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1. Introduction

We investigate the clustering of 2D cross-sections of 3D
objects of revolution with respect to shape and size. We
do not tackle the problem of recognizing whether or not a
given 3D object is rotationally symmetric.

Clustering is used extensively in unsupervised
machine learning applications such as information
retrieval and natural language understanding as well as
in numerous fields such as economics, biology, medicine,
physics (Leski and Kotas, 2018). However, it evades
an in-depth unified framework. This is mostly due to
specific challenges arising depending on the nature of
data, resulting in case-specific algorithms. Some of these
challenges have been presented by, e.g., Kleinberg (2002)
or Palacio-Niño and Berzal (2019). There, the so-called
impossibility theorem is proved which states that no
clustering algorithm exists satisfying the following three
axioms: scale invariance, richness, and consistency. For
further discussion, see, e.g., the works of Cohen-Addad et
al. (2018; 2017) or Davidson and Ravi (2007).

To obtain significant results for clustering of 2D
cross-sections of objects of revolution with respect to
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shape and size, aside from the choice of the algorithm,
the following issues are of fundamental importance: the
shape concept, the data representation and the similarity
measure (Wierzchoń and Kłopotek, 2015; Jain, 2010).
In our investigation we address those three issues in the
context of clustering of archaeological pottery.

1.1. State of the art. The problem of automatic and
semi-automatic classification of archaeological pottery
has been investigated by several authors. Piccoli
et al. (2015) proposed similarity measure based on the
extraction of shape features from the silhouette through
medialness. Sablatnig et al. (1998) make use of the
3D models of the investigated shapes in combination
with the syntactic pattern recognition approach. The
classification of 3D shapes and the issue of matching a
fragment to its fully preserved counterpart are investigated
by Maiza and Gaildart (2005), who extract the shape
information based on a skeleton. Hristov and Agre (2013)
present a classification, based on contour representations
and representative functions. Recently, a comprehensive
overview of classification and shape matching methods in
the study of archaeological ceramics has been presented
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by Wilczek et al. (2021). Procrustes analysis and
generalized Procrustes analysis appear in the analysis
of archaeological material as stand-alone methods, for
example, in the work of Dryden (2000), where they are
used to study the variability of landmark points in the
study of shapes of a class of objects.

On the other hand, clustering methods in
archaeological applications are scarce. One such method
for shape contour clustering that uses representative
functions for shape representation and the Euclidean
distance to define the similarity measure is presented by
Gilboa et al. (2004). Other contributions on the clustering
of archaeological pottery include as well as those by
Cao and Mumford (2002), Mumford (1991), Sharon and
Mumford (2006), and the references therein. In an earlier
paper (Kaliszewska and Syga, 2018) we have proposed
a similarity measure based on dynamic time warping
(DTW) to compare representative functions as defined by
Gilboa et al. (2004). The performed experiments showed
that DTW could provide a promising new similarity
measure. This observation formed a basis for introducing
the similarity measures as defined in the present paper.

In the present investigation, we use the concept of
shape introduced by Kendall (1977; 1989), Procrustes
analysis (PA) and DTW to propose new weighted
similarity measures. Up to our knowledge, this approach
has not been used yet in the context of clustering
archaeological pottery. It is worth mentioning that our
approach can be applied to cluster any 3D objects of
revolution for which the revolution axis and the 2D section
are known.

1.2. Methods. The concept of shape we adopt,
and a formal basis of shape analysis in the form of
the so-called Kendall shape goes back to a series of
publications by Kendall (1977; 1989) (cf. Goodall, 1991).
Kendall’s shape analysis in turn is inspired by shape
theory introduced by Karol Borsuk in the 1960s and
1970s (Borsuk and Dydak, 1980) and is motivated by
applications in archaeology. For a systematic exposition
of the topic, see the monograph by da Fontoura Costa and
Cesar (2010).

Informally, the shape of an object X is defined as all
the geometrical information that remains when location,
scale and rotational effects are filtered out from the object
X , or, in other words, the shape is the geometry of
an object X modulo position, orientation and size. In
consequence, the shape space is the space of equivalence
classes defined by a given class of objects X .

Such an understanding of shape gives rise to the
concept of the Procrustes distance or Procrustes distance
measure (see, e.g., Goodall, 1991) between the objects
X1 and X2 as the distance of X1 to the equivalence
class defined by X2. The Procrustes distance is not a
distance in the formal meaning of the term. Based on the

Procrustes distance, Procrustes-type similarity measures
between shapes are proposed.

In numerous applications, PA and Procrustes-type
similarity measures are combined with other similarity
measures, e.g., by Hosni et al. (2018), combining PA
with the principal component analysis (PCA) is proposed
to investigate a 3D gait recognition problem (Eguizabal
et al., 2019); PA is also combined with the DTW to
investigate surgery task classification (Albasri et al.,
2019).

DTW is devised to compare time series. More about
this topic can be found in the works of Aronov et al.
(2006) and Efrat et al. (2007). In general, similarity
measures devised with the help of DTW can be applied to
any objects composed of linearly parametrized (ordered)
elements (components).

