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Mobile edge computing (MEC) is one of the key technologies to achieve high bandwidth, low latency and reliable service
in fifth generation (5G) networks. In order to better evaluate the performance of the probabilistic offloading strategy in a
MEC system, we give a modeling method to capture the stochastic behavior of tasks based on a multi-source fluid queue.
Considering multiple mobile devices (MDs) in a MEC system, we build a multi-source fluid queue to model the tasks
offloaded to the MEC server. We give an approach to analyze the fluid queue driven by multiple independent heterogeneous
finite-state birth-and-death processes (BDPs) and present the cumulative distribution function (CDF) of the edge buffer
content. Then, we evaluate the performance measures in terms of the utilization of the MEC server, the expected edge
buffer content and the average response time of a task. Finally, we provide numerical results with some analysis to illustrate
the feasibility of the stochastic model built in this paper.
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1. Introduction

The fifth generation (5G) era is approaching, various
application scenarios and differentiated service demands
are challenging 5G networks in terms of throughput,
latency and reliability (Liu et al., 2020; Razaque et al.,
2021). Mobile edge computing (MEC) is one of the
key technologies to achieve high bandwidth, low latency
and reliable services in 5G networks. By deploying
resources of computing, storage and service at the edge of
the network, MEC enables the central network to reduce
congestion and effectively respond to users’ requests.
Since MEC is located within the radio access network
and close to the mobile users, higher bandwidth and lower
latency can be achieved to meet users’ quality-of-service
(QoS) requirements.

With the rapid development and widespread use
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of the Internet of everything (IoE), more and more
mobile devices (MDs), such as mobile phones, tablets
and wearable health devices (Goścień and Walkowiak,
2017), are becoming part of the IoE. In this context,
a variety of applications, such as connected cars,
augmented reality and interactive games, have emerged.
Some computation-intensive applications running on the
MDs require a large amount of computing and storage
resources (Hassan et al., 2015), and accelerate the power
consumption of the MDs. However, due to limited battery
power, computing capacity and cache size, MDs cannot
provide enough resources to achieve satisfactory service
(Bai et al., 2020; Lim et al., 2020).

A possible way to overcome this problem is to
offload part of tasks to other servers (Mukherjee et al.,
2020). The existing task offloading strategies include
the Lyapunov optimization-based offloading decision
and resource allocation strategy (Wu et al., 2020), the
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deep reinforcement learning-based dynamic offloading
strategy (Xu et al., 2020), the probabilistic offloading
strategy (Bista et al., 2020), etc. Traditional mobile
cloud computing (MCC) uploads tasks to powerful cloud
servers for processing. The major limitations of MCC
are the privacy protection, the energy consumption and
the latency experienced in reaching the cloud provider
through a wide area network (WAN). By using MEC,
tasks can be offloaded to nearby edge servers, which
satisfies the requirements of high bandwidth, low latency
and reliable service. MEC has been applied to a variety of
scenarios, such as cyber-physical systems (CPSs) (Song
et al., 2021) and the Internet of vehicles (IoV) (Xu
et al., 2020).

In this paper, considering a MEC system with
multiple MDs and a single MEC server, we propose
a MEC architecture to investigate the probabilistic
offloading strategy. By using a multi-source fluid queue,
we propose a modeling method to capture the stochastic
behavior of tasks, and present an analytic process for the
cumulative distribution function (CDF) of the edge buffer
content.

The contributions and main results of this paper are
summarized as follows:

1. According to the probabilistic offloading strategy,
we give a MEC architecture composed of multiple
MDs sharing one MEC server, and give a modeling
method to capture the stochastic behavior of tasks
based on multi-source fluid queue.

2. We set forth an approach to analyze the fluid
queue driven by multiple independent heterogeneous
birth-and-death processes (BDPs), and present the
CDF of the edge buffer content. Then, we derive
performance measures in terms of the utilization of
the MEC server, the expected edge buffer content and
the average response time of a task.

3. By considering a MEC system composed of two
MDs as an example, we present the CDF of the
edge buffer content in closed form, and carry
out numerical results with analysis to investigate
the impacts of system parameters on the system
performance.

The outline of the paper is as follows: Section
2 surveys related works. The architecture of the
MEC system with the probabilistic offloading strategy
is presented in Section 3. In Section 4, we present
an analytical approach to derive the fluid queue driven
by multiple independent heterogeneous BDPs. By
considering a special case with two MDs, we present
the CDF of the edge buffer content in Section 5.
Section 6 gives the performance measures and numerical
illustrations to evaluate the feasibility of the multi-source

fluid queue model. Finally, conclusions are summarized
in Section 7.

2. Related works

Since the emergence of MEC, task offloading has always
been one of the hot research spots in related fields. In
the available research, investigations on the performance
evaluation of task offloading in MEC are mainly based on
the traditional queueing theory.

By applying M/G/1 and M/G/m queues, Li (2019)
established a system model for multiple user equipments
(UEs) and a single MEC to derive the average response
time and the average power consumption of each UE
and the MEC. Cardellini et al. (2016) considered a
three-tier network structure, and modeled the MD and
the cloudlet as two M/G/1/PS queues to capture the
resources contention on these two systems. Li and Jin
(2021) built a MEC architecture with a heterogeneous
edge and applied M/M/1, M/M/c and M/M/∞ queues
to capture the execution process of tasks. Zhao et al.
(2017) studied a scheduling problem for heterogeneous
clouds, including an edge cloud and a remote cloud, and
modeled the edge cloud with multiple virtual machines
(VMs) as M/M/1 queues to optimize offloading decisions
and computational resource allocation. Nouri et al. (2020)
considered a two-tier heterogeneous network in MEC, and
applied M/M/1 and M/M/c queues to evaluate delay and
energy consumption.

In the above research, the arrival and the departure
of tasks are regarded as discrete events, which fits the
discrete nature of the traditional queueing model. At
present, the research of queueing theory mainly focuses
on the discrete-event queueing model (Zeifman et al.,
2018; 2020). In high-speed communication networks,
the scale and the speed of network communication are
increasing. Applying traditional discrete-event queueing
models to modern networks has become increasingly
complicated. The discrete systems are approaching the
corresponding continuous systems. As a result, fluid
queue models have drawn attention and been applied in
modern communication networks.

