of
(T (t))t≥0 to X1.

7. X−1 is a Hilbert space, defined here as the
completion of X with respect to the scalar product
〈·, ·〉X−1 := 〈(μI − A)−1 ·, (μI − A)−1 ·〉X . Then
(A−1,D(A−1) = X) and (T−1(t))t≥0 ⊂ L (X−1) are
extensions of A and (T (t))t≥0 to X−1.

It follows that X1 ⊂ Z and it is a closed subspace of
Z . Moreover, both embeddings Z ⊂ X ⊂ X−1 are dense
and continuous.

With the operators (M,K) of the plant model (1) we
associate a time-invariant abstract boundary value prob-
lem. In order to state it, we assume that μ ∈ ρ(A), f ∈ X ,
u ∈ U and ask for a solution x ∈ Z of the following
system of equations:

{
(μI −M)x = f,

Kx = u.
(2)

One can prove (e.g., Emirsajłow and Townley, 2000;
Tucsnak and Weiss, 2009) that for every u ∈ U and
f ∈ X there exists a unique solution x ∈ Z which can
be expressed in the form

x = R(μ)f +G(μ)u, (3)

where R(μ) := (μI − A)−1 ∈ L (X,X1) is just a re-
solvent of A and G(μ) ∈ L (U,Z) is called an abstract
Green map. Both these operators play an important role in
our considerations and in practiceR(μ) can be effectively
computed by solving the problem (2) with u = 0 and
G(μ) can be computed by solving (2) with f = 0.

For our purposes, it is convenient to consider a strong
solution to (1).

Definition 1. Let x0 ∈ X and u(·) ∈ C([0,∞);U).
A function (x(t))t≥0 ⊂ X is said to be a strong solution
of the initial-boundary value problem

{
ẋ(t) = Mx(t), x(0) = x0,

Kx(t) = u(t),
(4)

if x(·) ∈ C1([0,∞);X), (x(t))t≥0 ⊂ Z and (4) holds for
every t ≥ 0.

It is known (e.g., Emirsajłow and Townley, 2000;
Tucsnak and Weiss, 2009) that an efficient way of
characterizing the strong solution is in terms of the
associated semigroup (T (t))t≥0 ⊂ L (X) and its
generator (A,D(A)). This leads to the following
fundamental result concerning the state (x(t))t≥0 and the
outputs (z(t))t≥0, (y(t))t≥0 of the plant ΣP .

Theorem 1. (Emirsajłow and Townley, 2000) If u(·) ∈
C2([0,∞);U), u(0) = 0 and x0 ∈ X1, then there exists
a unique function

x(·) ∈ C([0,∞);Z) ∩ C1([0,∞);X), (5)

satisfying (4) for every t ∈ [0,∞). This function is explic-
itly given in the form

x(t) = G(μ)u(t) + T (t)x0

+

∫ t

0

T (t− r)G(μ)(μu(r) − u̇(r)) dr,
(6)

which can be simplified to the form

x(t) = T (t)x0+(μI−A)
∫ t

0

T (t−r)G(μ)u(r) dr. (7)

Consequently, the plant outputs satisfy

z(·) ∈ C([0,∞);Yz), y(·) ∈ C([0,∞);Y ). (8)

If the assumptions of Theorem 1 hold, then the
boundary input/output system ΣP is said to be internally
well posed. This basically means that we are working with
strong solutions of differential equations and continuous
outputs. It is also known (e.g., Cheng and Morris, 2003)
that by taking the Laplace transform of (1) and then using
the results for the abstract boundary value problem (2),
we easily obtain that for μ ∈ ρ(A) the system ΣP has a
well-defined transfer function, given by

[
H1(μ)
H2(μ)

]

:=

[
C1G(μ)
C2G(μ)

]

∈ L (U,

[
Yz
Y

]

), (9)

where [
Yz
Y

]

:= Yz × Y.
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2.2. State space model. It is easy to see that (7) can be
written as

x(t) = T (t)x0

+

∫ t

0

T−1(t− r)(μI −A−1)G(μ)u(r) dr.
(10)

If we now define the operator

B := (μI −A−1)G(μ) ∈ L (U,X−1), (11)

then it is clear that the plant state trajectory (x(t))t≥0 ⊂
Z ⊂ X can be also interpreted as a mild solution of the
differential equation

ẋ(t) = A−1x(t) +Bu(t), x(0) = x0, (12)

which is understood in the larger space X−1 (see
Emirsajłow and Townley, 2000) with the system operator
(A−1,D(A−1) = X) and outputs

z(t) = C1x(t),

y(t) = C2x(t).
(13)

The last three equations (i.e. (12) and (13)) form the
infinite-dimensional state space model with an unbounded
control operator B and unbounded observation operators
C1 and C2. Since it has been derived from the boundary
input/output model (1), we can easily extend the notion of
the well-posedness of the boundary input-output system
to allow for x0 ∈ X , u(·) ∈ L2

loc([0,∞);U), z(·) ∈
L2

loc([0,∞);Yz) and y(·) ∈ L2
loc([0,∞);Y ). It can be

done by adopting appropriate admissibility notions for
B, C1, C2 and the input-output maps u(·) 
→ z(·),
u(·) 
→ y(·) (for details, see the works of Tucsnak and
Weiss (2009), Cheng and Morris (2003), or Grabowski
(2021). One can easily see that in terms of the operators
of the state space model the transfer function (9) of ΣP is
expressed in the very familiar form of

[
H1(μ)
H2(μ)

]

=

[
C1(μI − A−1)

−1B
C2(μI − A−1)

−1B

]

∈ L (U,

[
Yz
Y

]

).

