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The global stability of discrete-time nonlinear systems with descriptor positive linear parts, positive scalar feedbacks and
interval state matrices is addressed. Sufficient conditions for the global stability of this class of nonlinear systems are
established. The effectiveness of these conditions is illustrated using numerical examples.
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1. Introduction

In positive systems inputs, state variables and outputs
take only nonnegative values for any nonnegative inputs
and nonnegative initial conditions. Examples of positive
systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric
pollution models. A variety of models having positive
behavior can be found in engineering, management
science, economics, social sciences, biology, medicine,
etc. An overview of the state of the art in positive
systems theory is given in the monographs of Berman and
Plemmous (1994), Farina and Rinaldi (2000) or Kaczorek
(2011).

Descriptor positive systems were analyzed by
Borawski (2017) and Sajewski (2017). The positivity
and stability of linear electrical circuits were investigated
by Kaczorek and Rogowski (2015), and Borawski
(2017). The stability analysis of positive descriptor
linear systems were presented by Rami and Napp
(2012) as well as Virnik (2008). The stability of
linear and nonlinear positive systems was addressed
by Kaczorek (2019a). The exponential stability for
positive linear discrete-time systems in ordered Banach
spaces was studied by Gluck and Mironchenko (2020).
The global stability of nonlinear systems with negative

∗Corresponding author

feedbacks and positive not necessary asymptotically
stable linear parts was investigated by Kaczorek (2019b),
who also analysed the global stability of nonlinear
continuous-time standard and fractional positive systems
(Kaczorek, 2020). The constrained regulation problem for
fractional-order nonlinear continuous-time systems was
investigated by Si et al. (2021).

Realistic dynamic systems are nonlinear and usually
only interval parameters of linear part are known. The
problem of global stability of nonlinear systems with
interval matrices of their linear parts is very important and
topical. The stability problem of interval linear systems
was analyzed by Kharitonov (1978).

In this paper the global stability of discrete-time
nonlinear systems with positive descriptor linear parts,
positive scalar feedbacks and interval state matrices will
be addressed. Electrical circuits with positive linear parts
and nonlinear elements are examples of such systems.
Two examples of positive nonlinear electrical circuits
were presented by Kaczorek (2021).

The paper is organized as follows. In Section 2
basic definitions and theorems concerning positive
discrete-time descriptor linear systems are recalled. The
stability of positive interval linear systems is considered
in Section 3. New sufficient conditions for the global
stability of nonlinear feedback systems with positive
linear descriptor discrete-time and interval state matrices
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are established in Section 4. Concluding remarks are
given in Section 5.

The following notation will be used: R, the set of real
numbers; Rn×m, the set of n × m real matrices; Rn×m

+ ,
the set of n×m real matrices with nonnegative entries and
R

n
+ = R

n×1
+ ; In, the n× n identity matrix.

2. Positive discrete-time descriptor linear
systems

Consider the descriptor discrete-time linear system

Exi+1 = Axi +Bui, i = 0, 1, . . . , (1)

yi = Cxi, (2)

where xi ∈ R
n, ui ∈ R

m, yi ∈ R
p are the state, input

and output vectors and E,A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n. It is assumed that the pencil (E,A) of (1)
is regular, i.e.,

det[Ez −A] �= 0 for some z ∈ C, (3)

where C is the field of complex numbers.

Definition 1. The descriptor system (1), (2) is called
(internally) positive if xi ∈ R

n
+, yi ∈ R

p
+, i = 0, 1, . . . for

every consistent nonnegative initial conditions x0 ∈ R
n
+

and all inputs ui ∈ R
m
+ .

