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The visual appearance of outdoor captured images is affected by various weather conditions, such as rain patterns, haze, fog
and snow. The rain pattern creates more degradation in the visual quality of the image due to its physical structure compared
with other weather conditions. Also, the rain pattern affects both foreground and background image information. The
removal of rain patterns from a single image is a critical process, and more attention is given to remove the structural rain
pattern from real-time rain images. In this paper, we analyze the single image deraining problem and present a solution using
the dual stage deep rain streak removal convolutional neural network. The proposed single image deraining framework
primarily consists of three main blocks: a derain streaks removal CNN (derain SRCNN), a modified residual dense block
(MRDB), and a six-stage scale feature aggregation module (3SFAM). The ablation study is conducted to evaluate the
performance of various modules available in the proposed deraining network. The robustness of the proposed deraining
network is evaluated over the popular synthetic and real-time data sets using four performance metrics such as the peak
signal-to-noise ratio (PSNR), the feature similarity index (FSIM), the structural similarity index measure (SSIM), and
the universal image quality index (UIQI). The experimental results show that the proposed framework outperforms both
synthetic and real-time images compared with other state-of-the-art single image deraining approaches. In addition, the
proposed network takes less running and training time.
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1. Introduction

Rainy weather conditions greatly affect the visibility of
scene objects in captured real-time images. Also, the
visual quality of a real-time high-definition image is
mainly affected under outdoor weather conditions such as
rain, snow and fog. The poor visual quality significantly
affects the nature of computer vision, image surveillance,
and multimedia applications. Therefore, removing
the rain pattern from the high-definition images is an
important pre-processing step in real-time multimedia
applications (Ding et al., 2016; Barnum et al., 2009).
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The rainy image is expressed as the linear sum of a
background image and a rain layer. Restoration of an
affected image by rain streaks is a critical problem due to
numerous interconnection possibilities between the rain
and background layers (Garg and Nayar, 2004). Many
deraining priors about the separation of the background
image and the rain layer are proposed by Kim et al.
(2013). These prior-based deraining methods fail to
provide superior performance when images are affected
by different shapes and orientations of rain patterns (Kang
et al., 2012; Kou et al., 2015).

Fu et al. (2017) proposed a derain net framework
to remove rain streaks from a single image. In this
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framework, a deep convolutional neural network (DCNN)
is used to map the relationship between rainy and
clean images. A bilateral recurrent network (BRN)
is proposed by Ren et al. (2020) to remove the rain
pattern from a single image synthetic data set. This
network combines the advantages of a single recurrent
network and bilateral long short-term memory (LSTMs)
based draining approaches. The performance of the
BRN deraining concept is proved on various image data
sets for three stages only. The number of deraining
stages increases beyond three; this network yields a
larger training error. An optimized multi delay block
frequency domain (OMBFD) adaptive filter is proposed
by Thiyagarajan and Gowri Shankar (2020) to remove
the low-intensity rain pattern. In this adaptive filter,
the firefly optimization algorithm involves additional
deraining complexity. The adaptive filter-based deraining
frameworks are only suitable to handle low-intensity rain
patterns.

Wang et al. (2020a) proposed a spatial contextual
information aggregation module and a pyramid network
module for deraining applications. A spatial contextual
information aggregation module is used to acquire the
multi-scale features from the kernels of the rainy image.
The pyramid network module is utilized to connect the
features of rain streaks. The dilation factor of this
network is one of the limiting factors to achieve better
deraining results. Wang et al. (2019) proposed a rain
removal framework based on the gradient magnitude and
directions of rain patterns. In the high-frequency domain,
the rain component is identified and removed. But
this method eliminates some of the fine components of
the original image. The contextual information is very
important to remove the rain pattern due to the availability
of rain patterns with different sizes and shapes. This
information is extracted by the recursive modified dense
network through batch normalization layers (Chen and
Wang, 2020). The network depth increases automatically,
which affects the complexity of the deraining process.