In our investigations, we define similarity measures
by combining Procrustes based similarity measures
with DTW similarity measures. The computational
experiments confirm the efficiency of the proposed
approach.

2D cross-sections are represented through their
contours, i.e., 2D curves that are boundaries of these
2D cross-sections. In archaeological applications, those
2D curves are generated from technical drawings. This
means that their position on the plane is not random
and is determined by a set of strict rules. Consequence,
the problem of a possible misalignment is not as crucial
as in other applications, (e.g., Sangalli et al., 2010;
2012). By applying the boundary-based representation
of cross-sections, the problem of clustering 3D objects
of revolution is reduced to the clustering of 2D curves
with a given revolution axis with respect to shape and
size. The problem of shape and size analysis of 2D curves
and functions is gaining increasing interest due to many
important applications, such as cardiovascular analysis
(Sangalli et al., 2010), finance interest rates (Kanevski
and Timonin, 2010), nuclear industry (Auder and Fischer,
2012). Important to note are the advances in 3D surface
reconstruction from images (Kotan et al., 2021).

A specific feature of the clustering of archaeological
pottery is that the contours should be classified with
respect to subtle differences in shapes and size. Hence,
the adopted similarity measures and the resulting clusters
should reflect those subtle differences as precisely as
possible. The subtle differences are of great importance
in the clustering of contours, as a relatively small change
in the contour might have a great impact on the shape of
the respective 3D object of revolution.

1.3. Aim and contribution. The main aim of the
present investigation is to propose weighted similarity
measures, based on PA and DTW, for the clustering of
2D curves defining boundaries of 2D cross-sections of 3D
objects of revolution, with respect to shape and size.
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Depending upon the particular case, the contribution
of shape and size in the overall similarity measure is
adjusted by a proper choice of weights.

The secondary aim is to apply these similarity
measures to the automatic generation of typologies
(clusters) for archaeological pottery fragments. Clustering
archaeological pottery is considered a process that may
depend, to some extent, upon subjective judgements. This
subjective judgement can be reflected in the choice of
weights in the similarity measure.

The contribution of the paper is as follows:

• By using the PA (Eqn. (6)) and DTW (Eqn. (5)), we
propose two novel curve-based pair-wise formulas to
compare two curves:

– the direct composition similarity measure DC (cf.
Eqn. (9)),

– scale (size) factor γ∗ (cf. Eqn. (6)).

• We use the direct composition similarity measure DC
(Eqn. (9)), scale similarity measure γ∗ (Eqn. (8)) and
the Procrustes similarity measure PA (Eqn. (6)) to
generate various similarity matrices with the help of
weights and normalization. By introducing weights
and normalizations we get the following similarity
matrices for which we perform our experiments:

1. PSM (Eqn. (15)), the Procrustes similarity
matrix, emphasizes the variations in the shape
of curves in data set,

2. DCM (Eqn. (16)), the direct composition
matrix, emphasizes the variations in shape and
size of curves in data set,

3. SCM (Eqn. (17)), the scale component matrix,
emphasizes only the variations in the size of
curves in data set,

4. WPSM (Eqn. (18)), the weighted Procrustes
and scale component matrix, emphasizes the
variations in shapes and size of curves in data
set, by changing the weights we can decide
which feature we want to highlight in a given
experiment,

5. WNDCSM (Eqn. (19)), the weighted direct
composition and scale component matrix where
direct composition values are normalized.
Since the direct composition values are usually
much higher than the values of a scale
component, we use normalization.

• We apply the proposed similarity measures to the
generation of typologies of archaeological pottery.
The computational experiment is based on several
data sets, some of them being real-life data;
larger data sets are generated automatically by
augmentation procedures.

Fig. 1. Transformation of a section of rotationally symmetric
object into a 2D input data curve.

1.4. Organization of the paper. In Section 2 we
describe the class of investigated objects and we discuss
the representations of 2D shapes (contours). In Section 3
we present basic elements of PA and DTW and we
define the direct composition similarity measure DC. In
Section 4 we introduce similarity measures (a)–(e) and
present a general algorithm. In Section 5 we describe
the archaeological objects on which we test our method.
In Section 6 we describe the numerical experiments
conducted and the data used. In Section 7 we discuss the
obtained results. Section 8 concludes the paper.

2. Class of investigated objects

Geometrically, 3D objects of revolution is a solid obtained
by rotating a plane curve around a straight line (an axis of
revolution) that lies on the same plane. We investigate
3D objects of revolution obtained by rotating their 2D
cross-sections (not necessarily curves) around an axis of
revolution. Boundaries of 2D sections are called contours.
We assume that each contour is a 2D open curve α ⊂ R

2.
Each curve is a function α : [t0, t1] → R

2 represented as

α(t) := (x(t), y(t)), t ∈ [t0, t1], (1)

where x : [t0, t1] → R, and y : [t0, t1] → R.