It is assumed that the singular matrix E has
only n1 < n linearly independent columns and
the pencil (E,A) is regular. In this case, by the
Weierstrass–Kronecker theorem (Dai, 1989; Kaczorek
and Rogowski, 2015; Virnik, 2008), there exist
nonsingular monomial matrices P ∈ R

n×n and Q ∈
R

n×n (in each row and in each column only one entry
is positive and the remaining entries are zero) such that

PEQ =

[
In1 0
0 N

]
, PAQ =

[
A1 0
0 In2

]
,

(4)
n = n1 + n2, where N ∈ R

n2×n2 is the nilpotent matrix
such that Nµ = 0, Nµ−1 �= 0, μ is the nilpotency index,
A1 ∈ R

n1×n1 and n1 = deg det[Es−A] = rankE.
Premultiplying (1) by the matrix P ∈ R

n×n and
defining the new state vector

[
x1i

x2i

]
= Q−1xi, x1i ∈ R

n1 , x2i ∈ R
n2 ,

i = 0, 1, . . .
(5)

we obtain

x1,i+1 = A1x1i +B1ui, (6)

Nx2,i+1 = x2i +B2ui, (7)

where A1 ∈ R
n1×n1 , B1 ∈ R

n1×m, B2 ∈ R
n2×m and[

B1

B2

]
= PB.

Note that if Q ∈ R
n×n
+ is monomial then Q−1 ∈ R

n×n
+

and x1i ∈ R
n1
+ and x2i ∈ R

n2
+ for i = 0, 1, . . . if xi ∈ R

n
+,

i = 0, 1, . . . . Defining CQ = [ C1 C2 ], C1 ∈ R
p×n1

+ ,
C2 ∈ R

p×n2 for any C ∈ R
p×n
+ from (2) we have

yi = C1x1i + C2x2i. (8)

The transfer matrix of the system (1), (2) is given by

T (z) = C[Ez −A]−1B ∈ R
p×m(z), (9)

where Rp×m(z) is the set of p×m rational matrices in z.
It is easy to verify that

T (z) = C[Ez −A]−1B

= CQ[P (Ez −A)Q]−1PB

=
[
C1 C2

]⎡⎣ In1z −A1 0

0 Nz − In2

⎤
⎦
−1

·
[

B1

B2

]

= C1[In1z −A1]
−1B1 − C2[In2 +Nz

+ · · ·+Nµ−1zµ−1]B2.

(10)

From the above we have the following result.

Theorem 1. (Kaczorek and Rogowski, 2015) The de-
scriptor discrete-time system (1), (2) is positive if and only
if

A1 ∈ R
n1×n1
+ , B1 ∈ R

n1×m
+ , −B2 ∈ R

n2×m
+ , (11)

C1 ∈ R
p×n1

+ , C2 ∈ R
p×n2

+ .

Theorem 2. (Kaczorek, 2011) The positive linear
discrete-time system (6) is asymptotically stable (the ma-
trix A1 is Schur) if and only if one of the following equiv-
alent conditions are satisfied:

1. All coefficients of the characteristic polynomial

pn1(z) = det[In1(z + 1)−A1]

= zn1 + an−1z
n1−1 + . . .

+ a1z + a0

(12)

are positive, i.e., ai > 0 for i = 0, 1, . . . , n− 1.

2. There exists a strictly positive vector λT =
[ λ1 · · · λn], λk > 0, k = 1, . . . , n such that

(A1 − In1)λ < 0 or λT (A1 − In1) < 0. (13)
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From (13) we immediately have the necessary
condition for asymptotic stability of the system (6).

Theorem 3. The positive linear discrete-time system (6)
is asymptotically stable if the sum of the entries of each
column (row) of the matrix A1 is less than one.

Proof. The proof follows from condition (13) for λT =
[ 1 · · · 1] since [ 1 · · · 1]TA1 < [ 1 · · · 1]
if the sum of entries of each column of the matrix A1 is
less than 1. The proof for rows is similar. �

3. Stability of positive interval linear
systems

Consider the interval positive linear discrete-time system
described by the homogeneous state equation

xi+1 = Axi, (14)

where xi ∈ R
n
+ is the state vector and the matrix A ∈

R
n×n
+ is the interval matrix in which all entries are only

known to within a specific closed intervals defined as
follows:

A = [A, A]

= {A = [aij ], aij ∈ [aij , aij ],

i, j = 1, 2, . . . , n},
(15)

where aij and aij are entries of matrices A and A. The
matrices A and A are the left and right bounds of the
matrix A. The condition aij ≤ aij ≤ aij is the most
common case. However, in this paper we consider the
general case defined in (15).

