
Int. J. Appl. Math. Comput. Sci., 2021, Vol. 31, No. 4, 635–645
DOI: 10.34768/amcs-2021-0044

NEURO–ADAPTIVE COOPERATIVE CONTROL FOR HIGH–ORDER
NONLINEAR MULTI–AGENT SYSTEMS WITH UNCERTAINTIES

CHENG PENG a, ANGUO ZHANG b, JUNYU LI a,*

aSchool of Electrical and Mechanical Engineering
Hefei Technology College

Hefei 230012, China
e-mail: 1152475543@qq.com

bCollege of Physics and Information Engineering
Fuzhou University

Fuzhou 350018, China

The consensus problem for a class of high-order nonlinear multi-agent systems (MASs) with external disturbance and
system uncertainty is studied. We design an online-update radial basis function (RBF) neural network based distributed
adaptive control protocol, where the sliding model control method is also applied to eliminate the influence of the external
disturbance and system uncertainty. System consensus is verified by using the Lyapunov stability theorem, and sufficient
conditions for cooperative uniform ultimately boundedness (CUUB) are also derived. Two simulation examples demon-
strate the effectiveness of the proposed method for both homogeneous and heterogeneous MASs.

Keywords: multi-agent systems, RBF neural network, sliding mode control, cooperative control.

1. Introduction

The problem of leader-following consensus in multi-agent
systems (MASs) refers to one or several agents in the
system acting as the leader, and the rest being follower
agents, where the leader’s dynamic behavior is not
affected by other nodes. The control goal is to design a
distributed protocol based on neighbor information for the
follower agents, so that all agents can track the leader’s
dynamic behavior asymptotically. The leader-following
topology is an energy-saving mechanism that exists in
many biological systems, and it can strengthen group
communication, robustness, flexibility and dispersion
(Low, 2000; Parrish et al., 2002; Couzin et al., 2002;
Zhao et al., 2021). Therefore, multi-agent systems
with a leader-following topology have received increasing
attention.

Farrera et al. (2020) proposed distributed
proportional-integral observer based fault estimation
of leader-following linear MASs with actuator faults.
In the works of Bechlioulis and Rovithakis (2017) as
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well as Yang and Li (2020) a robust control based on an
observer was designed for a class of high-order nonlinear
MASs that satisfies the Lipschitz condition to solve the
problem of state enclosing control of MASs. Aryankia
and Selmic (2021) proposed an adaptive neural network
based backstepping controller that uses rigid graph theory
to address the distance based formation control problem
and target tracking for nonlinear MASs with bounded
time delay and disturbance. A radial basis function (RBF)
neural network is used to overcome and compensate
for the unknown non-linearity and disturbance in the
system dynamics. Qin et al. (2019) investigated a class of
nonaffine nonlinear MASs with actuator faults of partial
loss of effectiveness and a biased fault. A neural network
based adaptive consensus protocol is developed, where
the neuron input uses both the state and consensus error
information. Ni et al. (2017) designed a type of sliding
mode observer under the condition of input delay, which
can send leader information to followers within a limited
time.

Bartoszewicz and Adamiak (2019) presented a
reference trajectory based sliding mode control strategy
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for disturbed discrete time dynamical systems. Meng
et al. (2020) proposed an adaptive neural distributed
synchronization scheme with guaranteed performance,
which is used to deal with the synchronization control
problem in the leader–follower format of a class of
high-order nonaffine nonlinear MASs under a directed
communication protocol. For linear systems, Ma and
Miao (2015) proposed a solution that the leader follows
the heterogeneous MAS in the network to achieve a
consistent output. When the state information is not
easy to measure directly, a solution based on a dynamic
regulator and a state observer is used to reconstruct
the state. For nonlinear systems, Liu and Jia (2008)
aim at a second-order nonlinear system, use a universal
approximation function in the form of a of neural network
to estimate and approximate unknown functions online,
and obtain an adaptive protocol based on neural networks.
Shen et al. (2020) studied the cooperative control problem
with the followers of unmodeled dynamics. The authors
also proposed a fully neural network based adaptive
control strategy. Lu et al. (2021) introduced an adaptive
neural control approach to the leader–follower consensus
control problem of uncertain MASs.