In recent days more and more deep-learning-based
end-to-end deraining models have been being proposed
to remove the rain pattern. But they fail to provide
satisfactory results in different realistic conditions like
heavy rain streaks haze accumulated effect of rain patterns
(Wang et al. 2020b, 2020d). An enhanced video
block matching four-dimensional (V-BM4D) deraining
framework is proposed by Jayaraman and Chinnusamy
(2020b) to remove the structural rain pattern from the
successive video frames. Hence the rain pattern is
predicted in the 4D domain. This filtering concepts
provides nominal visual quality improvements for single
image deraining applications (Koziarski and Cyganek,
2018). A mathematical linear model of the rain image
is developed to analyze the rain pixel correlation with the
original image (Wang et al., 2020c). The cost function

plays an important role in removing rain patterns from
the background. This linear model is evaluated until
a low-cost function is achieved. In this method, some
of the non-rain details which have similar intensity are
misguided as rain pattern. A nonlinear mapping study has
been developed through MSFA-Net for both rainy image
and clean image data sets (Wu and Zhou, 2020; Papiez
et al., 2019). This method is more time-consuming for
heavy rain streaks. Li et al. (2020) designed a novel
channel attention U-dense network for rain pixel detection
and a residual dense block for rain streak removal. The
U-dense network is used to achieve pixelwise estimation
accuracy and rain features are exploited by a dense block.
Experimental results demonstrate that this model-based
deraining method offers the minimum level of PSNR
improvement compared with state-of-the art methods.

A deep rain streak removal CNN (DeRain
SRCNN)-based deraining framework is proposed
with two residual block layers and a dual channel
rectification linear unit (DCReLU) (Jayaraman and
Chinnusamy, 2020a; Kowal et al., 2021). This deraining
network provides higher PSNR and SSIM values for
both synthetic and real-time images compared with
other existing deraining networks. The convergence
policy of this network is more suitable for deraining
applications. But this network faces some training errors
and poor image visual quality for images with high rain
patterns. The comprehensive loss function optimization
and recovering original information are the two
important steps in any deraining network. Sharma et al.
(2021) proposed high-resolution image deraining using
conditional generative adversarial networks (HRID-GAN)
to achieve fewer artifacts and good visual quality. Image
deraining can be categorized based on (i) supervised
models with labeled constraints, (ii) semi-supervision
based learning paradigms, and (iii) unsupervised models
with self-supervised constraints. However, a majority of
the state-of-the-art deraining methods adopt supervised
learning with labeled-constrained models, trained on
synthetically generated data sets.

The novelty and main contribution of this paper are
as follows:

(i) A dual stage derain SRCNN module is proposed
to solve the deraining problem. The reconstructed
image from the derain SRCNN block and the original
rain image act as input for the modified dense
network block to further locate rain components in
the output of the first stage derain SRCNN block.

(ii) A modified residual dense block (MRDB) is
proposed to model and learn the rain components. A
six-stage scale feature aggregation module (3SFAM)
is introduced to transform the different scales of the
derained image into the final output image.
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(iii) The cascading of the MRDB and 3SFAM block
offers the image rain components extraction,
refinement and transformation.

(iv) A dual channel rectified linear unit is used as an
activation function in the derain SRCNN block and
the modified dense network block to resolve the
network gradient issues.

The rest of this paper is organized as follows.
Section 2 presents the architecture of the proposed
dual stage derain SRCNN module with a deep residual
dense network. The performance evaluation through
experiments results is presented in Section 3. Finally,
Section 4 concludes this paper.

2. Proposed deraining framework

This section briefly introduces the proposed single image
deraining framework based on residual dense networks.
This deraining framework consists of modules such as
the two-stage derain streak removal CNN module, the
modified residual dense block and the six-stage scale
feature aggregation unit. The derain SRCNN module
is mainly used to predict the rain components and act
as the core module of this proposed deraining module.
The rain pattern modeling and elimination are performed
using the modified residual dense block. In this MRDB
module, the DeReLU activation function is used to detect
various statistically independent rain patterns. Rain
image features in different scales are aggregated using the
six-stage scale aggregation module.