(14)

3. Cayley transform and time discretization
of the plant model

The Cayley transform, which is sometimes called the
Cayley–Tustin transform, is a mapping of functions
H(s) from the complex s-domain (like continuous-time
transfer functions) to functions Hd(z) in the complex
z-domain (like discrete-time transfer functions) by simple
substitution

s =
z − 1

z + 1
μ,

where μ > 0 is a parameter. This mapping is also
reversible by back substitution

z =
μ+ s

μ− s
.

Note that for a particular value of μ = 1 it is also called
the bilinear transformation (e.g., Curtain and Oostveen,
1997; Ober and Montgomery-Smith, 1990). It follows
that the Cayley transform is a tool which allows us to
convert continuous-time linear time-invariant state-space
models to discrete-time ones and, what is important
for us, it also applies to infinite-dimensional systems
(e.g., Havu and Malinen, 2007; Guo and Zwart, 2006).
It turns out that if we convert a continuous-time state
space model with unbounded control and observation
operators then the obtained discrete-time state space
model remains infinite-dimensional. However, all the
operators in the model become bounded and hence the
model is mathematically easier to handle. The essential
feature of the Cayley transform is that it preserves various
system theoretic properties of the control system. For
details see the works of Ober and Montgomery-Smith
(1990), Curtain and Oostveen (1997), Guo and Zwart
(2006), and the references cited therein.

It is well known (e.g., Havu and Malinen, 2007)
that there is a simple time discretization scheme which,
when applied to the continuous-time infinite-dimensional
state space model, leads to the same discrete-time
infinite-dimensional state space model as formally
obtained by the Cayley transformation. In this
paper we apply this time discretization scheme to a
continuous-time infinite-dimensional plant modelled as
an abstract boundary input/output system and derive its
infinite-dimensional discrete-time approximation in the
form of a state-space model with all operators bounded.
It turns out that the formulae for operators in the
discrete-time model depend on the resolventR(μ) and the
Green map G(μ) and for this reason they can be easily
computed by solving the boundary value problem (2).
For this reason our approach is well tailored for plants
described by partial differential equations with controls
and observations in the boundary conditions.

In order to start, we assume that x0 ∈ X1, u(·) ∈
C2([0,∞);U) with u(0) = 0, and then we have x(·) ∈
C([0,∞);Z) ∩ C1([0,∞);X) (see Theorem 1). In order
to discretize time, we introduce a time step h > 0 and
integrate equations

ΣP :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ(t) = Mx(t), x(0) = x0,
Kx(t) = u(t),
z(t) = C1x(t),
y(t) = C2x(t).

(15)

on time intervals [(k − 1)h, kh], where k = 1, 2, 3, . . ..
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Thus we obtain
∫ kh

(k−1)h

ẋ(t) dt = M

∫ kh

(k−1)h

x(t) dt, x(0) = x0,

K

∫ kh

(k−1)h

x(t) dt =

∫ kh

(k−1)h

u(t) dt,

∫ kh

(k−1)h

z(t) dt = C1

∫ kh

(k−1)h

x(t) dt,

∫ kh

(k−1)h

y(t) dt = C2

∫ kh

(k−1)h

x(t) dt,

(16)

where k = 1, 2, 3, . . ..
Introducing

xk := x(kh) = x(t)
∣
∣
t=kh

∈ Z ⊂ X,
∫ kh

(k−1)h

x(t) dt ≈ h

2
(xk−1 + xk) ∈ Z,

uk :=
1√
h

∫ kh

(k−1)h

u(t) dt ∈ U,

zk :=
1√
h

∫ kh

(k−1)h

z(t) dt ∈ Yz ,

yk :=
1√
h

∫ kh

(k−1)h

y(t) dt ∈ Y,

(17)
where for the integral of x(t) we used the trapezoidal rule,
we can rewrite (16) in the form

xk − xk−1 ≈ h

2
M(xk−1 + xk), x(0) = x0,

h

2
K(xk−1 + xk) ≈

√
huk,

√
hzk ≈ h

2
C1(xk−1 + xk),

√
hyk ≈ h

2
C2(xk−1 + xk).

Replacing them by equalities and introducing a real
parameter μ := 2/h > 0, with the meaning of a double
sampling frequency, we obtain

(μI −M)(xk−1 + xk) = 2μxk−1,

K(xk−1 + xk) =
√
2μuk,

zk =
1√
2μ
C1(xk−1 + xk),

yk =
1√
2μ
C2(xk−1 + xk).

(18)
If the time step h > 0 is small enough, then μ ∈ ρ(A)

and we can use formula (3) to express the sum (xk−1 +
xk) ∈ Z as a solution of the first two equations of (18),
i.e.,

xk−1 + xk = 2μR(μ)xk−1 +
√
2μG(μ)uk. (19)

From this equation we computexk and also substitute (19)
into the last two equations of (18). Finally, we get

xk = (−I + 2μR(μ))xk−1 +
√
2μG(μ)uk,

zk =
√
2μC1R(μ)xk−1 + C1G(μ)uk,

yk =
√
2μC2R(μ)xk−1 + C2G(μ)uk.