In a fluid queue model, fluid flows into and out of
the buffer according to a random process in the external
environment, similar to the arrival and the departure of
customers in a traditional queueing model. The input of
the fluid buffer can be a single ON-OFF source or multiple
ON-OFF sources.

Theoretical research on single-source fluid queues
has been well studied. Virtamo and Norros (1994)
first investigated a fluid queue model in which the
driven process is an M/M/1 queue. Sericola et al.
(2005) analyzed the transient distribution of the fluid
queue driven by an M/M/1 queue. Mao et al. (2012)
studied a fluid model driven by an M/M/1 queue with
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multiple exponential vacations and N -policy. Lenin and
Parthasarathy (2000) studied a fluid queue driven by an
M/M/1/N queue, and derived closed-form expressions
for the eigenvalues and eigenvectors of the underlying
tridiagonal matrix.

Single-source fluid queues have also come into use in
modern communication networks. By using the spectral
analysis method, Arunachalam et al. (2010) applied a
fluid queue driven by two independent BDPs to a wireless
network based on the IEEE 802.11 standard. They derived
the buffer occupancy distribution of an intermediate node
in which the inflow rate is determined by one BDP and the
outflow rate is determined by another BDP. El-Baz et al.
(2020) modeled a cloud storage facility as a fluid queue
driven by an M/M/1/N queue, and obtained the analytical
solution of the distribution of the buffer occupancy.

In practice, multiple clients are served by a single
server, multiple users are served by a single base station,
and so on. Therefore, it is necessary to extend the
single-source fluid queues to multi-source fluid queues
when modeling wireless communication networks.

Most available studies on multi-source fluid queue
are based on the work of Anick et al. (1982). They
established a fluid queue model to study a data-handling
switch with N sources and a single channel. Each source
independently and asynchronously alternates between ON
and OFF states. The inflow rate of the fluid buffer is
determined by an M/M/N /N /N queue. Mitra (1988)
extended the fluid queue model to the case of multiple
input sources and multiple output lines. Elwalid and
Mitra (1995) studied a fluid queue model with two
buffers and two classes of sources to model an ATM
system with different QoS requirements. Kim and Krunz
(2000) considered the traffic sources as ON-OFF sources,
and investigated the packet loss performance using the
Chernoff dominant eigenvalue (CDE) method for the case
where several streams are multiplexed onto one wireless
link.

In the multi-source fluid queues above, the ON
period and the OFF period are specialized to follow
exponential distributions. For the case ofN homogeneous
ON-OFF sources, the number of ON sources behaves
like the number of customers in an M/M/N /N /N queue.
Therefore, the inflow rate of the fluid buffer is determined
by a BDP.

In this paper, we consider a MEC system with
multiple MDs and a single MEC server. We establish
two single-server queues for an MD, one for the local
processing unit and another for the network adapter.
We treat the task flow output from the network adapter
of an MD as an ON-OFF source generated by the
single-server queue. The ON period is in fact the
busy period of the single-server queue for the network
adapter. Obviously, the ON period no longer follows
an exponential distribution. Therefore, the classical
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Fig. 1. Architecture of the MEC system.

multi-source fluid queue models are not applicable to the
MEC system considered in this paper. In order to capture
the stochastic behavior of tasks offloaded to the MEC
server, we build a multi-source fluid queue, in which the
inflow rate of the edge buffer is determined by multiple
BDPs. We give an approach to analyze the fluid queue
driven by multiple independent heterogeneous BDPs, and
present the CDF of the edge buffer content in closed
form. Finally, we evaluate the performance measures of
the probabilistic offloading strategy in the MEC system in
terms of the utilization of the MEC server, the expected
edge buffer content and the average response time of a
task.

3. System model

3.1. Architecture of the MEC system with the proba-
bilistic offloading strategy. From a functional point of
view, the MEC is a distributed computing system where
MEC servers collaborate to provide services to MDs.
In this paper, we focus on one of the physical nodes
in the distributed system to investigate the probabilistic
offloading strategy. For this, we consider a MEC system
composed of K (1 ≤ K < ∞) MDs sharing one MEC
server. The architecture of the MEC system is illustrated
in Fig. 1.

The set of MDs in the MEC system is denoted
by K = {1, 2, . . . ,K}. For the k-th MD, denoted
by MDk (k ∈ K), we focus on two components: the
local processing unit and the network adapter. A single
buffer with great capacity and a single-core processor are
deployed on the local processing unit. In order to optimize
the response performance of the MEC system, we set an
access threshold Nk (Nk > 0) for the network adapter.
This means that when the number of tasks on the network
adapter has reached Nk, i.e., the number of tasks waiting
in the buffer has reached Nk − 1, the newly offloaded
tasks will be discarded. We consider the probabilistic
offloading strategy based on binary offloading in which
tasks can only be executed locally as a whole or offloaded
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to the MEC server. The tasks generated on the MDk

are allocated to the local processing unit with probability
pk (0 < pk < 1), or offloaded to the MEC server with
probability p̄k = 1− pk.

In order to better evaluate the performance of the
MEC system, we build a system model composed of a
local processing model and an edge offloading model.

3.2. Local processing model. Tasks allocated to the
local processing unit are executed on the processor at the
local processing unit. Based on the execution process of
tasks on the local processing unit at MDk (k ∈ K), we
establish a local processing model.

The generation of tasks at the MDk is supposed to
follow a Poisson process with arrival rate λ(s)k . Tasks
allocated to the local processing unit first queue in the
buffer waiting to get service. Following a first-come
first-served (FCFS) policy, the processor serves one task at
a time. We assume that the service time of a task follows
an exponential distribution with parameter μk. Therefore,
we model the local processing unit of MDk as an M/M/1
queue, where the arrival rate is λk = pkλ

(s)
k and the

service rate is μk.