The deep-learning-based single image deraining
method provides an effective learning policy to identify
the rain patterns from the original images. Also, it offers
a very smooth linear relation between the foreground
information and the background image information. Due
to the behavior of the deep network, it is easy to separate
the rain components from background details. Moreover,
the background information retention accuracy is more in
the deep-learning-based deraining approach. Since the
rain patterns have different sizes and orientations, the
correlation between the rain pattern and the background
is notably observed through training stages of deep
networks.

The general topology of the proposed rain streak
removal framework is shown in Fig. 1. This network
is designed with two distinct stages to handle the rain
component distributions. The rainy image denoted as R is
fed into the two-stage derain SRCNN block and generates
the first derain image (DR1). The derain image (DR1) and
the rain image (R) are then concatenated to form a tensor
image, which is given to the modified dense network
block. This second stage deraining process generates the
reconstructed image denoted as the second derain image
(DR2). Hence DR2 contains some rain components in

the background scene, so that DR2 is compared with
the original rain image R. The convolutional layer and
DcReLu are used to get the visually improved image DR3.

The proposed derain framework is mainly composed
of a cascade of different distinct modules including the
derain SRCNN, MRDB, and 3SFAM. The synchronous
tuning of the two-stage module block plays an important
role in this deraining process. The contribution of all
modules is described as follows. The derain SRCNN
block consists of a two-stage module. An internal
structure of Stage I is shown in Fig. 2. This stage
is a single derain streak removal CNN block which
contains the parallel residual inception module, the middle
layer module, the batch normalization (BN) unit, and
the output inception module. The rain streak affected
image is passed through a stack of the convolutional
layer and the downsampled pooling layer to identify the
rain components. The parallel residual inception module
is constructed using two residual blocks connected in
parallel and the global averaging pooling layer. This
first inception module of the derain SRCNN is used to
extract the low-level and high-level features from the
input rain image. The residual block is constructed using
two convolutional layers with 3 × 3 kernel size and a
dual channel ReLU (DCReLU) activation function. The
DCReLU activation function improves the training time
speed compared other activation functions.

The intermediate module consists of an additional
convolutional layer with a 2×2 filter size. The rain streaks
are more directional oriented so that more convolutional
layers with filter size 3×3 are used along with the pooling
layer. A batch normalization module is introduced
between the intermediate module and the output module
to avoid vanishing gradient issues and poor learning
capacity. This BN module contains a convolutional
layer with 5 × 5 kernel size and a pooling layer with
a stride value of 2. The final inception module is used
to concatenate all the selected feature maps to obtain a
reconstructed image

2.1. Modified residual dense block. The dense net
transmits the extracted feature in each layer of the network
to obtain a visually enhanced result. The modified residual
dense block is designed to extract main features from the
input rainy images. The basic dense block is constructed
using the ReLU activation function. A poor convergence
rate is achieved using a basic residual dense block.
Therefore, a dual channel ReLU is adopted in the modified
residual dense block to achieve a better convergence time
of the proposed deraining network. Figure 3 shows
the building blocks of the MRDB module. This dense
block is developed from the ResNet (He et al., 2016),
DenseNet (Huang et al., 2017), and the Residual Dense
Block (Zhang et al., 2018). The convolutional layer with
a 3 × 3 filter is used along with the DcReLu activation
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Fig. 1. Overall architecture of the proposed dual stage derain SRCNN module with a deep residual dense network.

Fig. 2. Internal structure of the derain streak removal convolutional neural network (derain SRCNN).

function to extract the rain features. A dual-channel
ReLU is used as an activation unit in the modified RDB
units. The usage of DcReLU in this residual block helps
to mitigate the gradient instability during the training
stages of the proposed deraining network. The DcReLU
activation function identifies the features in both positive
and negative phases of image sequences compared with
the ReLU activation function. The gradient instability is
also mitigated by feature reuse in this dense block. From
the detailed experimentation presented in this work, it
is observed that the MRDB unit identifies the finer rain
features as well as achieves a better convergence rate.