(20)

Defining the operators

⎡

⎣
Ad Bd

Cd
1 Dd

1

Cd
2 Dd

2

⎤

⎦ :=

⎡

⎢
⎣

−I + 2μR(μ)
√
2μG(μ)

√
2μC1R(μ) C1G(μ)√
2μC2R(μ) C2G(μ)

⎤

⎥
⎦ ,

(21)
we arrive at the following infinite-dimensional discrete-
time state space model Σd

P :

Σd
P :

⎡

⎣
xk
zk
yk

⎤

⎦ =

⎡

⎣
Ad Bd

Cd
1 Dd

1

Cd
2 Dd

2

⎤

⎦

[
xk−1

uk

]

, (22)

where k = 1, 2, 3, . . ., (xk)k∈N ⊂ Z ⊂ X is the state,
(uk)k∈N ⊂ U is the measured input, (yk)k∈N ⊂ Y is
the measured output and (zk)k∈N ⊂ Yz is the unmea-
sured output. The model (22) can be written shortly
as Σd

P (A
d, Bd, Cd

1 , C
d
2 , D

d
1 , D

d
2). Since we have Ad ∈

L (X), Bd ∈ L (U,X), Cd
1 ∈ L (X,Yz), C

d
2 ∈

L (X,Y ), Dd
1 ∈ L (U, Yz), Dd

2 ∈ L (U, Y ), all the
operators of Σd

P are bounded and it is a well-defined
discrete-time state space model on X allowing states
(xk)k∈N ⊂ X . The model (22) is a discrete-time ap-
proximation of the infinite-dimensional continuous-time
model (15) and, equivalently, (12) and (13). One can also
see that the direct feedthrough terms Dd

1 = C1G(μ) ∈
L (U, Yz) and Dd

2 = C2G(μ) ∈ L (U, Y ) coincide with
the continuous-time transfer functions H1(μ) and H2(μ),
respectively (see (9)). These terms have appeared in the
discrete-time model although there are no feedthrough
terms in the continuous-time models.

It is clear that the state (xk)k∈N and the outputs
(zk)k∈N and (yk)k∈N can be written explicitly as

xk = (Ad)kx0 +

k∑

j=0

(Ad)k−jBduj,

k = 0, 1, 2, 3, . . . , u0 = 0,

zk = Cd
1 (A

d)k−1x0 +

k−1∑

j=1

Cd
1 (A

d)k−1−jBduj

+Dd
1uk, k = 1, 2, 3, . . . ,

yk = Cd
2 (A

d)k−1x0 +

k−1∑

j=1

Cd
2 (A

d)k−1−jBduj

+Dd
2uk, k = 1, 2, 3, . . . .

(23)
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It is also known (Curtain and Oostveen, 1997) that if
A is an unbounded generator of an exponentially stable
strongly continuous semigroup then its discrete-time
counterpartAd cannot be power stable but ifA generates a
strongly stable semigroup then Ad is also strongly stable.
For this reason we restrict ourselves to the concept of
strong stability of discrete-time systems. Just for the sake
of completeness we recall the definition: we say that Ad

is strongly stable if for every x ∈ X we have

lim
k→∞

‖(Ad)kx‖X = 0.

The operators in the model (22) involve the resolvent
R(μ) ∈ L (X,X1) and the abstract Green map G(μ) ∈
L (U,Z), defined for the boundary value problem (2).
As has been already mentioned, they can be effectively
computed by solving (2), which will be explored in the
example considered in Section 5.

4. Discrete-time observer design

We can now use the discrete-time infinite-dimensional
state space model (22) as an approximation of our
continuous-time boundary input/output model of the
plant and design a discrete-time infinite-dimensional
output observer. One can go further and use such a
discrete-time observer for the continuous-time plant (15).
A similar idea has been recently used by Dubljevic and
Humaloja (2020) as well as Xie et al. (2021), where the
discrete-time infinite-dimensional models, obtained by the
Cayley transformation, have been used to develop control
algorithms for continuous-time infinite-dimensional state
space plant models. We emphasize that in our paper we
start with a continuous-time plant model in the form of
a boundary input-output system in contrast to the state
space description investigated by Dubljevic and Humaloja
(2020) or Xie et al. (2021). Our choice of the plant model
shows the advantage of using the resolvent R(μ) and the
Green map G(μ) in the discrete-time model.

4.1. Observer model. In order to describe an
infinite-dimensional discrete-time output observer, we
introduce a Hilbert space V as the observer, state space,
and define six linear bounded operators:

AO ∈ L (V ), BO ∈ L (Y, V ),

EO ∈ L (U, V ), CO ∈ L (V, Yz),

DO ∈ L (Y, Yz), FO ∈ L (U, Yz).

The observer is described by the following discrete-time
state space model:

ΣO :

[
vk
zOk

]

=

[
AO BO EO

CO DO FO

]
⎡

⎣
vk−1

yk
uk

⎤

⎦ ,

(24)

where k = 1, 2, 3, . . ., (vk)k∈N ⊂ V is the observer state,
(uk)k∈N ⊂ U and (yk)k∈N ⊂ Y are the measured input
and output of the plant (22), respectively, and (zOk)k∈N ⊂
Yz is the observer output. The model (24) can be written
shortly as ΣO(AO, BO, CO, DO, EO, FO).