3.3. Edge offloading model. Tasks to be offloaded first
queue in the network adapter at MD, and then transmit to
the MEC server over the wireless channel, such as cellular
mobile network and Wi-Fi network. Tasks departing from
all the MDs will gather at the MEC server. Based on the
traffic flows of the offloaded tasks, we establish an edge
offloading model.

For MDk, when a task arrives at the network adapter
and the number of tasks in the buffer is less than Nk − 1,
i.e., the number of tasks on the network adapter does not
reach the threshold Nk, the task will queue in the buffer
to get service following an FCFS policy. Since the task
arrives at the network adapter is a branch of the Poisson
process with arrival rate λ(s)k , the task that arrives at the
network adapter follows a Poisson process with arrival
rate λ̃k = p̄kλ

(s)
k . We assume that the service time of

a task at the local network adapter follows an exponential
distribution with parameter μ̃k.

Let Yk(t) denote the number of tasks on the network
adapter of MDk at time t. Based on the analysis before,
{Yk(t), t ≥ 0} is a BDP with a finite state space Sk =
{0, 1, 2, . . . , Nk}. The birth rate and the death rate of the
BDP {Yk(t), t ≥ 0} are λ̃k and μ̃k, respectively. Let

π
(k)
j denote the steady-state probability that the number

of tasks on the network adapter is j (j ∈ Sk). Then

π
(k)
j = lim

t→∞P{Yk(t) = j}. (1)

After getting processed by the local network adapter,
a task will be transmitted to the MEC server over the

wireless network. In practice, the size of an individual
task is usually very small compared with the capacity of
the buffer on the MEC server, called the edge buffer. The
size of an individual task is not important to evaluate the
edge buffer content. Therefore, for the tasks offloaded to
the edge, we are not concerned with the processing of an
individual task, but with the processing of the task flow.
We regard a task flow output from a network adapter and
injected into the edge buffer as a continuous fluid with ON
and OFF periods. If a task is leaving the network adapter,
the fluid is in ON state, otherwise it is in OFF state. The
fluid output from the network adapter at MDk is defined
by the rate

RYk(t) =

{
μ̃k, Yk(t) > 0,

0, Yk(t) = 0.
(2)

Through the wireless networks, the fluid outputs
from all the local network adapters inject into the edge
buffer waiting to get service. We assume that the fluids
receive services from the MEC server at a constant service
rate c, and output from the MEC system. We ignore the
discrete nature of the task flow, and treat a task flow output
from a network adapter as a fluid. Therefore, the edge
offloading model can be considered as a fluid queue with
multiple sources. The fluid queue is modulated by K
independent heterogeneous BDPs.

The inflow rate of the edge buffer is determined by
all the BDPs {Yk(t), t ≥ 0} (k ∈ K), and the outflow
rate is constant c. Therefore, we obtain a continuous-time
Markov chain (CTMC) {Z(t), t ≥ 0}, where Z(t) =
(Y1(t), Y2(t), . . . , YK(t)). The state space of {Z(t), t ≥
0} is given as S = S1×S2×· · ·×SK , where the symbol
× indicates the Cartesian product.

4. Model analysis of the fluid queue

As discussed in Section 3, we obtain a fluid queue driven
by the CTMC {Z(t), t ≥ 0} with an infinite edge buffer
content. The change rate of the edge buffer content is
determined by the state of {Z(t), t ≥ 0} and the outflow
rate c of the edge buffer. In this section, we obtain the
steady-state condition of the fluid queue, and present the
CDF of the edge buffer content.

4.1. Steady-state condition of the fluid queue. Let
π(i1,i2,...,iK) be the steady-state probability that Z(t) is in
state (i1, i2, . . . , iK). We have

π(i1,i2,...,iK) = lim
t→∞P{Z(t) = (i1, i2, . . . , iK)}

= π
(1)
i1
π
(2)
i2
. . . π

(K)
iK

,

(i1, i2, . . . , iK) ∈ S,

(3)

where π(k)
ik

(k ∈ K) is given in Eqn. (1).
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By arranging the states of the CTMC {Z(t), t ≥
0} in lexicographic order, the steady-state probability
distribution of {Z(t), t ≥ 0} can be written down as

π = (π(0,0,...,0), π(0,0,...,1), . . . , π(N1,N2,...,NK))
T, (4)

where ‘T’ stands for the a transpose operation.
We denote by Q the infinitesimal generator of the

CTMC {Z(t), t ≥ 0} which is assumed to be irreducible.
The inflow rate RZ(t) of the fluid queue is

determined by the CTMC {Z(t), t ≥ 0}. It is calculated
as follows:

RZ(t) =
∑
k∈K

RYk(t), (5)

where RYk(t) is given by Eqn. (2).
Equation (5) implies that, at time t, some fluids are

in ON state and others are in OFF state. The inflow rate
RZ(t) of the edge buffer is the sum of all the output rates
for the fluids in the ON state. We define the net inflow
rate rZ(t) as the difference between inflow rate RZ(t) and
outflow rate c. Here rZ(t) is assumed to be either positive
or negative and can be calculated as

rZ(t) = RZ(t) − c. (6)

Each state of the CTMC {Z(t), t ≥ 0} has a drift
value r(i1,i2,...,iK), r(i1,i2,...,iK) �= 0. We note that there
is at least one r(i1,i2,...,iK) > 0. Otherwise, the edge
buffer will remain empty all the time. Depending on
r(i1,i2,...,iK), the states of {Z(t), t ≥ 0} are classified into
over-load states S+ and under-load states S− as follows:

S+ = {(i1, i2, . . . , iK) ∈ S|r(i1,i2,...,iK) > 0},
S− = {(i1, i2, . . . , iK) ∈ S|r(i1,i2,...,iK) < 0}. (7)

Let s+ = |S+|, s− = |S−| and s = |S|. Obviously,
S = S+ ∪ S− and s = s+ + s− = (N1 + 1)(N2 +
1) . . . (NK + 1).