A special case of the interval matrix is the matrix of
the form

A = (1− q)A+ qA for 0 ≤ q ≤ 1. (16)

Each entry aij of the interval matrix (16) is a convex
combination of the entries aij and aij of the matrices A

and A. The system (14) with matrix (15) or (16) is called
the interval system.

Definition 2. The interval positive system (14) is called
asymptotically stable if it is asymptotically stable for all
matrices A ∈ R

n×n
+ satisfying the condition (15).

By the condition (13) the positive system (14) is
asymptotically stable if and only if there exists a strictly
positive vector λ > 0 such that (13) holds.

For two positive linear systems

xi+1 = Axi, A ∈ R
n×n
+ (17)

and
xi+1 = Axi, A ∈ R

n×n
+ (18)

there exists a strictly positive vector λ ∈ R
n
+ such that

Aλ < λ and Aλ < λ (19)

if and only if the systems (17) and (18) are asymptotically
stable.

Example 1. Consider the positive linear system (14) with
the matrices

A =

[
0.6 0.1
0.3 0.3

]
, A =

[
0.7 0.2
0.4 0.5

]
. (20)

Note that for λT = [1 1] we have

Aλ =

[
0.6 0.1
0.3 0.3

] [
1
1

]
=

[
0.7
0.6

]
<

[
1
1

]
, (21)

Aλ =

[
0.7 0.2
0.4 0.5

] [
1
1

]
=

[
0.9
0.9

]
<

[
1
1

]
. (22)

Therefore, by the condition (13) the positive system (14)
with interval state matrix (20) is asymptotically stable.

�

Theorem 4. If the matrices A ∈ R
n×n
+ and A ∈ R

n×n
+

of positive systems (17) and (18) are asymptotically stable
then their convex linear combination

A = (1− q)A+ qA for 0 ≤ q ≤ 1 (23)

is also asymptotically stable.

Proof. By (13), if the positive linear systems (17) and
(18) are asymptotically stable, then there exists a strictly
positive vector λ ∈ R

n
+ such that (19) holds. Using (23)

and (19), we obtain

Aλ = [(1− q)A1 + qA2]λ

= (1− q)A1λ+ qA2λ

< (1− q)λ+ qλ = λ

(24)

for 0 ≤ q ≤ 1.
Therefore, if the positive linear systems (17) and (18)

are asymptotically stable and (19) holds, then their convex
linear combination is also asymptotically stable. �

Theorem 5. The interval positive system (14) is asymp-
totically stable if and only if the positive systems (17) and
(18) are asymptotically stable.

Proof. By the condition (13) of Theorem 2 the matrices
A ∈ R

n×n
+ , A ∈ R

n×n
+ are asymptotically stable if and

only if there exists a strictly positive vector λ ∈ R
n
+,

such that (19) holds. The convex linear combination
(23) satisfies the condition Aλ < λ if and only if (19)
holds. Therefore, the interval positive system (14) is
asymptotically stable if and only if the positive systems
(17) and (18) are asymptotically stable. �
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Example 2. Consider the interval positive linear system
(14) with the matrices

A =

[
0.7 0.1
0.4 0.3

]
, A =

[
0.6 0.2
0.3 0.5

]
. (25)

For the matrices (25) we choose λT = [1 1] and obtain

Aλ =

[
0.7 0.1
0.4 0.3

] [
1
1

]
=

[
0.8
0.7

]
<

[
1
1

]
,

Aλ =

[
0.6 0.2
0.3 0.5

] [
1
1

]
=

[
0.8
0.8

]
<

[
1
1

]
.