Our objective is to track asymptotically the plant
unmeasured output (zk)k∈N by the observer output
(zOk)k∈N in the sense that the observer error (ek)k∈N ⊂
Yz satisfies the condition

lim
k→∞

‖ek‖Yz = lim
k→∞

‖zOk − zk‖Yz = 0, (25)

which we call the output observation condition.
In order to characterize the required observer, we

derive the so-called observer equation. A similar idea,
but in the continuous-time context, has been used by
Emirsajłow (2021) who described the plant and the
observer by infinite-dimensional state space models with
bounded control and observation operators.

4.2. Observer equation. Collect all formulae (22),
(24) and (25):

xk = Adxk−1 +Bduk,

zk = Cd
1xk−1 +Dd

1uk,

yk = Cd
2xk−1 +Dd

2uk,

vk = AOvk−1 +BOyk + EOuk,

zOk = COvk−1 +DOyk + FOuk,

ek = zOk − zk.

(26)

After some manipulations, the interconnection of the plant
Σd

P and the observer ΣO can be described as

vk = AOvk−1 +BOC
d
2xk−1 + (BOD

d
2 + EO)uk,

xk = Adxk−1 +Bduk,

ek = COvk−1 + (DOC
d
2 − Cd

1 )xk−1

+ (DOD
d
2 + FO −Dd

1)uk,

(27)

where k = 1, 2, 3, . . . and the output observation condi-
tion will say that for all initial states v0 ∈ V , x0 ∈ X and
all inputs (uk)k∈N ⊂ U

lim
k→∞

ek = lim
k→∞

[
COvk−1 + (DOC

d
2 − Cd

1 )xk−1

+ (DOD
d
2 + FO −Dd

1)uk
]
= 0.

(28)

In order to solve the problem under consideration, we
introduce new state variables for the interconnection (27),

[
pk
xk

]

=

[
I −Π
0 I

] [
vk
xk

]

, (29)

where Π ∈ L (X,V ) is to be specified. It is easy to
verify that the transformation (29) is always boundedly
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invertible. Then the interconnection with new state
variables takes the form

pk = AOpk−1 + (AOΠ−ΠAd +BOC
d
2 )xk−1

+ (BOD
d
2 −ΠBd + EO)uk, p0 = v0 −Πx0,

xk = Adxk−1 +Bduk,

ek = COpk−1 + (COΠ+DOC
d
2 − Cd

1 )xk−1

+ (DOD
d
2 −Dd

1 + FO)uk,

(30)

and the output observation condition says that for all
v0 ∈ V , x0 ∈ X (p0 = (v0 − Πx0) ∈ V ) and all inputs
(uk)k∈N ⊂ U we have

lim
k→∞

ek

= lim
k→∞

[
COpk−1 + (COΠ+DOC

d
2 − Cd

1 )xk−1

+ (DOD
d
2 −Dd

1 + FO)uk
]
= 0.

(31)

Without the loss of generality we can assume thatEO

and FO satisfy the equalities

EO = ΠBd −BOD
d
2 ,

FO = Dd
1 −DOD

d
2 .

(32)

This assumption is allowed since the choice of AO,
BO, CO and DO is independent of EO and FO . Then the
interconnection of Σd

P and ΣO simplifies as follows:

pk = AOpk−1 + (AOΠ−ΠAd +BOC
d
2 )xk−1,

xk = Adxk−1 +Bduk,

ek = COpk−1 + (COΠ+DOC
d
2 − Cd

1 )xk−1,

(33)

and the output observation condition says that for all
v0 ∈ V , x0 ∈ X (p0 = (v0 − Πx0) ∈ V ) and all inputs
(uk)k∈N ⊂ U we have

lim
k→∞

‖ek‖Yz

= lim
k→∞

‖COpk−1 + (COΠ+DOC
d
2 − Cd

1 )xk−1‖Yz

= 0.
(34)

We are ready to complete the above considerations
with the following important result.

Theorem 2. Let the interconnection of the plant Σd
P and

the observer ΣO be described by Eqn. (30). If the parame-
ters (AO, BO, CO, DO, EO, FO) of the observer are such
that the following equation, called the observer equation,

{
AOΠ−ΠAd +BOC

d
2 = 0,

COΠ+DOC
d
2 − Cd

1 = 0,
(35)

has a solution Π ∈ L (X,V ), and

EO = ΠBd −BOD
d
2 ,

FO = Dd
1 −DOD

d
2 ,

(36)

then for all v0 ∈ V , x0 ∈ X and all inputs (uk)k∈N ⊂ U
the observer error (ek)k∈N ⊂ Yz is described as follows

pk = AOpk−1, p0 = (v0 −Πx0) ∈ V,

ek = COpk−1.
(37)

If additionally, the observer system operator AO is
strongly stable, then

lim
k→∞

‖ek‖Yz = 0, (38)

i.e., the output observation condition holds.