This paper studies the cooperative control of
high-order nonlinear MASs. The motivation is is related
to the following two aspects:

First, existing research on MASs mostly focuses
on first-order and second-order systems (Zhang et al.,
2018; Wu et al., 2018; Li et al., 2018; Duan et al.,
2020; Zou et al., 2020; Wang et al., 2020; Yao et al.,
2020; Fu et al., 2020). However, in engineering practice,
single-link flexible-joint manipulators (Zhang, 2008; Ling
et al., 2019), robot formation cooperation (Miao et al.,
2018; Zong et al., 2019), and synchronous generator
coordination (Fathi et al., 2018; Abdelrahem et al., 2018;
Nian and Jiao, 2020) are based on high-order dynamic
modeling. Therefore, studying such high-order nonlinear
systems not only takes an important theoretical value,
but also has a strong engineering practical value (Huang
et al., 2015).

Second, due to the interference of the external
environment and the uncertainty of its own system
parameters, the control objects often have unknown
and complex nonlinear dynamics, which makes it
difficult to obtain an accurate mathematical model of
the control system. The existence of the nonlinear
dynamics may transform the system from homogeneous
to heterogeneous, which brings about difficulties in the
cooperative control of nonlinear systems (Cui et al.,
2016).

In view of the above problems, this paper studies the
Brunovsky-type high-order nonlinear cooperative control
for leader-following MASs. The characteristic of the
dynamic system is that each follower node couples the
unknown nonlinear dynamics and external disturbance

through a high-order integrator, and the dynamics of
each node can be completely different (Zhang and Lewis,
2012). The leader agent is a high-order non-autonomous
nonlinear system, and its dynamics are unknown to
all following agents. This paper designs a distributed
adaptive radial basis function (RBF) neural network
control algorithm, to ensure that the neural network
approximates nonlinear terms online, and eliminate the
influence of uncertain items such as continuous bounded
disturbance on stability. Finally, an adaptive protocol
based on an adaptive RBF neural network is proposed.
This method can solve the problem of tracking consensus
in high-order nonlinear MASs with uncertainty and ensure
the final tracking error.

This paper presents a consensus protocol for
high-order nonlinear MASs with uncertainty under
the condition of weak connectivity, and provides the
corresponding theoretical rationale. The correctness and
effectiveness of the proposed method are verified by
numerical simulations.

2. Preliminaries and problem statement

2.1. Graph theory and notation. Based on the
principles of graph theory, a graph G = (V,E,A) is used
to describe the communication topology composed of
multi-agents, which represents the information interaction
between agents. The vertex V = {v1, v2, . . . , vN}
is the set of N agents; E ∈ V × V represents the
directed edge set of information interaction between
agents; A = [aij ]

N×N is the weight matrix associated
with the information topology; aij represents the weight
of the edge (vj , vi). For a directed graph, if (vj , vi) ∈ E,
then aij > 0, otherwise, aij = 0; the corresponding
in-degree matrix and the Laplacian matrix of the graph are
respectively defined as D = diag{deg1, deg2, . . . , degN}
andL = D−A, where degi =

∑N
j=1 aij is the in-degree

of vertex i.
This paper uses the following notation: R

n

represents the set of n-dimensional vectors of real
numbers; 1n represents the set of n-dimensional column
vectors of ones; In represents an n × n-dimensional
identity matrix; ‖ · ‖ represents the Euclidean norm of
a vector; diag{m1,m2, . . . ,mn} is the diagonal matrix
with diagonal elements of m1,m2, . . . ,mn; σ(P ) and
σ̄(P ) denote the smallest and largest singular values of
matrix P , respectively; tr{·} denotes the trace of a matrix.
‖ · ‖1 is the 1-norm, and ‖ · ‖F is the Frobenius norm.
Given a matrix A = [aij ]m×n ∈ R

m×n, the 1-norm is

‖A‖1 = max
1≤j≤n

m∑

i=1

|aij |,

and the Frobenius norm is defined as the sum of the
squares of the absolute values of the elements of a matrix,
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that is,

‖A‖F =
√

tr
(
ATA

)
=

√
√
√
√

m∑

i=1

n∑

j=1

|aij |2.

2.2. Problem statement. Consider a system composed
of N + 1 agents, where the i-th agent has the following
Brunovsky nonlinear dynamic model (Arandabricaire
et al., 1995):

{
ẋi,m(t) = xi,m+1(t), m = 1, 2, . . . ,M − 1,
ẋi,M (t) = fi(t, xi) + di(t) + ui(t), m =M,

(1)
where i = 1, 2, . . . , N ; xi,m(t) ∈ R represents
the m-th state of the i-th agent at time t; xi(t) =
[xi,1(t), xi,2(t), . . . , xi,M (t)]T ∈ R

M represents the
state vector of the i-th agent; di(t)∈ R represents
the uncertainty item of the i-th agent (including the
external disturbance or unmodeled dynamics); ui(t) ∈ R

represents the control input variable to the i-th agent at
time t; fi(t, xi) is a continuous function, which represents
the inherent nonlinear dynamic behavior of the i-th agent.