2.2. Six-stage scale feature aggregation module.
Transformation of the feature map domain into an image
domain is an important process in deraining applications.
The six-stage scale feature aggregation module shown in

Fig. 4 is designed to map the feature domain into the
output image space. This six-stage aggregation module
captures all fine features and converts them into to the
image domain. In most deep learning-based deraining
algorithms, only a convolution layer is used to map the
feature map with the output image domain. But the
convolutional layer fails to capture the rich features on a
different scale from the feature map.

The structural rain pattern penetrates through the
entire image plane. Consequently, it is necessary to
analyze the rain image on a different scale. The dual-stage
deraining networks consist of a six-stage scale feature
aggregation module to capture the fine original details
and maintain the visual quality of the image. Six stages
are sufficient to extract fine features from the modified
dense network block. The number of stages increased
beyond six; it is observed that the same visual quality
is achieved. But the computational complexity and
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Fig. 3. Building block of the modified residual dense block (MRDB).

Fig. 4. Six-stage scale feature aggregation module.

convergence time of the proposed network increases up
to 25%. Hence, it affects the implementation policy of the
proposed deraining network. In this 3SFAM, six dilated
convolution layers with a kernel size of 3 × 3 are used to
identify the fine rain features. The feature map produced
by six dilated layers is concatenated to get the final output
rain-free image.

2.3. Loss function. For a single image deraining
application, the regression loss function is sufficient to
calculate the error between the derained output and the
rain image. The regression mean-squared error loss
function is

L(x) =
1

2
‖Y in − Yest‖2 (1)

where Yin is the input rain image and Yest is the estimate
of the reconstructed image. The gradient of the loss
function provides the direction in which the cost function
has a steepest rate of increase. The stochastic gradient
algorithm (SGD) takes more time to converge for the
deep neural network in deraining applications. The SGD
with a gradient clip optimization system is employed in
the proposed deraining network to avoid the convergence

explosion problem. The SGD weights are updated as

W k+1 = W k − ηΔL(x), (2)

where η defines the learning rate of the network and
ΔL(x) defines the gradient of the loss function. The
training of the network becomes unstable when there are
more feature maps.

The learning rate η is a basic hyperparameter used to
train the CNN. It is a small positive value between 0.0 and
0.1. By taking a small value of the initial learning rate, the
network requires more training epochs to converge and a
larger value of the learning rate yields rapid convergence
of the network with fewer training epochs. The selection
of the initial learning rate is a challenging task in the
deep neural network. In our proposed dual-stage derain
SRCNN framework, the SGD optimization algorithm with
the exponential decay learning rate scheduling method
is used to achieve better network model accuracy. The
exponential decay learning rate mechanism provides the
required validation accuracy of the proposed network
compared with other learning rate strategies such as the
time-based decay and step decay methods. The initial
learning rate is 0.001 for the first 50 epochs and then
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the learning rate is reduced gradually for the remaining
epochs. Network training is improved by the momentum
factor.

3. Experimental results and a discussion

In this section performance analysis of the proposed
network is presented. For performance experiments, we
have considered popular synthetic rain data sets including
joint convolutional analysis and synthesis (JCAS) (Gu
et al., 2017), the recurrent squeeze and excitation context
aggregation network (RESCAN net) (Li et al., 2018), the
deep derail network (DDN net) database (Fu et al., 2017),
the density aware single image deraining multistream
dense network (DID MDN net) (Zhang and Patel, 2018),
Rain12 (Li et al., 2016), Rain100L and Rain100H
(Yang et al., 2017). The JORDER network provides
Rain100H and Rain100L, each of which consists of 100
ground truth and rain images. This network consists
of low-resolution and high-resolution rain images for
predictions. The derain SRCNN provides 200 image
pairs with different orientations. This data set consists of
low-intensity rain images, medium rain images, and heavy
rain streak-affected images. The DID MDN provides 350
synthetic clean images and rain images for training the
deraining networks.