LetC(t) be the edge buffer content of the fluid queue
at time t. Clearly,C(t) is a non-negative random variable.
It is determined by the net inflow rate rZ(t). We can obtain
the differential equation of C(t) as follows:

dC(t)

dt
=

{
rZ(t), C(t) > 0,

0, C(t) = 0, rZ(t) < 0.
(8)

Equation (8) implies that when the edge buffer is
not empty, the edge buffer content C(t) varies at rate
rZ(t); when the edge buffer content reaches zero and the
net inflow rate rZ(t) is negative, the edge buffer remains
empty until rZ(t) becomes positive.

In order to guarantee the convergence and stability
of the distribution of C(t), the steady-state net inflow rate
should be negative. The steady-state condition of the fluid
queue with multiple sources considered in this paper can

be written as follows:

d =
∑

(i1,i2,...,iK)∈S

r(i1,i2,...,iK )π(i1,i2,...,iK ) < 0, (9)

where d is called the mean drift of the fluid queue. In the
following analysis, this steady-state condition is assumed
to be constantly satisfied.

4.2. Edge buffer content distribution. Let
F(i1,i2,...,iK)(t, x) be the instantaneous joint distribution
function of the (K + 1)-dimensional Markov process
{(Z(t), C(t)), t ≥ 0}. F(i1,i2,...,iK)(t, x) can be written
as follows:

F(i1,i2,...,iK)(t, x)

=P{Z(t) = (i1, i2, . . . , iK), C(t) ≤ x},
(i1, i2, . . . , iK) ∈ S, x ≥ 0.

(10)

When the Markov process {(Z(t), C(t)), t ≥ 0}
is stable, its steady-state random variable is denoted
by (Z,C). The steady-state joint distribution function
F(i1,i2,...,iK)(x) can be given as follows:

F(i1,i2,...,iK)(x) = lim
t→∞F(i1,i2,...,iK)(t, x). (11)

By arranging the states of the CTMC {Z(t), t ≥ 0}
in lexicographic order, we introduce the vector

F (x) = (F(0,0,...,0)(x), F(0,0,...,1)(x),

. . . , F(N1,N2,...,NK)(x))
T.

(12)

Then the system of ordinary differential equations
can be written in a matrix form as follows:

Λ
d

dx
F (x) = QTF (x), (13)

where Λ is a diagonal matrix, called the rate matrix.
The diagonal elements are the drift values of the states
arranged in lexicographic order. Λ can be given as
follows:

Λ = diag (r(0,0,...,0), r(0,0,...,1), . . . , r(N1,N2,...,NK)).
(14)

When the drift value is positive, the edge buffer
content must increase, so the boundary conditions can be
given as follows:

F(i1,i2,...,iK)(0) = 0, (i1, i2, . . . , iK) ∈ S+, (15)

where S+ is defined in Eqn. (7).

F(i1,i2,...,iK)(∞) = lim
x→∞F(i1,i2,...,iK)(x)

= π(i1,i2,...,iK).
(16)

By solving this system of ordinary differential
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equations with boundary conditions, we can derive the
steady-state joint distribution function of the Markov
process {(Z(t), C(t)), t ≥ 0} and hence the CDF of the
edge buffer content.

Lemma 1. The following results hold for matrix
Λ−1QT:

1. Matrix Λ−1QT has s eigenvalues, denoted by
ξ1, ξ2, . . . , ξs.

2. One of the eigenvalues for matrixΛ−1QT is zero.

3. The numbers of eigenvalues with negative and posi-
tive real parts for matrixΛ−1QT are s+ and s−−1,
respectively.

According to Lemma 1, we order the real parts of the
eigenvalues for matrixΛ−1QT as follows:

Re(ξ1)> Re(ξ2)> . . .> Re(ξs−−1)> Re(ξs−) = 0

> Re(ξs−+1) > · · · > Re(ξs).
(17)

The set of numbers {ξj , j = 1, 2, . . . , s} is called the
spectrum of the fluid queue. The general solution of
Eqn. (13) can be expressed as follows:

F (x) =

s∑
j=1

aje
ξjxψj , (18)

where

ψj = (ψ
(0,0,...,0)
j , ψ

(0,0,...,1)
j , . . . , ψ

(N1,N2,...,NK)
j )T,

j ∈ {1, 2, . . . , s}

is the eigenvector corresponding to the eigenvalue ξj .
Since F (x) is a probability vector, aj satisfies the

condition Re(ξj) > 0 ⇒ aj = 0. Otherwise, the solution
of Eqn. (13) will increase at an exponential rate, and the
fluid queue will no longer be stable. Then, according to
Eqn. (17), we can simplify Eqn. (18) as follows:

F (x) =

s∑
j=s−

aje
ξjxψj . (19)

The coefficients aj , j ∈ {1, 2, . . . , s} are determined
by the boundary conditions. According to the boundary
condition given in Eqn. (16), we have as−ψs− = π,
where π is given in Eqn. (4). The remaining coefficients
can be determined by the boundary condition given in
Eqn. (15). According to Eqns. (15) and (16), Eqn. (19)
can be written as follows:

π(i1,i2,...,iK) +

s∑
j=s−+1

ajψ
(i1,i2,...,iK)
j = 0,

(i1, i2, . . . , iK) ∈ S+.

(20)

The system of linear equations in Eqn. (20) can be
written in a matrix form as Ψx = τ . In the fluid
queue with multiple sources, when the number of sources
increases, the number of sources in the ON state increases
accordingly. This may lead to an increase in the number
s+ of the over-load states S+. From Eqns. (7) and
(20), we note that the increase in s+ leads to an increase
in the size of the matrix equation, which may lead to
ill-behaved numerical results (Kulkarni, 1997; Fiedler and
Voos, 2000).