The dynamics of the MAS leader (marked with label
0) can be described as

{
ẋ0,m(t) = x0,m+1(t), m = 1, 2, . . . ,M − 1,
ẋ0,M (t) = f0(t, x0),

(2)
where x0,m(t) ∈ R represents the m-th order
state of the leader at time t. Here x0(t) =
[x0,1(t), x0,2(t), . . . , x0,M (t)]T ∈ R

M represents the
state vector, and f0(t, xi) is a continuous function that
represents the inherent nonlinear dynamics of the leader.

The m-th order consensus error of agent i is
denoted by δi,m = xi,m − x0,m. Write δm =
[
δ1,m, δ2,m, . . . , δN,m

]T
; thus we have δm = xm −

1Nx0,m, where xm =
[
x1,m, x2,m, . . . , xN,m

]T ∈
R

N , m = 1, 2, . . . ,M . The goal of designing a
distributed controller in this paper is to approach the
zero consensus error and improve the follower tracking
performance.

Definition 1. (Cooperative uniformly ultimate bounded-
ness) For any m(m = 1, 2, . . . ,M), if there is a compact
set Ωm ⊂ R

N satisfying the following three conditions, it
is said that the high-order traking error δm of the followers
is cooperatively uniformly ultimately bounded (CUUB):

(i) {0} ⊂ Ωm,

(ii) δm(t0) ⊂ Ωm,

(iii) there exists an upper bound Δm and a time Tm, such
that ‖δm‖ ≤ Δm if ∀t ≥ t0 + Tm.

For agent i, when t ≥ t0 + Tm, if the tracking
error is CUUB, the follower state xi,m(t) converges to the
neighborhood state x0,m(t) of the leader.

The local neighborhood error of the i-th agent is
defined as

ei,m =
∑

j∈Ni

aij(xj,m − xi,m) + bi(x0,m − xi,m)

=

N∑

j=1

Lijxj,m + bi(x0,m − xi,m), (3)

where m = 1, 2, . . . ,M . If there is a directed edge
(v0, vi) between the follower agent i and the leader
agent 0, the follower can “perceive” the information
of the leader agent, then this weight of this edge
is bi > 0, otherwise bi = 0. Define the
adjacency matrix B = diag{b1, b2, . . . , bN}, and
let the m-th order global neighborhood error be
em(t) = [e1,m, e2,m, . . . , eN,m]T ∈ R

N . Let
f(t, x) = [f1(t, x1), f2(t, x2), . . . , fN (t, xN )]T ∈ R

N ,
u(t) = [u1(t), u2(t), . . . , uN(t)]T ∈ R

N , d(t) =
[d1(t), d2(t), . . . , dN (t)]T ∈ R

N . Thus, the derivative of
(3) can be obtained as
{
ėi,m(t) = ei,m+1(t), m = 1, 2, . . . ,M − 1,
ėi,M (t) = −(L+B)(f + d+ u− f01N ).

(4)

Define the extended directed network graph
composed of the leader and the follower agents as
Ḡ = (V̄ , Ē, Ā), to realize the information interaction
between the network G and the leader agent 0. The
tracking consensus needs to make the following
assumptions about the network topology.

Assumption 1. There exists a directed spanning tree with
leader 0 as the root node in the extended network Ḡ.

Lemma 1. (Das and Lewis, 2010; Cui et al., 2016) Define

q = [q1, q2, . . . , qN ]
T
= (L+B)

−1
1N ,

P = diag{pi} = diag
{ 1

qi

}

Q = P (L+B) + (L+B)
T
P .

Thus both P and Q are positive definite matrices. In view
of Assumption 1, in the extended network Ḡ, L +B is a
non singular matrix.

Lemma 2. We have

‖δm‖ ≤ ‖em‖
σ(L + B)

, m = 1, 2, . . . ,M.

Proof. According to (3), define the global error vector

δ =
[
δ1, δ2, . . . , δM

]T

=
[
x1 − 1Nx0,1,x2 − 1Nx0,2, . . . ,xM − 1Nx0,M

]T
,



638 C. Peng et al.

where xm = [x1,m, x2,m, . . . , xN,m]T ∈ R
N , for m =

1, 2, . . . ,M .
Then the global error vector of graph Ḡ can be given

by
⎧
⎪⎨

⎪⎩

e1 = −(L+B)(x1 − 1Nx0,1) = −(L+B)δ1,
...
em = −(L+B)(xm − 1Nx0,m) = −(L+B)δm.