The testing and training of the deraining networks
is conducted on a PC with Intel i5 CPU, 16GB
RAM, and NVIDIA Geforce GTX 2070. The PyTorch
(Paszke et al., 2019) open-source framework is used
to train both synthetic and real-world single rain
images. Since PyTorch is an open-source deep-learning
library for Python, it is useful for applications
such as natural language processing video processing.
PyTorch provides tensor computation with strong GPU
acceleration compared with other open-source tools.
The tensor in PyTorch is similar to the NumPy array.
Additionally, this tensor can be used on a GPU. The main
elements of PyTorch are PyTorch tensors, operations, the
autograd module, the optimization module, and the NN
module. PyTorch provides more than 200 mathematical
operation interfaces. Pytorch and Tensorflow are popular
open-source package used for deep learning applications.
The PyTorch platform provides the Scalable distributed
training and testing for CNN-based deraining frameworks.
Also, PyTorch offers good performance optimization in
both CPU and GPU platforms.

3.1. Hyperparameter selection. The selection of
the hyperparameters (the learning rate, the batch size,
the momentum, and the weight decay) for the CNN is
performed on a trial-and-error basis. The hyperparameters
play an important role in training the deraining model.
The optimal value of these hyperparameters provides
better convergence results of the proposed network. The

learning rate helps to regularize the training of the
proposed deraining network. The selection of the learning
rate is very important for this dual-stage deraining
network. In this work, we have considered the learning
rate between 10−5 and 10−1. Within these limits, the
proposed network offers a better convergence time. For
the training scenario, the proposed network is tested with
a learning rate of 10−3. By considering a higher value
of the learning rate, network overfitting is avoided. The
momentum and learning rates are interrelated. Higher
momentum values are mostly used to avoid network
instability during the training and testing phases.

In this proposed method, we have tried to test
the deraining framework with two momentum values
such as 0.95 and 0.97. A higher value of momentum
(0.97) is considered for training the dual-stage deraining
module. Also, we observed that earlier convergence of the
proposed network happens when the momentum value is
0.97. The batch size also affects the computational time
of the deraining network. Since the proposed method
is tested with a higher-end hardware platform, a higher
batch size is suitable for training the deraining module.
The complete performance analysis of the dual-stage
deraining framework is done with a batch size of 32. The
computational time of the deraining network is reduced by
27% compared with a batch size of 16.

The deraining performance of the proposed network
is also extended for real world rain data sets including the
spatial attentive network (SPA net) database (Wang et al.,
2019), joint rain detection and removal JORDER-E (Yang
et al., 2020), the semi-supervised image rain removal
database (SSIR) (Wei et al., 2018), the progressive image
deraining network (PReNet) (Ren et al., 2019). The
validation of the proposed deraining network is based
on a training set, a validation set, and a training set.
In this work, we have considered both synthetic and
real-time rainy images for analysis purposes. The data
set dividing policy plays an important role in validating
the proposed method. From each of the data sets, 80%
of total image samples are considered for the training
phase. The remaining image samples are considered
for validation purposes. The SGD with gradient clip
optimization technique is employed in this deraining
method with a mini-batch size of 32. The network
was trained using 250 epochs to achieve the required
convergence and attain a higher deraining process. From
the performance investigation, it is observed that the
network attains convergence below 100 epochs for the
synthetic data set. For the real-time data set, the proposed
deraining network takes 150 to 170 epochs based on
types of rain structures. The hyperparameters are selected
through cross-validation of the different rainy data sets.

3.2. Performance measures. The effectiveness of
the proposed method is demonstrated by conducting



Performance analysis of a dual stage deep rain streak removal convolution neural network . . . 117

Table 1. Performance metric comparison of state-of-the arts methods and the proposed method on a synthetic data set.
Data set Metric Rain frame JORDER SSDRNET Proposed

RAIN100L

PSNR 33.25 34.15 36.77 40.12
SSIM 0.9525 0.9611 0.9689 0.9748
FSIM 0.9632 0.971 0.9792 0.9862
UIQI 0.8478 0.8591 0.8644 0.9015

RAIN100H

PSNR 27.12 28.87 31.28 35.79
SSIM 0.8726 0.8811 0.9145 0.9511
FSIM 0.9265 0.9315 0.9488 0.9815
UIQI 0.7954 0.8114 0.8377 0.8815