We assume that

A1. the curves are contours of cross-sections of objects
of revolution with the revolution axis OY and are all
located in the first quadrant of the plane (x ≥ 0, y ≥
0);

A2. the lowermost point (points), i.e., points with the
smallest value of the coordinate y of a given curve
are forced to lay on the OX axis (i.e., its y coordinate
equals zero), and the point (xr, 0), where xr is the
smallest value of the x-coordinate corresponding to
y = 0 defines the radius r of the 3D object of revolu-
tion (see Fig. 1),

r := xr; (2)

A3. the uppermost point (points), i.e., points with largest
values of the coordinate y, are assumed to lie on the
revolution axis OY .
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Remark 1. Let us note that that Assumption A1 is
not limiting. In case we classify objects with various
revolution axes, we can always rotate (and shift) an object
so as to satisfy Assumption A1. Assumptions A2 and A3
refer to the situation which is natural in the archaeological
application, i.e., the locations of contours on the plane
are not random and defined as in Assumptions A2 and
A3. In the case where the locations of contours are
random, some position normalization is needed, e.g., one
can apply position normalization with which Procrustes
analysis typically starts.

2.1. Shape representations. From the digitized
cross-section the boundary discrete curve (contour) is
extracted via standard techniques of contour extraction.

Contours are smoothed by the Savitzky–Golay
filtering to retain the original shape of a profile as much
as possible.

In further analysis, we consider discrete curves, i.e.,
a curve α is a pair of vectors,

α := (x(i), y(i)), i = 1, . . . , kα. (3)

Consequently, in the sequel, all data are vectors
of different dimensions. When the original data are
acquired in the form of bitmaps (e.g., scanned hand-made
drawings), the accuracy of discretization depends on the
resolution of the scanned image.

3. Similarity measures

We start by recalling PA and DTW similarity measures.
For more details, see, e.g., the works of Müller (2007),
Efrat et al. (2007) or Pizarro and Bartoli (2011).

Next, in Section 3.3, we define a new similarity
measures based on PA and DTW, which is called direct
composition DC.

3.1. Dynamic time warping (DTW). In view
of the adopted contour representations, the compared
curves X and Y are represented by sequences X :=
(x1, x2, . . . , xN ) of length N ∈ N and Y :=
(y1, y2, . . . , yM ) of length M ∈ N, respectively, i.e.,
X ∈ R

N , Y ∈ R
M .

To make a comparison between these sentences, the
DTW algorithm aligns them by applying the following
procedure. First, the definition of a warping path is
introduced.

Definition 1. (Müller, 2007, Definition 4.1) An
(N,M)-warping path (or simply referred to as warping
path if N and M are clear from the context) is a sequence
p = (p1, . . . , pL) with p� = (n�,m�) ∈ {1, . . . , N} ×
{1, . . . ,M} for � ∈ {1, . . . , L} satisfying the following
three conditions:

Fig. 2. Example of an alignment and a warping path p.

(i) boundary conditions: p1 = (1, 1) and pL = (N,M);

(ii) the monotonicity condition: n1 ≤ n2 ≤ · · · ≤ nL

and m1 ≤ m2 ≤ · · · ≤ mL;

(iii) the step size condition: p�+1 − p� ∈
{(1, 0), (0, 1), (1, 1)} for � ∈ {1, . . . , L− 1}.

Hence, an (N,M)-warping path p = (p1, . . . , pL)
is defined by an alignment between two sequences X =
(x1, x2, . . . , xN ) and Y = (y1, y2, . . . , yM ) by assigning
the element xnl

of X to the element yml
, l ∈ {1, . . . , L}

of Y . Figure 2 shows how an alignment is transformed
into a warping path.

Now we define a cost measure which allows finding
the best warping path. In the following, by F we denote
the feature space, i.e., xn, ym ∈ F for n ∈ {1, . . . , N},
m ∈ {1, . . . ,M}. To compare two different elements
x, y ∈ F , a local cost measure is defined to be a function
c : F × F → R+. Evaluating the local cost measure
for each pair of elements of the sequences X and Y , we
obtain the cost matrix C ∈ R

N×M defined by C(n,m) :=
c(xn, ym).

The total cost cp(X,Y ) of a warping path p between
X and Y with respect to the local cost measure c is defined
as

cp(X,Y ) :=

L∑

�=1

c(xnl
, yml

), (4)

where, as in Definition 1, p = (p1, . . . , pL) with p� =
(xn�

, ym�
), � ∈ {1, . . . , L}. An optimal warping path

between X and Y is a warping path p∗ having minimal
total cost from among all possible warping paths. The
DTW similarity measure DTW(X,Y ) between X and Y
is then defined as the total cost of p∗:

DTW(X,Y )

:= cp∗(X,Y )

= min{cp(X,Y ) | p is an (N,M)-warping path}.
(5)

The DTW similarity measure is akin to the Fréchet
distance (see Aronov et al., 2006; Müller, 2007). In our
experiments we use the DTW function from the Matlab
Signal Processing Toolbox.
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3.2. Procrustes analysis. Procrustes analysis (PA)
allows us to perform a statistical shape analysis and to
compute a similarity measure for any given pair of 2D
curves represented in the discretised form (3) (Gower and
Dijksterhuis, 2004; Pizarro and Bartoli, 2011).