(26)
Therefore, by Theorem 5 the interval positive system (14)
with (25) is asymptotically stable. �

4. Global stability of descriptor nonlinear
feedback systems with interval state
matrices

Consider the nonlinear feedback system shown in Fig. 1
which consists of the descriptor positive linear part, the
nonlinear element with characteristic u = f(e), positive
scalar gain feedback h and interval state matrices. The
descriptor linear part is described by Eqns. (1) and (2)
on the assumption that m = p = 1, i.e., a single-input
single-output system. The state matrix A is an interval
matrix (15). The characteristic f(e) of the nonlinear
element (Fig. 2) satisfies the condition

0 < f(e) < ke, 0 < k < ∞. (27)

The linear part of the system in Fig. 1 is discrete-time
and the nonlinear part is continuous-time. Therefore, the
continuous-time to discrete-time converter C/D and the
discrete-time to continuous-time converter D/C have been
added.

We make the following assumptions:

A1. the pencil (E, A) is regular (the condition (3) is
satisfied),

A2. the matrix E has n1 linearly independent columns,

A3. rankE = deg det[Ez −A] = n1.

If these assumptions are satisfied in Eqns. (4) and (7),
the nilpotent matrix N = 0. Note that if Q ∈ R

n×n
+ is

monomial then Q−1 ∈ R
n×n
+ and x1i ∈ R

n1
+ and x2i = 0

for i = 0, 1, . . . , B2 = 0 since N = 0 (Assumptions A2
and A3). Similarly, since C2x2i = 0, from (8) we have

yi = C1x1i. (28)

Definition 3. A nonlinear positive system is called glob-
ally stable if it is asymptotically stable for all nonnegative
initial conditions x0 ∈ R+.

Fig. 1. Nonlinear system.

Fig. 2. Characteristic of the nonlinear element.

The following theorem gives sufficient conditions for
the global stability of the descriptor positive nonlinear
system with the interval matrix.

Theorem 6. The nonlinear system shown in Fig. 1 con-
sisting of the positive linear part with interval state ma-
trix (15) satisfying Assumptions A1–A 3, the nonlinear el-
ement satisfying the condition (27) and the gain feedback
h is globally stable if the matrices

A1 + khB1C1 ∈ R
n1×n1
+ (29)

and
A1 + khB1C1 ∈ R

n1×n1
+ (30)

are asymptotically stable.

Proof. The proof is based on the Lyapunov method
(Lyapunov, 1963; Leipholz, 1970). As the Lyapunov
function V (x1i) for each system we choose

V (x1i) = λTx1i ≥ 0 forx1i ∈ R
n1
+ , (31)

where λ is strictly positive vector, i.e., λk > 0, k =
1, . . . , n1.

Using (31) and (6), we obtain

ΔV (x1i) = V (x1,i+1)− V (x1i)

= λT (x1,i+1 − x1i)

= λT (A1 − In1)x1i +B1hf(e)

≤ λT (A1 + khB1C1)x1i

(32)
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since λT (A1 − In1) < 0 and (In1 −A1) > B1hf(e).
From (32) it follows that ΔV (x1i) < 0 if the matrix

(29) is asymptotically stable and the nonlinear system is
globally stable. A similar result is obtained for (30). �

To find the maximal value of h for which the
nonlinear systems is globally stable the following
procedure can be used.

Procedure 1.
Step 1. Find the value of h for which the matrix

A1 + khB1C1 ∈ R
n1×n1
+ (33)

is asymptotically stable. Denote obtained h as h.

Step 2. Find the value of h for which the matrix

A1 + khB1C1 ∈ R
n1×n1
+ (34)

is asymptotically stable. Denote by h the obtained
solution.