DID MDN

PSNR 30.38 32.85 36.25 40.75
SSIM 0.8377 0.8415 0.8764 0.9015
FSIM 0.9378 0.9465 0.9633 0.9891
UIQI 0.8611 0.8713 0.8878 0.9122

DDN net

PSNR 35.81 36.62 38.15 42.17
SSIM 0.9322 0.9417 0.9676 0.9912
FSIM 0.9478 0.9565 0.9721 0.9902
UIQI 0.8725 0.8814 0.8966 0.9117

RESCAN net

PSNR 25.12 27.33 29.55 34.72
SSIM 0.8825 0.8915 0.9025 0.9244
FSIM 0.9155 0.9211 0.9286 0.9468
UIQI 0.7564 0.7745 0.7915 0.8244

more numerical experiments on a different synthetic
data set and real-world data sets. The performance of
the proposed deraining experiments is evaluated using
different reference quality metrics (Wang et al., 2004).
The peak signal-to-noise ratio (PSNR) (Sheikh and Bovik,
2006), the structural similarity index (SSIM) (Wang
et al., 2004), the feature similarity index (FSIM) (Zhang
et al., 2011) and the universal image quality index (UIQI)
(Wang and Bovik, 2002) are used as performance metrics
in this work. The FSIM metric is mainly used to
predict the amount of the rain feature available in the
reconstructed image. The performance of the proposed
dual stage derain SRCNN module with the deep residual
dense network is compared with two deep learning-based
deraining methods such as rain detection and removal
JORDER (Yang et al., 2017) and the sequential dual
attention network-based single image deraining deep
network SSDRNET (Lin et al., 2020). In this research
analysis, four performance metrics are calculated for
various synthetic rain data sets including Rain100L,
Rain100H, DID MDN, the DDN net and RESCAN. All
the five synthetic rain data sets are involved in the training
and testing processes. The values of the corresponding
performance metrics are presented in Table 1.

UIQI (universal image quality index) is a kind of
the structural similarity index (SSIM). This index is also
used to capture the fine intensity similarity of two images.
Hence, the rain pattern shows the different structures in
the entire image location. The UIQI is the best option
to measure the fine rain pattern similarity between the

original image and the derained image. In this work, both
FSIM and UIQI similarity measures are more useful to
prove the effectiveness of the proposed dual-stage deep
rain streak removal CNN-based deraining framework.
The achieved values of these two similarity measures is
shown in Tables 1 and 2. From Table 1, it is observed that
the proposed deraining framework offers higher PSNR
and SSIM values compared with other existing methods.
so that the proposed dual-stage derain SRCNN-based
attention network performs on any kind of rain pattern.
The dual-stage derain SRCNN deraining policy offers a
3.56 dB PSNR improvement for Rain100L and Rain100H
data sets compared with other approaches.

Overall, applying the rain streaks affected synthetic
data set to the proposed dual state derain SRCNN
deraining frameworks, it is observed that the PSNR
value increases from 3 dB to 12.5 dB and from 3%
to 22% for the SSIM value improvement observed
in reconstructed derained images. From the various
numerical performance experiments, the proposed method
eliminates any kind of rain pattern from the original image
without degrading the visual quality.

The deraining performance of the proposed network
is also tested for different real-world image data sets
including JORDER-E, SSIR, PReNet, Rain Heavy, and
the SPA net. More numerical training and testing
experiments are conducted on real-world image data
sets. The corresponding performance metric values are
presented in Table 2.