Let us consider the set of discrete curves α :=
(x(j), y(j))kj=1 ∈ (R × R)k (regarded as row vectors).
Let T be the set of similarity transformations defined on
(R×R)k. T is given in the form of triples T := (γ,R, t),
where:

• γ ∈ R++ represents a (uniform) scaling
factor and defines the scaling transformation
γ : (R × R)k → (R × R)k, γ(α) =
[γ(x(1), y(1)), . . . , γ(x(k), y(k))],

• R is a 2×2 rotation matrix of the angle θ, and defines
the rotation transformation R : (R × R)k → (R ×
R)k,

R =

[
cos θ − sin θ
sin θ cos θ

]
,

R(α) = Rα,

• t ∈ (R × R)k is a translation vector, which defines
the transformation t : (R×R)k → (R×R)k , t(α) =
t+ α, with components t(j) ∈ R×R, j = 1, . . . , k.

For the input discrete curves α1 := (x1(j), y1(j)) =
(z1(j)), j = 1, . . . , k, α2 := (x2(j), y2(j)) =
(z2(j)), i = 1, . . . , k, the Procrustes similarity measure
PA(α1, α2) is defined as

PA(α1, α2)

:= inf
T∈T

k∑

j=1

‖z1(j)− (γ(Rα2)(j) + t(j))‖22, (6)

where ‖ · ‖2 is the Euclidean distance in R
2. The

Procrustes similarity measure is not a distance since, in
general PA(α1, α2) �= PA(α2, α1).

Equation (6) can be interpreted in terms of
equivalence classes [·] of some equivalence relation.
Namely, a (discrete) curve α := (x(j), y(j))kj=1 ∈
(R × R)k belongs to the equivalence class defined by
α1 = (x1(j), y1(j))

k
j=1 ∈ (R × R)k, α ∈ [α1] iff

(x(j), y(j)) = γ ·R(x1(j), y1(j)) + t(j), t(j) ∈ R× R,
j = 1, . . . , k, where γ > 0 is a scaling factor, R is a
2× 2 rotation matrix of the angle θ, as defined above, and
t ∈ R

2. In this way an equivalence relation ≡ is defined
as

α1 ≡ α2 ⇔ (x1(j), y1(j)) = γ · R(x1(j), y1(j)) + t(j),
(7)

j = 1, . . . , k for some scaling factor γ > 0, rotation
matrix R and translation vector t with components t(j) ∈
R× R, j = 1, . . . , k.

In our experiments we use the Procrustes function
from the Matlab Statistics and Machine Learning
Toolbox.

3.3. Direct composition. In this section we introduce
a new similarity measure which is based on composition
of PA and DTW.

Let two (discrete) curvesα1, α2 ∈ (R×R)k be given.
The objective function of the optimization problem (6)
is strictly convex and bounded from below. By solving
problem (6), we obtain the minimal value PA(α1, α2) = d
and the curve Z = T ∗α2, where T ∗ ∈ T is an optimal
solution to problem (6), i.e.,

PA(α1, α2) = d = inf
T∈T

‖α1 − Tα2‖2

= ‖α1 − Z‖2 = ‖α1 − T ∗α2‖2,
(8)

and Z := T ∗α2 = γ∗R∗α2 + t∗, where γ∗ > 0
is the (optimal) scaling factor and R∗ is the (optimal)
rotation matrix, and t∗ is the (optimal) translation vector.
In our experiments the curve Z is produced by the
procrustes function from the Matlab Statistics and
Machine Learning Toolbox.

With the help of the curve Z we define a new
similarity measure, called the direct composition DC and
given as

DC(α1, α2) = DTW(α1, Z). (9)

Direct composition DC combines global shape
similarity measure PA with DTW which takes into
account the local shape variability as well.

The motivation for the combination of PA and
DTW measures stems from our previous works (e.g.,
Kaliszewska and Syga, 2018), which have brought to
light a necessity to introduce a similarity measure
that would take into account the subtle nature of
the differences between the investigated shapes. The
possibility of introducing weights that account for the
expert’s knowledge, and bring his/her expertise into the
process is also of paramount importance.

We consider PA and DTW methods complementary,
as they address different characteristics of the shape.
PA is, in our case, a robust tool for the alignment of
shapes and the detection of the overall shape similarity.
It performs very well when used to detect scale
and orientation invariant similarity between significantly
different shapes. On the other hand DTW is well suited to
detect subtle changes in objects that could be generally
defined as similar. It fails, however, to quantify the
similarity when the shapes differ in attributes such as
rotation, or scale.