Step 3. Select the desired value of h as

h = min(h, h). (35)

From Theorem 6 and Theorem 3 we deduce that the
nonlinear positive feedback system shown in Fig. 1 is
asymptotically stable only if the sum of all entries in every
rows (columns) of the matrices (29) and (30) is less than 1.

Example 3. Consider the nonlinear feedback system with
the descriptor linear part with the matrices

A =

⎡
⎢⎢⎣

0.3 0 0.1 0
0.5 0 0.5 1
0.5 1 0.5 1
0.3 0 0.1 1

⎤
⎥⎥⎦ ,

A =

⎡
⎢⎢⎣

0.4 0 0.2 0
0.65 0 0.7 1
0.65 1 0.7 1
0.4 0 0.2 1

⎤
⎥⎥⎦ ,

E =

⎡
⎢⎢⎣

1 0 0 0
1 0 1 0
1 0 1 0
1 0 0 0

⎤
⎥⎥⎦ ,

B =

⎡
⎢⎢⎣

0.5
1.1
1.1
0.5

⎤
⎥⎥⎦ ,

C =
[
0.2 0 0.4 0

]

(36)

and the nonlinear element satisfying the condition (27)
with k = 0.5. Find the maximal value of h for which
the nonlinear system is globally stable.

In this case the matrices P and Q have the form

P =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 −1
0 −1 1 0
−1 0 0 1

⎤
⎥⎥⎦ ,

Q =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦ .

(37)

Using (4)–(8) for N = 0, we obtain

PEQ =

[
I2 0
0 0

]
, (38)

PAQ =

[
A1 0
0 I2

]
=

⎡
⎢⎢⎣

0.3 0.1 0 0
0.2 0.4 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (39)

PAQ =

[
A1 0
0 I2

]
=

⎡
⎢⎢⎣

0.4 0.2 0 0
0.25 0.5 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (40)

PB =

[
B1

B2

]
=

⎡
⎢⎢⎣

0.5
0.6
0
0

⎤
⎥⎥⎦ , (41)

CQ =
[
C1 C2

]
= [ 0.2 0.4 0 0 ]. (42)

Using Procedure 1 and the matrices A1, A1, B1 and C1,
we have the following calculations.

Step 1. Using (29), we obtain

A1 + khB1C1 =

[
0.3 + 0.05h 0.1 + 0.1h
0.2 + 0.06h 0.4 + 0.12h

]
(43)

and the maximal value of h for which the matrix (43) is
asymptotically stable is h < 2.857, since for this value the
coefficients of the polynomial

det[I2(z + 1)−A1 − khB1C1]

= z2 + (1.3− 0.17h)z + 0.4− 0.14h (44)

are positive. For h = h we have h < 2.857.

Step 2. Using (30) we obtain

A1+ khB1C1 =

[
0.4 + 0.05h 0.2 + 0.1h
0.25 + 0.06h 0.5 + 0.12h

]
(45)

and the maximal value of h for which the matrix is
asymptotically stable is h < 1.866, since for this value
the coefficients of the polynomial

det[I2(z + 1)−A1 − khB1C1]

= z2 + (1.1− 0.17h)z + 0.25− 0.134h
(46)
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are positive. For h = h we have h < 2.857.

Step 3. Using (35) and the results of Steps 1 and 2 we
obtain

h = min(h, h) = min (2.857, 1.866) = 1.866. (47)

Therefore, the nonlinear system is globally stable for h <
1.866. �

5. Concluding remarks

The global stability of positive discrete-time nonlinear
feedback systems with interval state matrices has been
investigated. New sufficient conditions for the global
stability of the class of positive nonlinear systems
(Theorem 6) have been established. A procedure for
computation of the value of the positive scalar feedback
coefficient for which the nonlinear feedback system with
the interval state matrix is globally stable has been
proposed. The effectiveness of these new stability
conditions has been demonstrated on the simple example
of positive nonlinear systems with interval state matrices.
The considerations can be extended to nonlinear feedback
fractional systems.
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