We first apply the so-called Gaussian transformation
to get a positive definite matrix. The matrix equation
Ψx = τ can be replaced with Ψ̂x = τ̂ , where
Ψ̂ = ΨTΨ and τ̂ = ΨTτ . Then, in order to reduce
the condition number of the matrix Ψ̂ , we perform an
incomplete Cholesky (IC) factorization for the matrix to
obtain the preconditioner M = LLT ≈ Ψ̂ , where
cond (M−1Ψ̂ ) 
 cond (Ψ̂ ). The matrix equation can
be further converted to L−1Ψ̂L−Tx̂ = L−1τ̂ , where
x̂ = LTx. The process of using the conjugate gradient
(CG) method to solve the new matrix equation is called the
incomplete Cholesky conjugate gradient (ICCG) method.
The ICCG method is given as Algorithm 1.

Let F (x) and F̄ (x) be the CDF and the residual CDF
of the edge buffer content C(t), respectively. We have

F (x) = lim
t→∞P{C(t) ≤ x}, (21)

F̄ (x) = 1− F (x). (22)

Equation (21) can be expressed as follows:

F (x) = esF (x), (23)

where es is the s-dimensional row vector of ones.

Algorithm 1. ICCG method.
Require: Ψ , τ , x0

1: Calculate Ψ̂ = ΨTΨ , τ̂ = ΨTτ ;
2: Do the incomplete Cholesky (IC) factorization of Ψ̂ ,
Ψ̂ ≈ LLT;

3: Initialize k = 0, r0 = τ̂ − Ψ̂x0, r̂0 = L−1r0, P0 =
L−Tr̂0;

4: while ‖ r̂k ‖2> ε do
5: αk = (r̂k, r̂k)/(Ψ̂Pk,Pk);
6: xk+1 = xk + αkPk;
7: r̂k+1 = r̂k − αkL

−1Ψ̂Pk;
8: βk = (r̂k+1, r̂k+1)/(r̂k, r̂k);
9: Pk+1 = L−Tr̂k+1 + βkPk;

10: k = k + 1.
11: end while
12: return xk
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Fig. 2. State transition of the CTMC {Z(t), t ≥ 0}.

According to Eqns. (19) and (23),

F (x) = 1 +

s∑
j=s−+1

aje
ξjxesψj . (24)

5. Special case with two MDs

For a MEC system composed of two MDs, MD1 and
MD2, sharing one MEC server, we present the CDF of
the edge buffer content following the analytical procedure
in Section 4.

We establish BDPs {Y1(t), t ≥ 0} and {Y2(t), t ≥
0} to model the processing of tasks on the network adapter
at MD1 and MD2, respectively. Furthermore, we obtain a
CTMC {Z(t), t ≥ 0} with state space

S = {(0, 0), . . . , (0, N2), (1, 0), . . . , (1, N2),

. . . , (N1, 0), . . . , (N1, N2)}.
(25)

The state transition of the CTMC {Z(t), t ≥ 0} is
illustrated in Fig. 2.

From Eqn. (25), we note that the CTMC {Z(t), t ≥
0} has s = (N1+1)(N2+1) states. According to Eqn. (3),
the steady-state probability π(i1,i2) that Z(t) is in state
(i1, i2) ∈ S can be written as follows:

π(i1,i2) = lim
t→∞P{Z(t) = (i1, i2)} = π

(1)
i1
π
(2)
i2
. (26)

The infinitesimal generator of the CTMC {Z(t), t ≥

0} is given as follows:

Q =

⎡
⎢⎢⎢⎢⎢⎣

A0 C
B A C

. . .
. . .

. . .
B A C

B AN1

⎤
⎥⎥⎥⎥⎥⎦
s×s

, (27)

where each submatrix is a square matrix of dimension
(N2 + 1) × (N2 + 1). A0, A, AN1 , B and C are given
as follows:

A0 =

⎡
⎢⎢⎢⎣

−(λ̃1+λ̃2) λ̃2

μ̃2 −(λ̃1+λ̃2+μ̃2) λ̃2

. . .
. . .

. . .
μ̃2 −(λ̃1+λ̃2+μ̃2) λ̃2

μ̃2 −(λ̃1+μ̃2)

⎤
⎥⎥⎥⎦,

A =⎡
⎢⎢⎢⎣

−(̃λ1+λ̃2+μ̃1) λ̃2

μ̃2 −(̃λ1+̃λ2+μ̃1+μ̃2) λ̃2

. . .
. . .

. . .
μ̃2 −(̃λ1+̃λ2+μ̃1+μ̃2) λ̃2

μ̃2 −(̃λ1+μ̃1+μ̃2)

⎤
⎥⎥⎥⎦,

AN1 =

⎡
⎢⎢⎣

−(λ̃2+μ̃1) λ̃2

μ̃2 −(λ̃2+μ̃1+μ̃2) λ̃2

. . .
. . .

. . .
μ̃2 −(λ̃2+μ̃1+μ̃2) λ̃2

μ̃2 −(μ̃1+μ̃2)

⎤
⎥⎥⎦,

B = diag (μ̃1), C = diag (λ̃1).

We assume that μ̃1 > μ̃2 > c; then, according to
Eqn. (6), the drift value r(i1,i2), (i1, i2) ∈ S can be given
as follows:

r(i1,i2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−c, i1 = i2 = 0,

μ̃1 − c, i1 > 0, i2 = 0,

μ̃2 − c, i1 = 0, i2 > 0,

μ̃1 + μ̃2 − c, i1 > 0, i2 > 0.

(28)

Based on the value of r(i1,i2), we classify the states
of the CTMC {Z(t), t ≥ 0} into under-load states
S− = {(0, 0)} and over-load states S+ = S\{(0, 0)}.
Obviously, the numbers of elements in S− and S+ are
s− = 1 and s+ = s− 1, respectively.

From Eqns. (9), (26) and (28), the steady-state
condition of the fluid queue can be written as follows:

d = −cπ(0,0) + (μ̃1 − c)

N1∑
i1=1

π(i1,0)

+ (μ̃2 − c)

N2∑
i2=1

π(0,i2)
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+ (μ̃1 + μ̃2 − c)

N1∑
i1=1

N2∑
i2=1

π(i1,i2) < 0. (29)

According to Eqn. (13), the system of ordinary
differential equations for the fluid queue is given in a
matrix form as follows:

Λ
d

dx
F (x) = QTF (x), (30)

whereQ is given in Eqn. (27), and according to Eqn. (12),
F (x) is given as follows:

F (x) = (F(0,0)(x), . . . , F(0,N2)(x), . . . ,

F(N1,0)(x), . . . , F(N1,N2)(x))
T.