The idea of combining PA and DTW in similarity
measures related to the analysis of temporal alignment of
human motion already appeared, e.g., in the work of Zhou
and De la Torre (2012).
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4. Proposed algorithm for clustering curves

In the present section we propose an algorithm for
clustering 2D contours of cross-sections of 3D objects
of revolution. We assume that the given set of contours
consists of n ≥ 2 elements. Let i = 1, . . . , n and j =
1, . . . , n, denote the i-th and j-th contours, respectively.
First we calculate the “distances” between two contours i
and j, i �= j by using the following three formulas:

pa(i, j) = max{PA(i, j), PA(j, i)}, (10)

dc(i, j) = max{DC(i, j),DC(j, i)}, (11)

γ(i, j) = 1−min{γ∗(i, j), γ∗(j, i)}, (12)

where γ∗(i, j) is the optimal scaling factor obtained from
PA(αi, αj) (cf. Eqn. (8)) and γ∗(j, i) is the optimal
scaling factor obtained from PA(αj , αi) (cf. Eqn. (8)).
Whenever i = j, we set

pa(i, i) = 0, dc(i, i) = 0, γ(i, i) = 0.

The numbers calculated by the formulas (10), (11) and
(12) may have very different ranges; hence, to ensure
the comparability, we use the following normalization
formulas for ‘dc’ and γ

ndc(j) =
1

maxi=1,...,n dc(i, j)
, j = 1, . . . , n,

nγ(j) =
1

maxi=1,...,n γ(i, j)
, j = 1, . . . , n.

When the normalization is not needed, we set ndc(j) =
ndc = 1, for all j = 1, . . . , n or nγ(j) = nγ = 1, for all
j = 1, . . . , n.

4.1. Similarity matrix. A similarity matrix is formed
by calculating a similarity measure between any two
contours i and j. Let μ, λ, ω ∈ R be given numbers
(weights). We calculate the similarity measure (SM) as
follows:

SMij(μ, λ, ω, ndc, nγ)

:= μ · pa(i, j) + λ · ndc(j) · dc(i, j)

+ ω · nγ(j) · γ(i, j).
(13)

By calculating the number SMij for every pair of
contours i and j (i = 1, . . . , n and j = 1, . . . , n) from
the data set, we get the similarity matrix

SM(μ, λ, ω, ndc, nγ), (14)

which is symmetric and has zeros on the main diagonal.
This general similarity measure allows us to preform

various experiments. Changing the values of numbers
μ, λ, ω, ndc, nγ, we get the following similarity matrices:

(i) the Procrustes similarity matrix

PSM = SM(1, 0, 0, 1, 1); (15)

(ii) the direct composition matrix

DCM = SM(0, 1, 0, 1, 1); (16)

(iii) the scale component matrix

SCM = SM(0, 0, 1, 1, 1); (17)

(iv) the weighted Procrustes and scale component matrix

WPSM = SM(μ, 0, ω, 1, 1); (18)

(v) the weighted direct composition and scale
component matrix where direct composition
values are normalized

WNDCSM = SM(0, λ, ω, ndc, 1); (19)

(vi) the weighted direct composition and scale
component matrix, where both direct composition
values and scale component values are normalized,

WNDCNSM = SM(0, λ, ω, ndc, nγ). (20)

For clustering we apply hierarchical clustering. We use
three standard methods to measure the distance between
clusters, i.e., single linkage, average linkage and weighted
average linkage (see Tables 3 and 4).

4.2. Proposed algorithm. The general algorithm
is presented below as Algorithm 1. By changing
the values of weights μ, λ, ω and ndc, nγ, we obtain
different similarity measures, as described above, and
consequently, different clustering results.

Algorithm 1. Curve clustering.
Step 1. Choose the values of weights μ, λ, ω and ndc, nγ.

Step 2. Prepare the input data (vectors) as described in
Section 2.

Step 3. Calculate the similarity between any two vectors
i and j using Eqn. (13) and generate the similarity matrix
via (14).

Step 4. Perform clustering on the basis of the
similarity matrix (14) generated in Step 3 by standard
hierarchical algorithms (Matlab toolbox) and generate the
dendrogram.
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5. Application: Archaeological objects

In this section, we describe the archaeological objects
to which we apply our algorithm. These objects are
archaeological pottery fragments. When produced on the
pottery wheel, vessels are rotationally symmetric objects
of revolution. We limit our attention to this kind of
vessels. Consequently, a cross-section and the location
of the revolution axis are enough to convey the shape of
the whole vessel.

In archaeological practice, the vessels or vessel
fragments are described by their cross-sections. These
cross-sections are hand-made technical drawings; they are
made according to a set of rules and use conventions and a
visual language to maintain standards and convey as much
information about the vessel as possible, without the need
to supplement it with text.

Classification of pottery obtained through excavation
is a form of organizing the material to conclude the
investigated sets and deal with the spatio-temporal
diversity of the pottery. Such classifications are
traditionally performed manually and depend heavily on
the expert’s knowledge and experience and, as a result,
are prone to being biased.