Proof. If the relations (35) and (36) hold, then Eqns. (33)
simplifies to the form (37). If the observer is strongly
stable, then for every p0 ∈ V we have

lim
k→∞

‖pk‖V = lim
k→∞

‖(AO)
kp0‖V = 0,

and since CO ∈ L (V, Yz) this implies (38). �
Theorem 2 provides very general conditions

characterizing the output observer ΣO . In the
infinite-dimensional setup the task of choosing
both the observer state space V and the parameters
(AO, BO, CO, DO, EO, FO) to fulfill these conditions
seems rather difficult. Nevertheless, under the assumption
that the pair (Cd

2 , A
d) of the discrete-time plant

Σd
P (A

d, Bd, Cd
1 , C

d
2 , D

d
1 , D

d
2) is strongly detectable,

where the pair (Cd
2 , A

d) is said to be strongly detectable
if there exists L ∈ L(Y,X) such that for every x ∈ X we
have

lim
k→∞

‖((Ad − LCd
2 )

kx‖X = 0,

Theorem 2 provides the following rather simple
procedure of constructing a stable output observer
ΣO(AO, BO, CO, DO, EO, FO):

1. Choose L ∈ L (Y,X) such that the operator Ad −
LCd

2 is strongly stable.

2. Choose V and an arbitrary operator Π ∈ L (X,V )
which is boundedly invertible, i.e., Π−1 ∈ L (V,X).

3. Choose BO ∈ L (U, V ) such that

BO := ΠL.

4. Choose AO ∈ L (X) such that

AO := Π(Ad − LCd
2 )Π

−1,

which implies thatAO is strongly stable iffAd−LCd
2

is strongly stable.

5. Choose an arbitrary DO ∈ L (U, Yz).

6. Choose CO ∈ L (X,Yz) such that

CO := (−DOC
d
2 + Cd

1 )Π
−1.
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7. Choose EO ∈ L (U, V ) and FO ∈ L (Y, Yz) such
that

EO := ΠBd −BOD
d
2 ,

FO := Dd
1 −DOD

d
2 .

One can easily check that the above operators
(AO, BO, CO, DO, EO, FO) satisfy all the conditions of
Theorem 2. The simplest choice is to take V := X ,
Π := I (identity) and DO = 0. In this case we get a
Luenberger-like output observer in the form

vk = (Ad − LCd
2 )vk−1 + Lyk + (Bd − LDd

2)uk,

zOk = Cd
1vk−1 +Dd

1uk,

(39)

where

Ad − LCd
2 = −I + 2μR(μ)− L

√
2μC2R(μ),

Bd − LDd
2 =

√
2μG(μ)− LC2G(μ),

Cd
1 =

√
2μC1R(μ),

Dd
1 = C1G(μ).

(40)

4.3. Special case. In our discrete-time observation
problem we have assumed that we know the input (uk)k∈N

and the output (yk)k∈N and we do not know the initial
state x0. The simplest situation is when the plant input
(uk)k∈N is zero, i.e., uk = 0 for k ∈ N. In this case the
plant assumes the form

xk = Adxk−1, x0 �= 0,

zk = Cd
1xk−1,

yk = Cd
2xk−1,

(41)

and the observer takes the form

vk = AOvk−1 +BOyk, v0 = 0,

zOk = COvk−1 +DOyk,
(42)

where v0 = 0 is assumed for simplicity. Moreover, in this
case the Luenberger-like output observer (39) simplifies
as follows:

vk = (Ad − LCd
2 )vk−1 + Lyk, v0 = 0,

zOk = Cd
1vk−1,

(43)

where k = 1, 2, 3, . . ..

5. Example

As an illustration, we consider a numerical example
of an output observation problem for the spatially

one-dimensional heat equation. We assume ξ ∈ [0, π],
t ≥ 0 and the plant model is described as follows:

ΣP :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂x(ξ, t)

∂t
=

∂2x(ξ, t)

∂ξ2
, x(ξ, 0) = x0(ξ),

∂x

∂ξ
(0, t) = u0(t),

∂x

∂ξ
(π, t) = uπ(t),

z(t) = x(a, t),
y0(t) = x(0, t), yπ(t) = x(π, t),

(44)
where (x(·, t))t≥0 ⊂ L2(0, π) is a state, x0(ξ) is an
unknown initial state,

([
u0(t)
uπ(t)

] )

t≥0
⊂ R

2

is a measured input, a ∈ (0, π) is a fixed point and
(z(t))t≥0 ⊂ R is an unmeasured output,

([
y0(t)
yπ(t)

] )

t≥0
⊂ R

2

is a measured output. This model may describe a
temperature distribution x(ξ, t) in a finite rod with an
unknown initial distribution x0(ξ), known heat fluxes

([
u0(t)
uπ(t)

] )

t≥0
⊂ R

2

at both ends and with temperatures

([
y0(t)
yπ(t)

] )

t≥0
⊂ R

2

measured at these ends. We are interested in evaluation
of a temperature z(t) = x(a, t) unavailable for
measurement.

For this plant we choose a small sampling
period h > 0 such that μ = 2/h ∈ ρ(A)
and then construct an approximate infinite-dimensional
discrete-time plant model in the form (22). For this
model we design a strongly stable infinite-dimensional
discrete-time observer which uses samples (y0k)k∈N ⊂ R

and (yπk )k∈N ⊂ R of measured temperatures and samples
(u0k)k∈N ⊂ R and (uπk )k∈N ⊂ R of measured fluxes,
and then produces a discrete-time signal (zOk)k∈N ⊂ R.
The signal (zOk)k∈N ⊂ R will track asymptotically the
unmeasured output (zk)k∈N ⊂ R of the discrete-time
model. The rescaled samples (zOk/

√
h)k∈N can be

used to obtain an interpolated continuous-time signal
(zO(t))t≥0 estimating the temperature (z(t))t≥0 ⊂ R at
ξ = a.