(31)

From Eqns. (14) and (28),

Λ =

⎡
⎢⎢⎢⎣
Λ0

Λ1

. . .
Λ1

⎤
⎥⎥⎥⎦
s×s

,

Λ0 = diag (−c, μ̃2 − c, . . . )(N2+1)×(N2+1),

Λ1 = diag (μ̃1 − c, μ̃1 + μ̃2 − c, . . . )(N2+1)×(N2+1).

Based on Eqns. (15) and (16), we define the boundary
conditions for the system of ordinary differential
equations given in Eqn. (30) as follows:

F(i1,i2)(0) = 0, (i1, i2) ∈ S+, (32)

F(i1,i2)(∞) = π(i1,i2), (i1, i2) ∈ S. (33)

From Eqns. (19) and (33), it follows that

F (x) =

s∑
j=1

aje
ξjxψj = π +

s∑
j=2

aje
ξjxψj , (34)

where

π = (π(0,0), . . . , π(0,N2), . . . , π(N1,0), . . . , π(N1,N2))
T.

According to Eqns. (20) and (32), the coefficients
aj , j ∈ [2, s] can be given by solving the following
system of linear equations:

π(i1,i2) +

s∑
j=2

ajψ
(i1,i2)
j = 0, (i1, i2) ∈ S+. (35)

The system of linear equations (35) can be written in

matrix form as follows:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ
(0,1)
2 ψ

(0,1)
3 · · · ψ

(0,1)
s

...
...

. . .
...

ψ
(0,N2)
2 ψ

(0,N2)
3 · · · ψ

(0,N2)
s

...
...

. . .
...

ψ
(N1,0)
2 ψ

(N1,0)
3 · · · ψ

(N1,0)
s

...
...

. . .
...

ψ
(N1,N2)
2 ψ

(N1,N2)
3 · · · ψ

(N1,N2)
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2
...

a(N2+1)

...
aN1(N2+1)+1

...
as

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−π(0,1)
...

−π(0,N2)

...
−π(N1,0)

...
−π(N1,N2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (36)

Applying Algorithm 1 to solve Eqn. (36), we can
obtain the coefficients aj , j ∈ [2, s]. Then, according to
Eqns. (31) and (34), the CDF F (x) of the edge buffer
content can be given as follows:

F (x) = esF (x) = 1 +

s∑
j=2

aje
ξjxesψj . (37)

6. Performance measures and numerical
results

In this section, we evaluate the probabilistic offloading
strategy in the MEC system in terms of the utilization
of the MEC server, the expected edge buffer content and
the average response time of a task. Then, we present
numerical results to demonstrate the impact of system
parameters on these performance measures.

6.1. Performance measures. We define the utilization
Us of the MEC server as the probability that the MEC
server is busy. For the fluid queue model considered in
this paper, the utilization Us of the MEC server is the
probability that the edge buffer is non-empty.

Based on the CDF of the edge buffer content given
in Section 4, we compute the utilization Us of the MEC
server as follows:

Us = 1− F (0), (38)

where F (0) can be obtained by Eqn. (24).
We define the expected edge buffer content E[C] as

the average number of tasks in the edge buffer.
Based on the CDF of the edge buffer content given in
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Section 4, we deduce the expected edge buffer content

E[C] =

∫ ∞

0

F̄ (x) dx

=

s∑
j=s−+1

aj
ξj
esψj ,

(39)

where F̄ (x) is defined in Eqn. (22).

We define the average response time E[Tk] of a task
generated on the MDk as the average duration from the
epoch a task is generated on the MDk to the epoch this
task is completely executed on the local processing unit
or the MEC server.

For a task executed on the local processing unit,
called the local task, the response time is the duration from
the instant of a task arriving at the local processing unit to
the instant of the task departing from the local processing
unit.

Applying the analysis result of the M/M/1 queue, we
give the average response time E[T

(l)
k ] of a local task

generated on the MDk as follows:

E[T
(l)
k ] =

1

μk − λk
. (40)

For a task offloaded to the MEC server, called
the offloaded task, the response time is the sum of the
processing time on the network adapter, the propagation
delay from the MD to the MEC server and the processing
time on the MEC server. In a MEC system, the distance
from the MD to the MEC server is relatively close; in this
paper, we ignore the propagation delay from the MD to
the MEC server.

Applying the analysis result of the M/M/1/Nk queue,
for an offloaded task generated on the MDk, we get the
average processing time on the network adapter

t
(l)
k =

1

μ̃k(1− ρ̃k)
− Nkρ̃

Nk

k

μ̃k(1 − ρ̃Nk

k )
, (41)

where ρ̃k = λ̃k/μ̃k.

According to Little’s law, the average processing
time of an offloaded task on the MEC server is

t(e) =
E[C]

λin
, (42)

where

λin =
∑

(i1,i2,...,iK)∈S

R(i1,i2,...,iK)π(i1,i2,...,iK)

is the mean inflow rate of the edge buffer content.

Combing Eqns. (41) and (42), the average response

time of an offloaded task generated on the MDk is

E[T
(e)
k ] = t

(l)
k + t(e)

=
1

μ̃k(1 − ρ̃k)
− Nkρ̃

Nk

k

μ̃k(1− ρ̃Nk

k )

+
E[C]∑

(i1,i2,...,iK)∈S R(i1,i2,...,iK)π(i1,i2,...,iK)
.