In our application, the curves, as defined in Section 2,
are contours of cross-sections of vessels uncovered in
the course of archaeological work. From the technical
drawings, the axis of revolution of each vessel can easily
be deciphered. As mentioned in Section 2, to perform the
clustering (generate clusters) we standardize the location
of the contours to the first quadrant of R2 and standardize
the position of contours by considering their upside-down
versions. More precisely, in the present study we consider
contours (curves) for which we know the coordinate xr,
see Fig. 1 and for which the uppermost point (points)
lies on the revolution axis OY to satisfy Assumptions
A1–A3 of Section 2. This means that we classify vessel
fragments for which the full cross-section is known. This
does not mean that the full vessel is known. There exist
archaeological techniques which allow reconstructing the
exact full cross-section of a vessel, even in the case where
the vessel is considerably damaged.

During the process of clustering, the vessels can
be divided into groups based on many features. With
the help of our clustering algorithm, we divide given
archaeological pottery sets with respect to shape and size.
We limit our attention to the clustering of those pottery
fragments for which the complete cross-section can be
extracted.

6. Experiment

To test Algorithm 1, we have designed and conducted
a series of experiments related to the clustering of
archaeological pottery. For that purpose, we have chosen

6 data sets, each with 36 to 51 elements. Set 2 is presented
in Fig. 3. The profiles used for the experiments come from
(Mountjoy, 1999) where real-life archaeological pottery
fragments are classified by experts.

In Table 1 we summarize the features of Sets 1–6.
The estimated number of clusters is given as a range, as it
depends on the method of counting the clusters (clusters
vs. subclusters), and on the expert’s decision. The table
also provides a general description of the properties for
each set, listing how the elements vary in size, and how
much variation in shape there is within each cluster.

The results of clustering obtained by Algorithm 1 are
visualized in the form of dendrograms. The dendrogram’s
visual nature makes it inefficient when it comes to
comparing results for large data sets.

In order to evaluate the quality of clustering, we
use the cophenetic correlation coefficient to calculate
a score for each clustering method and each set,
see Tables 3 and 4. The cophenetic correlation
coefficient is a measure of how closely the dendrogram
represents pairwise dissimilarities between the objects.
It was originally introduced by Sokal and Rohlf (1962)
as a method for comparing dendrograms resulting
from numerical taxonomic research. The cophenetic

Table 1. Description of data-sets used in the experiment.
Set
no.

No. of
elements

Estimated
no. of
clusters

Characteristics

1 41 7–9 2 size groups, little
variation in shape in
clusters

2 41 6–10 2 size groups, at least 2
clusters with significant
variation in shape in
clusters

3 45 6–8 3 size groups, some
variation in shape in
clusters

4 36 5–7 all similar size, 4
basic shape groups,
significant variation in
shape in the clusters

5 51 8–10 5 size groups,
significant differences
in size between groups,
some variation in shape
in the clusters

6 40 5–8 similar size, 2 size
groups, little variation
in shape in clusters.
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correlation coefficient (CCF) is defined as follows:

c :=

∑
i<j(Yij − y)(Zij − z)

√∑
i<j(Yij − y)2

∑
i<j(Zij − z)2

, (21)

where Yij is the distance between objects i and j in the
similarity matrix Y , and Zij is the cophenetic distance,
that is the distance between two observations i and j
represented in a dendrogram by the height of the link at
which those two observations are first joined. Here y and
z are the means of Y and Z , respectively. The closer
this value is to 1, the higher the quality of the solution.
For a detailed discussion of the cophenetic correlation
coefficient. The reader is referred to Farris (1969).

6.1. Augmentation. The sets of archaeological pottery
excavated by archaeologists are usually large and very
diverse in terms of shape. Traditionally, the clustering
(generating of typologies) is done manually by experts.
Consequently, in practice, only a small part of the
archaeological material is clustered and published, as it
is the case in (Mountjoy, 1999).

Hence, the real-life data sets which are available
consist of 30–50 elements. This size does not
provide a sufficiently large sample to evaluate the
performance of the algorithm. This was remedied by an
automated augmentation of the data set. To ensure the
comparability of the results, we used the same data-sets
(see Table 1). Each element of the set was subjected
to 6 different transformations, resulting in sets with
252 to 357 elements (including the original objects).
For these transformations, we have chosen a warp-type
transformation, as it can produce slight changes that are
characteristic of our investigated elements. The warp
transformations were grid-based and used a Bézier curve
based grid to perform the transformations. Each of the
six transformations targeted one part of the image (very
generally described as top, middle, and bottom), and
either bevelled the image towards the left or right edge
of the image in the specific section. The transformations
were chosen to be radical enough to modify the original
image, to generate new groups, without distorting the
image to a degree such that it does not fulfil the original
requirements (Fig. 4) (see Section 2). In the same way
as for the original data sets, the proposed methods have
been tested on all six augmented sets, including different
methods of the linkage algorithm. The results are included
in Table 4.

7. Results and a discussion

The evaluation of the results is based on the dendrograms
obtained for each set. The cophenetic correlation
coefficient (Tables 3 and 4) is used as an additional
measure, quantifying the quality of the dendrogram.