(5)

According to Assumption 1, the matrix L + B is
non singular. Since em = −(L+ B)δm in (5), we get

δm = −(L+B)−1em. (6)

Thus

‖δm‖ =
∥
∥
∥(L+B)

−1
em

∥
∥
∥ ≤ ‖em‖

−σ(L+B)
. (7)

�

3. Design of an adaptive cooperative
tracking controller

For MASs with uncertainty, the use of the offline training
of neural networks is obviously inappropriate. In order
to solve this problem, a distributed neural network
controller is designed. An online adaptive RBF neural
network control method is adopted to realize the adaptive
adjustment of the neural network weight matrix to solve
the problem of consensus.

3.1. Sliding mode surface function design. The
sliding mode variable structure control is adopted mainly
because the control algorithm has the characteristics of
rapid response while ensuring the system stability.

The sliding mode surface function of agent i (i ∈ N)
is defined as

si = α1ei,1 + α2ei,2 + · · ·+ αM−1ei,M−1 + ei,M , (8)

where the (M − 1)-th-order polynomial with coefficients
α1, α2, . . . , αM−1 is Hurwitz. Then if si is bounded, ei
is also bounded. Further, ei → 0 as si → 0.

Thus, the global error vector of the sliding mode
surface function is given by s = [s1, s2, . . . , sN ]T =
α1e1 + · · ·+ αM−1eM−1 + eM .

Define

α = [α1, α2, . . . , αM−1]
T ,

E1 =
[
e1, e2, . . . , eM−1

] ∈ R
N×M−1,

E2 = Ė1 =
[
e2, e3, . . . , eM

] ∈ R
N×M−1,

I =
[
0, 0, . . . , 1

]T ∈ R
M−1,

Γ =

(
0 I
−α1 (−α2 − · · · − αM−1)

)

. (9)

Thus we have

E2 = E1Γ
T + sIT. (10)

Since Γ is a Hurwitz matrix, given any positive
number β, there exists a symmetric matrix P 1 > 0, which
makes the Lyapunov function hold, i.e., the condition on

ΓTP 1 + P 1Γ = −βIN , (11)

the derivative of the dynamic sliding mode error s is

ṡ = ρ− (L+B
)(
f + d+ u− f01N

)
, (12)

where ρ = α1e2 + α2e3 + · · ·+ αM−1eM = E2α.

Lemma 3. For agent i (i = 1, 2, . . . , N), assume that

|si(t)| ≤ ψi, ∀t ≥ t0,
|si(t)| ≤ θi, ∀t ≥ Tθi, (13)

where time Tξi > t0, t0 is the initial time, the upper bound
ψi > 0, ξi > 0. There exists a time Tθi > t0, θi > 0,
which yields

‖ei(t)‖ ≤ ψi, ∀t ≥ t0,
‖ei(t)‖ ≤ θi, ∀t ≥ Tθi. (14)

Proof. Let ei(t) =
[
ei,1, ei,1, . . . , ei,M−1

]T ∈ R
M−1.

According to (8), we have

ėi = Γei + Isi. (15)

By (15), we get

ei(t) = eΓ(t−t0)ei(t0) +

∫ t

t0

eΓ(t−τ)Isi(τ) dτ (16)

Since Γ is a Hurwitz matrix, there exists φ > 0, λ >
0, such that

‖eΓ(t−t0)‖ ≤ φe−λ(t−t0). (17)

From (16), it follows that

‖ei(t)‖ ≤ φe−λ(t−t0)‖ei(t0)‖

+

∫ t

t0

φe−λ(t−τ)‖I‖|si(τ)| dτ

≤ φe−λ(t−t0)‖ei(t0)‖ + φ
‖B‖
λ

sup
t1<τ<t

|si(τ)|

= φe−λ(t−t0)‖ei(t0)‖ + φ

λ
sup

t1<τ<t
|si(τ)|

(18)
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It can be seen from (18) that if si(t) is bounded, then
‖ei(t)‖ <∞, so that, for all m = 1, 2, . . . ,M , ei,m(t) is
bounded. Moreover,

ei,M (t) = si − α1ei,1(t)− α2ei,2(t)− · · ·
− αM−1ei,M−1(t)

is also bounded. Therefore, ‖ei(t)‖ < ∞ if si(t) < ∞,
i.e., ‖ei(t)‖ is bounded.