(43)
A task generated on the MDk is allocated to the local

processing unit with probability pk, or offloaded to the
MEC server with probability p̄k = 1 − pk. Combining
Eqns. (40) and (43), we obtain the average response time
of a task generated on the MDk

E[Tk] = pkE[T
(l)
k ] + p̄kE[T

(e)
k ]

=
pk

μk − λk
+

(
1

μ̃k(1− ρ̃k)
− Nkρ̃

Nk

k

μ̃k(1− ρ̃Nk

k )

)
p̄k

+

(
E[C]∑

(i1,i2,...,iK)∈SR(i1,i2,...,iK)π(i1,i2,...,iK)

)
p̄k.

(44)

6.2. Numerical results. We consider a MEC
system composed of two MDs and carry out numerical
experiments complemented with some analysis of the
impact of system parameters on the system performance
in terms of the utilization of the MEC server, the expected
edge buffer content and the average response time of a
task. The results are obtained in Matlab 2016a based on
Eqns. (37)–(39) and (44). We note that the steady-state
constraints of the system under consideration are λ1 <
μ1, λ2 < μ2 and the mean drift d < 0. Under
these constraints, we carry out repeated experiments
with different parameters. As an example, we set the
parameters in Table 1. The parameter values in Table 1
are chosen only for the purpose of numerical illustration
of the closed-form results.

By setting the arrival rate λ(s)1 = λ
(s)
2 = λ(s) of tasks

generated on the MD1 and the MD2, we investigate the
impact of the arrival rate λ(s) of tasks on the CDF F (x)
of the edge buffer content with different service rate c of
a task on the MEC server in Fig. 3.

As can be seen from all the four subplots in Fig. 3,
the curve of the CDF F (x) increases monotonically and
takes values in the range (0, 1), which is consistent with
the probabilistic interpretation of the distribution function.
When the service rate c of a task on the MEC server is
fixed, the CDF F (x) of the edge buffer content decreases
with an increase in the arrival rate λ(s) of tasks.

The intersection of the curve with the vertical axis is
the probability that the edge buffer is empty, i.e., F (0) =
P{C = 0}. The numerical results of F (0) are shown in
Table 2.
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Table 1. Parameter settings.

Parameters Meaning Values

λ
(s)
1 Arrival rate of tasks generated on the MD1 [8, 12]

λ
(s)
2 Arrival rate of tasks generated on the MD2 [8, 12]
p1 Allocation rate of a task to the local processing unit at MD1 0.5
p2 Allocation rate of a task to the local processing unit at MD2 0.5
μ1 Service rate of a task on the local processing unit at MD1 20
μ2 Service rate of a task on the local processing unit at MD2 15
μ̃1 Service rate of a task on the network adapter at MD1 22
μ̃2 Service rate of a task on the network adapter at MD2 19
N1 Access threshold of the network adapter at MD1 6
N2 Access threshold of the network adapter at MD2 6
c Service rate of a task on the MEC server [14, 18]
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Fig. 3. CDF F (x) of the edge buffer content.

From Fig. 3 and Table 2, we find that when the
service rate c of a task on the MEC server is fixed, F (0)
decreases with an increase in the arrival rate λ(s) of tasks.
This is because an increase in the arrival rate λ(s) of tasks
leads to an increase in the number of tasks offloaded to the
MEC server and a decrease in the probability for the edge
buffer to be empty. When the arrival rate λ(s) of tasks is
fixed, F (0) increases with an increase in the service rate c

of a task on the MEC server. This is because an increase
in service rate c of a task on the MEC server leads to a
decrease in the edge buffer content and an increase in the
probability for the edge buffer to be empty.

Figure 4 and Table 3 depict the utilization Us of
the MEC server versus the arrival rate λ(s) of tasks for
different service rates c of a task on the MEC server.
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Table 2. Numerical results for F (0).
λ(s) = 8 λ(s) = 9 λ(s) = 10 λ(s) = 11 λ(s) = 12

c = 14 0.4312 0.3621 0.2946 0.2269 0.1585
c = 15 0.4684 0.4034 0.3398 0.2764 0.2117
c = 16 0.5011 0.4398 0.3792 0.3193 0.2586
c = 17 0.5301 0.4720 0.4146 0.3578 0.3001
c = 18 0.5560 0.5009 0.4463 0.3914 0.3374

Table 3. Numerical results for Us.
λ(s) = 8 λ(s) = 9 λ(s) = 10 λ(s) = 11 λ(s) = 12

c = 14 0.5688 0.6379 0.7054 0.7731 0.8415
c = 15 0.5317 0.5965 0.6605 0.7236 0.7883
c = 16 0.4989 0.5602 0.6207 0.6819 0.7414
c = 17 0.4699 0.5280 0.5852 0.6425 0.6999
c = 18 0.4440 0.4990 0.5537 0.6086 0.6626
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Fig. 4. Utilization of the MEC server.

From Fig. 4 and Table 3, we find that the utilization
Us of the MEC server is positively correlated with the
arrival rate λ(s) of tasks and negatively correlated with
service rate c of a task on the MEC server. This is in line
with our expectations. More task arrivals means a higher
load on the MEC server and higher utilization of the MEC
server. Greater service rate means a higher probability of
the edge buffer content being empty; hence the utilization
of the MEC server is lower.

Figure 5 and Table 4 depict the expected edge buffer
content E[C] versus the arrival rate λ(s) of tasks for
different service rates c of a task on the MEC server.

From Fig. 5 and Table 4, we find that the expected
edge buffer contentE[C] increases with an increase in the
arrival rate λ(s) of tasks and a decrease in service rate c of
a task on the MEC server, as predicted. This is because
an increase in the arrival rate of tasks or a decrease in
the service rate of a task on the MEC server leads to an
increase in the edge buffer content.
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Fig. 5. Expected edge buffer content.

Figure 6 and Table 5 depict the average response
timesE[T1] andE[T2] of a task generated on the MD1 and
the MD2 versus the arrival rate λ(s) of tasks for different
service rates c of a task on the MEC server.