Fig. 3. Set 2.

Fig. 4. Illustration of the transformations applied in the aug-
mentation process.

A crucial point in this kind of clustering problem
is the definition of a similarity measure which should
reflect the similarity as it is perceived by the expert. The
following properties of the proposed similarity measures
can be observed based on the experiment:

1. The first type of mismatch occurs when two contours
are very similar or even identical on a long portion
of the curve and differ significantly on a relatively
short portion of the curve. In such a case, a high
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similarity, i.e., a small distance between curves on
a given portion overpowers the similarity measure
calculated for the two objects, and fails to take into
account the difference between the objects. This
may lead to a false-positive result, with two contours
perceived as “different”, and belonging to different
clusters, being grouped.

2. The second type of mismatch in the dendrogram
may occur when the weights are improperly selected.
This means that one of the aspects of the clustering,
the shape or scale, takes precedence over the other
and leads to two contours being paired or separated
as, e.g., their scale is very similar, despite not
exhibiting similarity in shape.

3. The third type of mismatch stems from the difference
between the perceived similarity (experts evaluation)
and the calculated similarity measure. The in-depth
discussion of this topic is beyond the scope of this
paper; however, it will be demonstrated below in the
discussion of the results obtained for the original data
sets (Section 7.1).

Those types of mismatches do not point to a fault in
the method. They are an inherent property of automated
shape detection, especially of Type 1. Type 2 can
be remedied by the appropriate selection of weights by
the expert. These types of mismatches highlight the
discrepancies between manual handmade classification,
where the consistency of decision making is hard to
maintain throughout the process and personal biases come
into play, while with an automated process the same
criteria are applied throughout. The same applies to
Type 3.

7.1. Results obtained for the original data sets. The
analysis of the dendrograms yielded the best results for the
combination of the Mix method and the scale component.
The exact choice of weights depends on the nature of
the set. The WNDCSM similarity measure turned out
to be the best choice for Sets 1, 3, 4, 5, and 6. This
is due to the differences in shape coinciding with the
differences in scale. That is, there are few or no contour
fragments that overlap in similar shape and similar size,
although belonging to different clusters. For Set 2 the
best combination is weight 3/4 for Procrustes and 1/4
for the scale component. For this set, the weight of the
scale component had to be reduced in favour of the shape
component PA of the measure. This is due to several
contours being close, both in terms of shape and size, and
the need to put more stress on the shape component, as
this is our primary goal.

The results of an expert-based evaluation of the
obtained dendrograms are summarized in Table 2. The
table presents the total number and percentage of the

elements that are, in the expert’s opinion, correctly
classified. As the tool is meant to be of assistance to
experts, we choose an expert-based evaluation for our
results. An automated or semi-automated assessment of
results based on the dendrograms, and the choice of a
correct similarity threshold is itself a matter of ongoing
research (e.g., Vogogias et al., 2016; Siminski, 2021).

A visualization of the expert’s assessment is
presented in Figs. 5–8. For dendrograms that have a
smaller similarity measure values between objects and
groups, the difference between the single cut and the
multi-level cut is not significant. For Set 2 (Figs. 5 and
6), for the single-level cut we obtain an accuracy of 80%
(compared with 92,68 % with the multi-level cut—Table
2). The dendrogram has the CFF value of 0.98, which
means the dendrogram structure is very good. For Set 4
(Figs. 7 and 8), the CFF is significantly lower, with
0.89. This dendrogram has higher values of similarity
measures between objects. Using the multi-level cut
method, we obtain the result of 91.67 %. The single-level
cut method results in only 83.34 % of accuracy. The
amount of correctly classified elements and the resulting
percentages, as presented below, were calculated based
on the expert’s judgement. In calculations of the results
of Table 2, the cuts of the dendrogram were made on
different levels (multi-level cuts), i.e. different thresholds
(cut levels) selected for splitting the dendrogram (i.e.,
obtaining clusters) were chosen by the expert and are
based on the direct data inspection.

The expert-based evaluation is supplemented by the
CCF (Table 3) calculated for each set and each method in
the experiments performed. A discussion of the obtained
results, summarized in Table 2 and Table 3, is presented
below, in Section 7.2.

7.2. Discussion of the results. One of the results, for
the WNDCSM similarity measure, obtained through the
experiments is presented in Figs. 5 and 6.

Based on Table 2, we notice that the best
results were obtained for the method WNDCNSM
(SM(0, 3/4, 1/4, ndc, nγ) for Sets 1, 2, 5, and 6. This can
be attributed to the character of the sets, as summarized
in Table 1. Sets 3 and 4 show significant variation in
shape within the clusters, which might result in some
under-performance of the method. However, the results
are still fairly high. Combining together the results
in Tables 2 and 3, we see that all proposed methods
perform fairly well, as the performance is on average 85%
(Table 2) for the three proposed methods, and all values
for CCF are at 0.75 and above (Table 3), with most of
them being above 0.9. As stated before, the values of
the CCF do not quantify the clustering results, but rather
the structure of the dendrogram, and in this sense, the
performance of the algorithm.