Then it will be proved that if si(t) → 0, ‖ei‖ →
0 holds. Since si(τ) → 0, for any given sufficiently
small constant εs > 0, there is a time step t1 such
that when τ ≥ t1, (φ/λ)|si(τ)| ≤ εs holds, and thus
(φ/λ)supt1≤τ≤t ≤ εs. Similarly, from the exponential
stability of e−λ(t−t1) it can be obtained that, for any given
sufficiently small constant εe > 0, there is a time step t2
such that when t − t1 ≥ t2, φe−λ(t−t1) ‖ ei(t1) ‖≤ εe
holds. Substituting the variable t0 of the inequality (18)
by t1, it can be obtained that when t ≥ t1 + t2, we have

‖ei(t)‖ ≤ φe−λ(t−t1) ‖ei(t1)‖+ φ

λ
sup

t1≤τ≤t
|si(τ)|

≤ φe−λ(t−t1) ‖ei(t1)‖+ φ

λ
sup
τ≥t1

|si(τ)|

≤ εe + εs. (19)

According to the arbitrariness of εe and εs, when t→
∞, ‖ei(t)‖ → 0 holds. Thus we get ei,m(t) → 0 for
all m = 1, 2, . . . ,M − 1. Therefore, ei,M (t) = si −
α1ei,1(t)−α2ei,2(t)−· · ·−αM−1ei,M−1(t)→ 0 can be
obtained by (8). In summary, as si(t)→ 0, ei → 0 holds,
and the Lemma 3 is proved.

�

3.2. Distributed control protocol design. While
designing for each agent i a distributed control law ui and
a weight adaptation law of the RBF neural network, we
shall make the following assumptions.

Assumption 2. There is a positive number X̄ > 0, such
that the leader state satisfies ‖x0(t)‖ ≤ X̄ .

Assumption 3. There is a continuous function g(·) :
R

m → R, satisfying |f0(t, x0(t))| ≤ |g(x0(t))|.
Assumption 4. The external disturbance di(t)
of each agent is unknown and bounded, namely
sup{‖d1(t)‖; ‖d2(t)‖, . . . , ‖dN (t)‖, ‖d0(t)‖} ≤ d, d can
be unknown.

It should be noted that Assumption 3 shows that the
leader’s nonlinear term f0(t, x0(t)) has an upper limit
F, ∀t ≥ t0. Assuming there exits parameters X̄, F̄ and
d̄, the designer does not need to know them, that is, these
bounds are not directly used for controller design, but are
used for the Lyapunov method to analyze system stability.

This paper proposes a distributed neuro-adaptive
(radial basis function, RBF neural network) control
algorithm to ensure that the neural network approximates
nonlinear terms online, and eliminate the influence of
uncertain terms such as continuous bounded disturbances
on stability.

The kernel function of the RBF neural network used
in this paper is a Gaussian function,

ϕj = exp

(
‖xi − cj‖2

2b̂2j

)

, (20)

where j = 1, 2, . . . , z, z is the number of nodes in the
hidden layer, b̂j is the variance.

The network output is calculated by

oi(xi) = WT
i ϕi(xi) + εi,

where Wi = [wi,1, wi,2, . . . , wi,z ], ϕi(xi) = [ϕi,1(xi),
ϕi,2(xi), . . . , ϕi,z(xi)]

T. Thus the global output vector
can be formulated as

o(xi) = WTϕ(x) + ε. (21)

According to the Stone–Weierstrass theorem (Joshi,
1983), given a compact set Ω, for any positive number εh,
there exists a sufficiently large positive integer z∗, so that
for any z > z∗, an ideal weight vector W i and a suitable
radial basis function vector ϕi can always be found such
that ‖εi‖ ≤ εh.

The system state xi,1(t), xi,2(t), . . . , xi,M (t) is used
as the input of the network thus the network actual output
is

ôi(xi) = Ŵ
T
i (t)ϕi(xi), (22)

where Ŵ i (t) ∈ R
z is the vector of estimated weigths of

agent i. Define the global network output vector as

ô(x) = Ŵ
T
ϕ(x) (23)

with the approxmiation error ε = [ε1, ε2, . . . , εN ].
Define the maximal value of the Gaussian function

output ϕ̄i = maxxi∈Ω ‖ϕi(xi)‖, and the maximal value
of the ideal weight W̄i = max ‖W i‖. Thus there
exist positive numbers ϕ̄, W̄ and ε̄, satisfying ‖ϕ‖ ≤
ϕ̄, ‖W ‖ ≤ W̄ and ‖ε‖ ≤ ε̄.