From Fig. 6 and Table 5, we find that the average
response time E[T1] of a task generated on the MD1 is
smaller than the average response time E[T2] of a task
generated on the MD2 when the service rate c of a task
on the MEC server is fixed. This is due to the fact that
μ1 > μ2 and μ̃1 > μ̃2, i.e., the service rates of a task on
both the local processing unit and the network adapter at
MD1 are greater than that at MD2. The average response
time of a task increases with an increase in the arrival rate
λ(s) of tasks or a decrease in the service rate c of a task
on the MEC server. The reason is that if the arrival rate of
tasks is greater and the service rate of a task on the MEC
server is lower, the average response time of a task will be
larger.

To further illustrate the differences in all the
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Table 4. Numerical results of E[C].
λ(s) = 8 λ(s) = 9 λ(s) = 10 λ(s) = 11 λ(s) = 12

c = 14 0.8137 1.1615 1.6918 2.6113 4.5544
c = 15 0.6360 0.8902 1.2577 1.8283 2.8455
c = 16 0.5003 0.6931 0.9608 1.3639 1.9814
c = 17 0.3935 0.5430 0.7429 1.0306 1.4572
c = 18 0.3073 0.4240 0.5792 0.7993 1.1003

Table 5. Numerical results of E[T1] and E[T2].

(a) numerical results of E[T1]

λ(s) = 8 λ(s) = 9 λ(s) = 10 λ(s) = 11 λ(s) = 12
c = 14 0.1099 0.1254 0.1473 0.1835 0.2568
c = 15 0.0988 0.1103 0.1256 0.1479 0.1855
c = 16 0.0903 0.0993 0.1108 0.1268 0.1495
c = 17 0.0836 0.0910 0.0999 0.1116 0.1277
c = 18 0.0782 0.0844 0.0917 0.1011 0.1128

(b) numerical results of E[T2]

λ(s) = 8 λ(s) = 9 λ(s) = 10 λ(s) = 11 λ(s) = 12
c = 14 0.1296 0.1466 0.1703 0.2083 0.2837
c = 15 0.1185 0.1315 0.1486 0.1727 0.2125
c = 16 0.1100 0.1206 0.1337 0.1516 0.1765
c = 17 0.1034 0.1122 0.1228 0.1364 0.1546
c = 18 0.0980 0.1056 0.1146 0.1259 0.1397
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Fig. 6. Average response time of a task.

performance measures with different λ(s) and c, we
perform the one-sided Wilcoxon rank-sum test to
calculate p-values. By taking the numerical results for
F (0), Us, E[C], E[T1] and E[T2] with λ(s) = 8 and
c = 14 as the initial results, we make comparisons
between the distribution of the initial results and that of the
numerical results with increased λ(s) and c, respectively.
The p-values are shown in Table 6.

As can be seen from Table 6, the p-values for all the

performance measures gradually decrease as λ(s) and c
increase. This indicates that the difference between the
changed numerical results of each performance measure
and the initial results becomes more and more significant
as λ(s) and c increase. The arrival rate λ(s) of tasks has
a greater impact on each performance measure than the
service rate c of a task on the MEC server, due to the fact
that an increase in λ(s) leads to a simultaneous increase
in the arrival rate of tasks generated on both the MD1

and MD2.
The calculated p-values of F (0) and Us are equal to

each other, as shown in Table 6. According to Eqn. (38),
it can be seen that there is a linear relationship between
F (0) and Us. As λ(s) and c increase, F (0) and Us change
at the same rate but in opposite directions. The p-values
forE[C], E[T1] andE[T2] give the same results. It can be
seen from Figs. 5 and 6 that all of E[C], E[T1] and E[T2]
show the same exponential trend.

7. Conclusions

In this paper, we evaluated the probabilistic offloading
strategy in a MEC system composed of K (1 ≤ K <∞)
MDs sharing one MEC server. In a MEC system, the size
of an individual task is usually very small compared with
the capacity of the edge buffer. Therefore, for the tasks
offloaded to the edge, we were not concerned with the
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Table 6. p-Values calculated by the Wilcoxon rank-sum test.
λ(s) = 9 λ(s) = 10 λ(s) = 11 λ(s) = 12

F (0) 0.0754 * 0.0079 *** 0.0040 *** 0.0040 ***
Us 0.0754 * 0.0079 *** 0.0040 *** 0.0040 ***
E[C] 0.1111 0.0278 ** 0.0079 *** 0.0040 ***
E[T1] 0.1111 0.0278 ** 0.0079 *** 0.0040 ***
E[T2] 0.1111 0.0278 ** 0.0079 *** 0.0040 ***

c = 15 c = 16 c = 17 c = 18
F (0) 0.3452 0.1111 0.0754 * 0.0278 **
Us 0.3452 0.1111 0.0754 * 0.0278 **
E[C] 0.3452 0.1111 0.0278 ** 0.0079 ***
E[T1] 0.3452 0.1111 0.0278 ** 0.0079 ***
E[T2] 0.3452 0.1111 0.0278 ** 0.0079 ***

*** p-value< 0.01, ** p-value< 0.05, * p-value< 0.1

processing of an individual task, but with the processing
of the task flow, and regarded the task flow as a continuous
fluid. By extending the single background BDP to K
background BDPs, we proposed a modeling method to
capture the stochastic behavior of tasks and an analysis
approach to derive the multi-source fluid queue driven
by K independent heterogeneous BDPs. We presented
the CDF of the edge buffer content, and evaluated the
performance measures of the probabilistic offloading
strategy in the MEC system in terms of the utilization
of the MEC server, the expected edge buffer content and
the average response time of a task. As a special case,
we considered a MEC system composed of two MDs
and carried out numerical experiments accompanied by
an analysis. With numerical results, we investigated the
impact of the arrival rate of tasks on the performance of
the MEC system with different service rates of a task on
the MEC server.

In this paper, by considering a single MEC server,
we proposed a modeling approach for the probabilistic
offloading strategy based on a multi-source fluid queue.
We assumed that all tasks are offloaded to a single
physical node for processing, disregarding the distributed
nature of the MEC model. This is a limitation of our
research. As a future research direction, we will consider
a MEC system based on cloud-edge collaboration to
investigate task offloading strategies. In addition, we will
model a distributed MEC system by considering multiple
MEC servers and multiple MDs.
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