The results, as described above prove the efficiency
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Fig. 5. Single-level cut through the dendrogram obtained for Set 2 according to formula 20. CCF = 0.98, correctly classified objects
= 80%.
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Fig. 6. Multi-level cut through the dendrogram obtained for Set 2 according to Eqn. (20). CCF = 0.98, correctly classified objects
= 92.68%.

of the WNDCSM algorithm, and the introduction of the
additional DWT distance component to the similarity
measure. The results point to a double function of
the WPSM similarity measure and all the subsequent
combinations, in the sense of Procrustes analysis being
responsible for a robust detection of the “global shape”
while DTW detects subtle differences between shapes,
and allows taking into account of the scaling factor.
Furthermore, the scaling component accounts for the
difference in size, between the investigated objects. Such
a composition allows for a fuller analysis of the given sets.

7.3. Results obtained for the augmented data-sets.
The augmented data sets were clustered by the algorithm
in Section 4.2, the same as the original data. Due
to the method of augmentation (Section 6.1), each set
increased in the number of shapes; however, no new
shape groups were created, as the augmentation did not
target size, but solely the shape. Due to the size of

the resulting dendrograms, we omit here the detailed
discussion. However, the satisfactory performance of the
Algorithm 1 for the original sets, and the high values of
the cophenetic correlation coefficient give insight into the
performance of the algorithm for the augmented sets. The
augmentation process will be applied in future research to
increase the size of data sets to employ machine learning
algorithms.

8. Conclusions

We have presented the concept and performance of the
algorithm (see Section 4.2) for clustering a class of 2D
objects, with application in archaeology. The performed
experiment shows that the proposed algorithm provides
satisfactory results. Even though the results obtained are
promising, many problems related to the clustering of
archaeological pottery remain open.

Conceivable extensions of the research presented
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Fig. 7. Single-level cut through the dendrogram obtained for Set 4 according to Eqn. (19). CCF = 0.98, correctly classified objects
= 83.34%.
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Fig. 8. Multi-level cut through the dendrogram obtained for Set 4 according to Eqn. (19). CCF = 0.89, correctly classified objects
= 91.67%.

here encompass investigating the possible advantages
of using alternative shape representations and similarity
measures. As part of our further research, we plan to
investigate the case where only a fragment of the section is
preserved. Another problem arises when the investigated
pottery vessel has a handle. As far as we know this
problem has not yet been addressed in the literature.
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Table 4. Cophenetic correlation coefficient results for the augmented data sets.
Method Set 1a Set 2a Set 3a Set 4a Set 5a Set 6a Arithmetic

mean
SM(1, 0, 0, 1, 1)

single 0.6780 0.9788 0.7984 0.5813 0.6211 0.1760 0.6389
average 0.8777 0.9836 0.8968 0.7844 0.8088 0.7933 0.8574
weighted 0.8530 0.9808 0.8583 0.8042 0.7633 0.7536 0.8355

SM(0, 1, 0, 1, 1)
single 0.8520 0.9736 0.9454 0.7676 0.8182 0.6921 0.8415
average 0.8972 0.9771 0.9584 0.7852 0.8599 0.7548 0.8721
weighted 0.9104 0.9617 0.9750 0.6916 0.8505 0.7464 0.8559

SM(0, 0, 1, 1, 1)
single 0.9592 0.8019 0.7192 0.6006 0.8912 0.8213 0.7989
average 0.9731 0.8770 0.9613 0.8664 0.9131 0.8602 0.9085
weighted 0.9687 0.8517 0.9566 0.8742 0.7725 0.7979 0.8703

SM(12 , 0,
1
2 , 1, 1)

single 0.9439 0.9619 0.9874 0.7321 0.8515 0.6190 0.8493
average 0.9573 0.9713 0.9091 0.8688 0.9009 0.7758 0.8972
weighted 0.9485 0.9513 0.8162 0.6914 0.8706 0.7385 0.8361

SM(34 , 0,
1
4 , 1, 1)

single 0.8457 0.9803 0.7350 0.7211 0.8139 0.3865 0.7471
average 0.8850 0.9825 0.8749 0.8276 0.8581 0.7608 0.8648
weighted 0.7902 0.9804 0.8155 0.8077 0.8472 0.7680 0.8348

SM(0, 1
2 ,

1
2 , ndc, 1)

single 0.9428 0.9539 0.9046 0.7411 0.7916 0.7523 0.8477
average 0.9537 0.9550 0.9737 0.7923 0.8566 0.8314 0.8938
weighted 0.9571 0.9351 0.9685 0.7862 0.8402 0.7957 0.8805

SM(0, 3
4 ,

1
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single 0.9082 0.9701 0.9562 0.7725 0.7410 0.7258 0.8456
average 0.9396 0.9720 0.9735 0.8261 0.8388 0.7858 0.8893
weighted 0.9386 0.9660 0.9720 0.7718 0.8590 0.7646 0.8787
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