Design the weight adaptation law of the RBF neural
network as

˙̂W i = −F iϕisipi(degi + bi)− ζF iŴ i. (24)

It can be written in the following concise vector form:

˙̂W = −FϕsP (D +B)− ζFŴ , (25)

where F i = F T
i ∈ R

z×z is any positive definite matrix,
the positive number ζ is an adjustable scalar, the matrix P
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Algorithm 1. Algorithm of online weight adaptation of
the RBF neural network.
Input: Dynamic sliding mode error s.
Output: Network output weights Ŵ.
Setting the scalar ζ, matrix F, initialize matrix P
according to Lemma 1.

for time t in [1, 2, . . . , T ] do
foreach output weight Ŵi do

Calculate the sliding mode error s according to
Eqn. (12);

Calculate the network activation ϕi according to
Eqn. (20);

Calculate the variation of ˙̂Wi by Eqn. (24);

Ŵi ← ˙̂Wi + Ŵi.
end

end

has been defined in Lemma 1. A detailed description of
the online adaptation is presented in Algorithm 1.

We propose the distributed control protocol for each
agent i by

ui =
1

degi + bi

(

α1ei,2 + α2ei,3 + · · ·+ αM−1ei,M

)

− ôi(xi) + ksi. (26)

Thus the vector form for all the agents can be written as

u = −(D +B
)−1

ρ− ô(x) + ks, (27)

where the control gain satisfies

k >
2

σ(Q)

(
r2

ζ
+

2

β
g2 + h

)

, (28)

and

r = −1

2
ϕ̄σ̄(P )σ̄(A),

g = −1

2

(σ (P )σ (A)

σ (D +B)
‖Γ‖F ‖α‖+ σ (P 1)

)
,

h =
σ (P )σ (A)

σ (D +B)
‖α‖ ,

P 1 has been defined in (11), β > 0, Q has been explained
in Lemma 1, and the coefficient ζ has been explained in
(25).

4. Main results

Define W̃ as the error between the ideal weight W and
the estimated weights Ŵ of the RBF neural network.
Construct the Lyapunov function

V (t) = V 1(t) + V 2(t) + V 3(t), (29)

where P = P T > 0;F−1 = F−T > 0, and

V 1(t) =
1

2
sTPs, (30)

V 2(t) =
1

2
tr
{
W̃

T
F−1W̃

}
, (31)

V 3(t) =
1

2
tr
{
E1P 1E

T
1

}
. (32)

We have the derivative of V 1(t),

V̇ 1(t) = sTP ṡ

= sTP
[
ρ− (L+B)(f + d+ u− f01N )

]
.

(33)

Setting L = D −A and substituting (27) into (33),
we have

V̇ 1(t) = sTP
[
ρ− (L+B)(f + d− (D +B

)−1
ρ

− ô(x) + ks− f01N )
]

= sTPρ− sTP
(
L+B

)(
ε+ d− f01N

)

− ksTP
(
L+B

)
s

− sTP
[
(D +B)−A

][
(D +B)−1ρ+ W̃

T
ϕ
]

= sTP
(
L+B

)(
ε+ d− f01N

)
(34)

− ksTP
(
L+B

)
s

− sTP
(
D +B

)
W̃

T
ϕ+ sTPAW̃

T
ϕ

+ sTPA
(
D +B

)−1
ρ. (35)

According to Lemma 1 and xTy = tr{yxT}, (34)
can be rewritten as

V̇1(t) =− sTP (L+B)(ε+ d− f01N )

− 1

2
ksTQs− tr{W̃ T

ϕsTP (D +B)}

+ tr{W̃ T
ϕsTPA} (36)

+ sTPA(D +B)−1ρ. (37)

As
.

W̃ = Ẇ −
.

Ŵ = −
.

Ŵ , by substituting it into
(25), we can get the derivative of V2(t) with respect to
time,

V̇2(t) =
1

2
tr{W̃ T

F−1W̃ }

= tr{W̃ T
F−1[FφrP (D +B) + ζFŴ ]}

= tr{W̃ T
ϕsP (D +B)} + ζtr{W̃ T

Ŵ }
= tr{W̃ T

ϕsP (D +B)} + ζtr{W̃ T
W }

− ζtr{W̃ T
W̃ } (38)

As for the derivative of V3(t) with respect to time,
we get

V̇3(t) = tr{E2P 1E
T
1}. (39)
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Substitute (10) into (39) and use (11),to get

V̇3(t) = −β
2

tr{E1E
T
1}+ tr{sΓTP 1E

T
1}

≤ −β
2
‖E1‖2F + σ̄(P 1) ‖s‖ ‖E1‖F. (40)

Overall, the derivative of Lyapunov function V (t) is

V̇ (t) =V̇1(t) + V̇2(t) + V̇3(t)

=− sTP
(
L+B

)(
ε+ d− f01N

)