For the system (44) we introduce the spaces

X = L2(0, π), U = Y = R
2, Yz = R,

and the operators

M =
d2

dξ2
, D(M) = Z = H2

2 (0, π),
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K =

[
d

dξ

∣
∣
∣
ξ=0

d

dξ

∣
∣
∣
ξ=π

]T

(Neumann boundary operator),

C1 =
( )

ξ=a
(pointwise evaluation operator),

C2 =
[ ( )

ξ=0

( )

ξ=π

]T

(Dirichlet boundary operator),

A =
d2

dξ2

∣
∣
∣
D(A)

with D(A) given by

D(A) = {x(ξ) : x ∈ H2
2 (0, π), x

′
ξ(0) = 0,

x′ξ(π) = 0},
where H2

2 (0, π) = {f(·) ∈ L2(0, π) : f ′
ξ(·), f ′′

ξ (·) ∈
L2(0, π)}. Under the above assumptions we obtain that
(A,D(A)) generates a strongly continuous semigroup on
X with ω0(T ) = 0, so R+ ⊂ ρ(A) (e.g., Curtain
and Zwart, 2020) and the system (44) fits into our
framework. For the continuous-time plant (44) we now
develop the discrete-time approximation (22), where an
arbitrary sampling period h > 0 is allowed.

It is known from the literature (e.g.,
Emirsajłow and Townley, 2000) that for the above
continuous-time problem the abstract Green map
G(μ) ∈ L (R2, H2

2 (0, π)) is explicitly given by the
formula

G(μ)

[
u0

uπ

]

=
[
g0(ξ) gπ(ξ)

]
[
u0

uπ

]

=

[

−cosh
√
μ(π − ξ)√

μ sinh
√
μπ

cosh
√
μξ√

μ sinh
√
μπ

] [
u0

uπ

]

,

(45)

where

[
u0

uπ

]

∈ R
2, and from the work of Kythe (2011)

it is known that the resolvent R(μ) ∈ L (L2(0, π)) (in
fact R(μ) ∈ L (L2(0, π),D(A))) can be also explicitly
expressed in the form

(R(μ)x)(ξ) :=

∫ π

0

g(ξ, s)x(s) ds, ξ ∈ [0, π], (46)

where x(·) ∈ L2(0, π) and the Green function g(ξ, s) has
the form

g(ξ, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cosh(
√
μ(π − ξ)) cosh(

√
μs)√

μ sinh(
√
μπ)

0 ≤ ξ < s,

cosh(
√
μξ) cosh(

√
μ(π − s))√

μ sinh(
√
μπ)

s < ξ ≤ π.

(47)

Thus, using (21), we get explicit expressions
for the operators (Ad, Bd, Cd

1 , C
d
2 , D

d
1 , D

d
2) in the

infinite-dimensional discrete-time plant model (22)

Adx = −x(ξ) + 2μ

∫ π

0

g(ξ, s)x(s) ds,

Bdu =
√
2μ

[
g0(ξ) gπ(ξ)

]
[
u0

uπ

]

,

Cd
1x =

√
2μ

∫ π

0

g(a, s)x(s) ds,

Cd
2x =

⎡

⎢
⎢
⎣

√
2μ

∫ π

0

g(0, s)x(s) ds

√
2μ

∫ π

0

g(π, s)x(s) ds

⎤

⎥
⎥
⎦ ,

Dd
1u =

[
g0(a) gπ(a)

]
[
u0

uπ

]

,

Dd
2u =

[
g0(0) gπ(0)
g0(π) gπ(π)

] [
u0

uπ

]

,

(48)

and (22) can be explicitly written as

xk(ξ) = −xk−1(ξ) + 2μ

∫ π

0

g(ξ, s)xk−1(s) ds

+
√
2μ(g0(ξ)u0k + gπ(ξ)uπk ),

zk =
√

2μ

∫ π

0

g(a, s)xk−1(s) ds

+ g0(a)u0k + gπ(a)uπk ,

y0k =
√

2μ

∫ π

0

g(0, s)xk−1(s) ds

+ g0(0)u0k + gπ(0)uπk ,

yπk =
√

2μ

∫ π

0

g(π, s)xk−1(s) ds

+ g0(π)u0k + gπ(π)uπk ,

(49)

where k = 1, 2, 3, . . . and an initial condition x0(ξ)
is unknown. For the plant (49) we can design a
Luenberger-like output observer in the form (39), where

(Ad − LCd
2 )v

= −v(ξ) + 2μ

∫ π

0

g(ξ, s)v(s) ds
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− [
l0(ξ) lπ(ξ)

]

⎡

⎢
⎢
⎣

√
2μ

∫ π

0

g(0, s)v(s) ds

√
2μ

∫ π

0

g(π, s)v(s) ds

⎤

⎥
⎥
⎦ ,

Ly =
[
l0(ξ) lπ(ξ)

]
[
y0

yπ

]

,

(Bd − LDd
2)u

=
(√

2μ
[
g0(ξ) gπ(ξ)

]

− [
l0(ξ) lπ(ξ)

]
[
g0(0) gπ(0)

g0(π) gπ(π)

]
) [

u0

uπ

]

,

Cd
1v =

√
2μ

∫ π

0

g(a, s)v(s) ds,

Dd
1u =

[
g0(a) gπ(a)

]
[
u0

uπ

]

,

(50)

where l0(·), lπ(·) ∈ L2(0, π). Hence, (39) can be
explicitly written as

vk(ξ) = −vk−1(ξ) + 2μ

∫ π

0

g(ξ, s)vk−1(s) ds

− l0(ξ)
√

2μ

∫ π

0

g(0, s)vk−1(s) ds

− lπ(ξ)
√

2μ

∫ π

0

g(π, s)vk−1(s) ds

+
√
2μg0(ξ)u0k +

√
2μgπ(ξ)uπk

+ l0(ξ)(y0k − g0(0)u0k − gπ(0)uπk)

+ lπ(ξ)(yπk − g0(π)u0k − gπ(π)uπk ),

zOk =
√
2μ

∫ π

0

g(a, s)vk−1(s) ds

+ g0(a)u0k + gπ(a)uπk ,

(51)

where k = 1, 2, 3, . . . and the initial condition v0(ξ) can
be arbitrary but known. In order to simplify formulae and
related computations, we assume in the sequel that the
inputs (u0k)k∈N and (uπk )k∈N are zero sequences. In this
case the discrete-time plant (49) and the observer (51) are

described by

xk(ξ) = −xk−1(ξ) + 2μ

∫ π

0

g(ξ, s)xk−1(s) ds

zk =
√
2μ

∫ π

0

g(a, s)xk−1(s) ds

y0k =
√
2μ

∫ π

0

g(0, s)xk−1(s) ds

yπk =
√
2μ

∫ π

0

g(π, s)xk−1(s) ds,

(52)

and

vk(ξ) = −vk−1(ξ) + 2μ

∫ π

0

g(ξ, s)vk−1(s) ds

− l0(ξ)
√

2μ

∫ π

0

g(0, s)vk−1(s) ds

− lπ(ξ)
√
2μ

∫ π

0

g(π, s)vk−1(s) ds

+ l0(ξ)y0k + lπ(ξ)yπk

zOk =
√
2μ

∫ π

0

g(a, s)vk−1(s) ds,

(53)

with v0(ξ) ≡ 0 (for simplicity). In our stability analysis of
(53) it will be covenient to use eigenvalues (λn)n∈N and
eigenfunctions (ψn(ξ))n∈N of the operator A and for our
problem the set (ψn(ξ))n∈N forms an orthonormal basis
in X = L2(0, π). One gets (e.g., Kythe, 2011)

λn = −n2, n = 0, 1, 2, 3, . . . ,

ψ0(ξ) =
1√
π
, ψn(ξ) =

√
2

π
cos(nξ), n ≥ 1. (54)

Consequently, the operator Ad = (μI + A)(μI − A)−1

has eigenvalues (μn)n∈N, which can be expressed in terms
of μ and λn, and its eigenfunctions (ψn(ξ))n∈N coincide
with those of A, i.e., we have

μn =
μ+ λn
μ− λ

=
μ− n2

μ+ n2
, n = 0, 1, 2, 3, . . . ,

ψ0(ξ) =
1√
π
, ψn(ξ) =

√
2

π
cos(nξ), n ≥ 1. (55)

It is also convenient to use eigenfunction expansions
for the Green function (see (47))

g(ξ, s) =
∑

n∈N

ψn(ξ)ψn(s)

μ− λn
,
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and also for

v(ξ) =
∑

n∈N

vnψn(ξ), vn =

∫ π

0

v(ξ)ψn(ξ) dξ,

l0(ξ) =
∑

n∈N

l0nψn(ξ), l0n =

∫ π

0

l0(ξ)ψn(ξ) dξ,

lπ(ξ) =
∑

n∈N

lπnψn(ξ), lπn =

∫ π

0

lπ(ξ)ψn(ξ) dξ.

In this case we obtain the expressions

Adv =
[
ψ0(ξ) ψ1(ξ) · · · ]

×

⎡

⎢
⎢
⎢
⎢
⎣

μ+ λ0
μ− λ0

0 · · ·

0
μ+ λ1
μ− λ1

· · ·
. . .

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎣

v0
v1
...

⎤

⎥
⎦

(56)

and

LCd
2v

=
[
ψ0(ξ) ψ1(ξ) · · · ]

⎡

⎢
⎣

l00 lπ0
l01 lπ1
...

...

⎤

⎥
⎦

×

⎡

⎢
⎢
⎣

√
2μψ0(0)

μ− λ0

√
2μψ1(0)

μ− λ1
· · ·

√
2μψ0(π)

μ− λ0

√
2μψ1(π)

μ− λ1
· · ·

⎤

⎥
⎥
⎦

⎡

⎢
⎣

v0
v1
...

⎤

⎥
⎦ .

(57)

One can see that starting from n = 1 on all
eigenvalues μn satisfy the condition |μn| < 1 and for
n = 0 the eigenvalue

μ0 =
μ+ λ0
μ− λ0

= 1

implies that Ad is unstable, so we have to use an output
injection operator L to make Ad − LCd

2 strongly stable.
The operator Ad − LCd

2 , with respect to the basis (55),
allows the following matrix representation:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

μ0 0 · · · 0 · · ·
0 μ1 · · · 0 · · ·

. . .
0 0 · · · μn · · ·

. . .

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

l00 lπ0
l01 lπ1
...

...
l0n lπn
...

...