− 1

2
ksTQs+ tr{W̃ T

ϕsTPA}

+ ζtr{W̃ T
W } − ζtr{W̃ T

W̃ }
+ sTPA

(
D +B

)−1
ρ− β

2
tr{E1E

T
1}

+ tr{sΓTP 1E
T
1}

≤σ̄(P )σ̄
(
L+B

)
T̄‖s‖ − 1

2
kσ(Q)‖s‖2

+ ϕ̄σ̄(P )σ̄(A)‖W̃ ‖F ‖s‖
+ ζW̄ ‖W̃ ‖F − ζ‖W̃ ‖2F
+
σ̄(P )σ̄(A)

σ(D +B)

(‖s‖‖E1‖F‖Γ‖F ‖ᾱ‖

+ ‖s‖2‖Γ‖‖ᾱ‖)− β

2
‖E1‖2F

+ σ̄(P1)‖s‖‖E1‖F , (41)

where T̄ = ε̄+ d̄+ F̄ .

Note that the definition of r, g and h in (28), (41) can
be rewritten as

V̇ (t)

≤ −
(
1

2
kσ(Q)− σ̄(P )σ̄(A)

σ(D +B)
‖ᾱ‖

)

· ‖s‖2

− ζ‖W̃ ‖2F −
β

2
‖E1‖2F

+ ϕ̄σ̄(P )σ̄(A) · ‖W̃‖F ‖s‖

+

(
σ̄(P )σ̄(A)

σ̄(D +B)
‖Λ‖F ‖ᾱ‖+ σ̄(P 1)

)

‖s‖ ‖E1‖F

+ σ̄(P )σ̄(L+B)T̄ ‖s‖+ ζW̄
∥
∥
∥W̃

∥
∥
∥

F

=− (
1

2
kσ−(Q)− h)‖s‖2 − ζ

∥
∥
∥W̃

∥
∥
∥
2

F

− β

2
‖E1‖2F − 2r‖W̃ ‖F ‖s‖ − 2g ‖s‖ ‖E1‖F

+ σ̄(P )σ̄(L+B)T̄ ‖s‖+ ζW̄‖W̃ ‖F

=−

⎡

⎢
⎣

‖E1‖F∥
∥
∥W̃

∥
∥
∥

F‖s‖

⎤

⎥
⎦

T ⎡

⎣

β
2 0 g
0 ζ r
g r 1

2kσ̄(Q)− h

⎤

⎦

×

⎡

⎢
⎣

‖E1‖F∥
∥
∥W̃

∥
∥
∥

F‖s‖

⎤

⎥
⎦

+
[
0 ζW̄ σ̄(P )σ̄(L+B)T̄

]
⎡

⎣
‖E1‖F
‖W ‖F
‖s‖

⎤

⎦ .

(42)

Let

z =
[
‖E1‖F ‖W̃‖F ‖s‖

]T
,

Ξ =

⎡

⎣

β
2 0 g
0 ζ r
g r 1

2kσ (Q)− h

⎤

⎦ ,

ω =
[
0 ζW σ (P )σ (L+B)T

]T
. (43)

Accordingly,

V̇ (t) ≤ −zTΞz + ωTz = −Vz(z). (44)

The condition for the system to achieve asymptotic
stability is that Vz(z) is a positive definite function, that
is, the following two conditions are met:

(i) the matrix Ξ is positive definite;

(ii) ‖z‖ > ‖ω‖/σ (Ξ).

In order to validate the positive definiteness of the matrix
Ξ, we can check whether all main sub-determinants are
positive, i.e.,

β > 0,

βζ > 0,

ζ
[
β
(1

2
kσ−(Q)− h)− 2g2

]
− βr2 > 0.

(45)

It is easy to see that ‖ω‖1 > ‖ω‖, if ‖z‖ ≥ Bd, the
condition (ii) above holds, we get

Bd =
‖ω‖1
σ−(Ξ)

=
σ̄(P )σ̄(L+B)T̄ + ζW̄

σ−(Ξ)
. (46)

Thus, both conditions (i) and (ii) are met, and we can
get

V̇ (t) ≤ −Vz(z), ∀ ‖z‖ ≥ Bd, (47)

and Vz(z) is a continuous positive definite function.
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5. Simulation

In this section, we consider the consensus verification
experiments of two different MASs, i.e., homogeneous
and heterogeneous MASs, where the homogeneous MAS
means that the dynamic models of all agents are the
same, while the heterogeneous MAS means that they
are different. The network communication topology of
both the two experiments is shown in Fig. 1, which
includes 5 follower agents and a leader. To simplify the
simulation design, assume that the weight of the edges
communicating with each other are both equal to 1.

We assume the dynamic models of the five followers
are third-order uncertain nonlinear systems:

⎧
⎨

⎩

ẋi,1(t) = xi,2(t),
ẋi,2(t) = xi,3(t),
ẋi,3(t) = fi(t, xi) + di(t) + ui(t).