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
c00 c01 · · · c0n · · ·
cπ0 cπ1 · · · cπn · · ·

]

,

(58)

which we shortly write as

M− LC,

where we used the notation

μn =
μ+ λn
μ− λ

,

c0n =

√
2μψn(0)

μ− λn
,

cπn =

√
2μψn(π)

μ− λn
.

It is clear that we can express the state space X =
L2(0, π) as a a direct sum X = X0 ⊕ X∞, where X0

is a one-dimensional subspace spanned by ψ0(ξ) (basis in
X0) and X∞ is an infinite-dimensional subspace spanned
by (ψn(ξ))

∞
n=1 (basis in X∞).

According to this decomposition, we restrict
ourselves to L with the first row containing non-zero
entries and the remaining rows with zero entries, i.e.,

L =

[
L0

0

]

=

⎡

⎢
⎣

l00 lπ0
0 0
...

...

⎤

⎥
⎦ . (59)

Consequently, using the partitions

M =

[
M0 0
0 M∞

]

, C =
[
C0 C∞

]
,

where, for simplicity, we use the notation

M0 =
[
μ0

]
, M∞ =

⎡

⎢
⎣

μ1 0 · · · 0
0 μ2 · · · 0

. . .

⎤

⎥
⎦ , (60)

and

C0 =

[
c00
cπ0

]

, C∞ =

[
c01 c02 · · ·
cπ1 cπ2 · · ·

]

, (61)

we can rewrite (58) as follows

MC = M− LC

=

[
M0 0
0 M∞

]

−
[

L0

0

]
[
C0 C∞

]

=

[
M0 − L0C0 −L0C∞

0 M∞

]

.

(62)

It is known (Huang et al., 2016) that for the point
spectrum σp of bounded operators we have

σp(MC) = σp(M0 − L0C0) ∪ σp(M∞),

and hence we obtain

σp(MC) = {μ0 − l00c
0
0 − lπ0 c

π
0} ∪ (μn)

∞
n=1, (63)
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Since

μ0 − l00c
0
0 − lπ0 c

π
0 = 1−

√
2

μπ
(l00 + lπ0 ),

we can always choose l00 ∈ R and lπ0 ∈ R such that

|1−
√

2

μπ
(l00 + lπ0 )| < 1. (64)

For such l00, lπ0 the point spectrum of Ad − LCd
2 , i.e.,

σp(A
d − LCd

2 )

= σp(MC) = {1−
√

2

μπ
(l00 + lπ0 )} ∪

(μ− n2

μ+ n2

)∞

n=1
,

(65)
guarantees the strong stability of Ad − LCd

2 . To this end
in the discrete-time observer (53) we choose

l0(ξ) = l00ψ0(ξ) =
l00√
π
, lπ(ξ) = lπ0ψ0(ξ) =

lπ0√
π
.

(66)
In order to verify the obtained results we carry out

numerical computations for the following specific data:

1. The plant initial state x0(ξ) = cos2(ξ) and a = π/2.

2. The time step h = 0.05 and hence μ = 2/h = 40.

3. The observer initial state v0(ξ) ≡ 0 and the output
injection

l0(ξ) =

√
5

2
, lπ(ξ) =

√
5

2
,

so that

σp(A
d − LCd

2 ) = {1/2} ∪
(40− n2

40 + n2

)∞

n=1
.

Figure 1 shows the plant state trajectory (xk(ξ))
30
k=0,

computed from (52), and Fig. 2—the observer state
trajectory (vk(ξ))

30
k=0, computed from (53).

Figure 3 combines the plant output (zk)
30
k=1,

computed from (52), with the observer output (zOk)
30
k=1,

computed from (53).
Finally, Figure 4 compares the continuous-time

plant unmeasured output (z(t))t∈[0,1.5] (see (44)) with
the piecewise linear interpolated signal (zO(t))t∈[0,1.5],
defined as follows:

zO(t) =
1√
h

(
(zOk − zO(k−1))(

t

h
− k) + zOk

)

= 2
√
5
(
(zOk − zO(k−1))(20t− k) + zOk

)

0
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Fig. 1. Plant state trajectory (xk(ξ))
30
k=0.
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Fig. 2. Observer state trajectory (vk(ξ))
30
k=0.

for t ∈ [(k − 1)0.05, k0.05], where k = 1, 2, 3, . . . , 30.

It follows from Fig. 3 that the observer output
(zOk)k∈N tracks asymptotically the plant output (zk)k∈N.
In turn, Fig. 4 shows that the piecewise linear interpolated
signal (zO(t))t≥0 can be used to estimate asymptotically
the unmeasured output (z(t))t≥0 of the continuous-time
infinite-dimensional plant (44).

6. Conclusion

In the paper we developed a method of solving the
general output observation problem for a linear
infinite-dimensional system governed by boundary
input/output model. By means of the Cayley transform
the continuous-time infinite-dimensional system was
approximated by a discrete-time infinite-dimensional
system and then the procedure of designing a
discrete-time output observer was developed. The
general results were illustrated with an example of
one-dimensional heat equation with boundary inputs and
outputs and their numerical effectiveness was tested.
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Fig. 3. Plant output (zk)
30
k=0 (cross line) and observer output

(zOk)
30
k=0 (circle line).
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Fig. 4. Plant output (z(t))t∈[0,1.5] (solid line) and piecewise lin-
ear signal (zO(t))t∈[0,1.5] (cross line).
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