5.1. Consensus of homogeneous multi-agent systems.
The parameters of the RBF neural network are randomly
initialized in advance, and the initialized state of the leader
and follower agents is

x0 = [x0,1, x0,2, x0,3]
T = [6, 0.38, 0]T,

x1 = [x1,1, x1,2, x1,3]
T = [20, −0.76, 0]T,

x2 = [x2,1, x2,2, x2,3]
T = [0, 0.91, 0]T,

x3 = [x3,1, x3,2, x3,3]
T = [−5, 0.77, 0]T,

x4 = [x4,1, x4,2, x4,3]
T = [−2, 0.88, 0]T,

x5 = [x5,1, x5,2, x5,3]
T = [9, 0.33, 0]T.

Let the nonlinear function fi, i = 0, 1, . . . , 5 of the
homogeneous system be

fi(t, xi(t)) = 20 sin(2t+ 0.2) + 10 sin(2xi,2)

− 0.2xi,1 + 0.5xi,2,

where f0 is the term of the leader agent.
For the i-th agent, it is assumed that it contains

uncertainties such as external disturbances and sensor
noise, which are uniformly modeled as 0.05 sin(t). The
state trajectories of all the agents of the third-order system
are shown in Fig. 2. The position states of the five
homogeneous followers are gradually approaching the
position state of leader 0, that is, the tracking consensus
of the MAS is achieved.

5.2. Consensus of heterogeneous multi-agent systems.
To illustrate that the proposed protocol can be applied to
heterogeneous MASs, reconsider the third-order MAS of
with 5 followers, where the nonlinear function fi for each

Fig. 1. Directed communication topology with 6 followers and
1 leader.

agent i is unique,

f0(t, x0(t)) = 0.5 sinx0,1 − 0.1x0,2 + cos(1.2t),

f1(t, x1(t)) = −0.2 sinx1,1 − 0.5x1,2,

f2(t, x2(t)) = −1.5 sinx2,1 − x2,2 + 0.5 cos(t),

f3(t, x3(t)) = 0.8 sinx3,1 − cosx3,3,

f4(t, x4(t)) = − sinx4,1 − 0.1 cos(0.1t),

f5(t, x5(t)) = −1.8 sinx5,1 + 0.1 sinx5,2 + cos(2t).

The controller and the parameters of the neural
network, the network topology, the initial state of the
system, the uncertain term di(t), and the dynamics model
of the leader are the same as those in Section 5.1. The
state trajectories of all agents in the third-order system are
shown in Fig. 3. The position states of the 6 heterogeneous
followers are gradually approaching the position state
of leader 0, which means that they finally achieve state
consensus, i.e.,

lim
t→∞ ‖xi(t)− xj(t)‖ = 0, ∀i, j = 0, 1, . . . , N.

Through simulations, it is verified that the proposed
adaptive consensus control protocol is not only applicable
to homogeneous MASs, but also to heterogeneous MASs.

It should be noted that, in view of the problems of
external disturbances and uncertain items in the system,
currently there are mainly robust control methods and
state observer methods. Robust control has a certain
inhibitory effect on external disturbances, but it cannot
effectively eliminate the influence of external disturbances
on consistency. At present, the more commonly used
method is to use a state observer to estimate the uncertain
items of the MAS to compensate for the unknown items,
to achieve the consistency of the multi-agent system, and
the design is for linear systems. In this paper, a high-order
nonlinear uncertain MAS have been investigated. The
nonlinear term of the system is approximated by an RBF
neural network. A sliding mode controller is designed
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Fig. 2. State trajectories of homogeneous systems.

to compensate for external disturbances, so that the
multi-agent system can be stabilized, thereby realizing the
leader–follower consistency problem.

6. Conclusion

This paper proposed a neuro-adaptive cooperative control
method for leader-following MASs, where an adaptive
RBF neural network is adopted to approximate the
nonlinear terms. The proposed method does not need to
know the upper bounds of nonlinear terms and uncertain
terms. Theoretical results showed that the finite time
required for a Brunovsky-type high-order nonlinear agent
system to reach consensus depends not only on the
relevant control parameters and the information topology
of the designed algorithm, but also on the initial state
of the MASs. The simulation results proved that the
proposed adaptive sliding mode control algorithm of the
distributed RBF neural network approximation can not
only effectively deal with unknown or even heterogeneous
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Fig. 3. State trajectories of heterogeneous systems.

nonlinear dynamics, but also has a good anti-interference
ability to ensure the convergence of system tracking
errors.
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