For real-world image data sets, the proposed
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Table 2. Performance metric comparison of state-of-the arts methods and the proposed method on a real data set.
Data set Metric Rain frame JORDER SSDRNET Proposed

JORDER-E

PSNR 24.16 27.33 29.15 33.54
SSIM 0.8145 0.8246 0.8344 0.8612
FSIM 0.7586 0.7712 0.7856 0.8125
UIQI 0.7126 0.7315 0.7425 0.7561

SSIR

PSNR 37.12 38.77 39.6 42.59
SSIM 0.8516 0.8601 0.8745 0.9011
FSIM 0.9365 0.9415 0.9518 0.9795
UIQI 0.7054 0.7114 0.7265 0.7552

PRENET

PSNR 33.38 34.85 36.15 40.15
SSIM 0.8177 0.8315 0.8404 0.8615
FSIM 0.8378 0.8465 0.8633 0.8891
UQI 0.7611 0.7745 0.7798 0.7922

Rain Heavy

PSNR 37.01 38.62 39.75 43.57
SSIM 0.9422 0.9457 0.9696 0.9812
FSIM 0.9178 0.9255 0.9321 0.9512
UQI 0.8125 0.8244 0.8322 0.8485

SPANET

PSNR 29.34 31.24 33.22 35.45
SSIM 0.8452 0.85 0.8599 0.8689
FSIM 0.9125 0.9255 0.931 0.9422
UQI 0.8215 0.8311 0.8422 0.8615

deraining approach offers 2 dB to 9.5 dB of the PSNR
value improvement and 5% to 15% of the SSIM value
improvement. Also, the visual quality of the reconstructed
image is assessed using feature reference metrics FSIM
and UIQI. The FSIM metric value gives the information
about rain elimination accuracy. UIQI is used to assess
the background degradation due to rain patterns. From
Tables 1 and 2 it is observed that the proposed method
provides higher FSIM and UIQI values on the synthetic
data set and real-world data sets.

Figure 5 shows the deraining results of various
deraining networks on a synthetic data set. The first
and second rows show the deraining results Rain100L
and Rain 100H data set, respectively. Observing the
results obtained from the proposed method, rain patterns
are completely removed and the visual quality is also
improved. Observing Fig. 5, the JORDER net and
SSDRNET remove only part of the rain pattern from the
image. But the proposed dual-stage derain SRCNN-based
attention network removes the direction-oriented rain
pattern completely compared with ground truth image
sequences. For the synthetic image data set, the
proposed method removes the small and large rain streaks
completely from the corrupted background.

Figure 6 shows the deraining performance results on
a real-world data set. The first row shows the deraining
results of the sportsman ground truth image. From this
result, it is observed that rain images containing different
intensity background information and the rain information
are mixed with various levels of background information.

The background details are affected due to the usage of
the JORDER net and SSDRNET methods. The proposed
method removes the rain pixel as much as possible while
preserving the background information. The third row
of Fig. 6 shows the deraining performance of the traffic
rain image database. This traffic frame contains a rain
accumulation effect. The JORDER net method retains
a minimum level of the rain pattern in the reconstructed
output. However, SSDRNET results contain blurred
moving objects and backgrounds. When rain streaks are
similar to the object movement and orientation, these
two methods have some difficulty in removing the rain
streaks as well as maintaining background information.
The proposed dual-stage derain SRCNN-based attention
network provides a better-reconstructed image without
any rain pattern. From the various numerical experiments
on the real-world data set, it is observed that the proposed
dual-stage derain SRCNN net provides superior deraining
performance under various rain pattern conditions.

3.3. Ablation experiment. The proposed deraining
network consists of different subcomponents such as the
derain SRCNN, MRDB, 3SFAM modules. The training
of such dual-stage deraining frameworks depends on
the individual component performance. Consequently,
it is necessary to conduct an ablation study to prove
the network performance in deraining applications. We
conduct the ablation study by considering the different
components of the dual-stage deraining framework. Also,
this study provides performance in terms of the overall
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Fig. 5. Deraining results of various deraining networks on five synthetic data sets.

PSNR and SSIM values.
Five different types of network architecture are

involved in this ablation study:

1. a network without Stage II (derain SRCNN),

2. a network without a modified dense network block,

3. a network with a single-stage derain SRCNN and an
MRDB unit,

4. a network without the 3SFAM module,

5. the proposed dual stage deraining framework. The
ablation study of the network using a synthetic
dataset is presented in Table 3.

The network with a single-stage derain SRCNN
provides poor visual performance for different kinds of
synthetic data sets. Hence rain patterns are statistically
independent and additional CNN blocks to perform
deraining tasks. From Table 3 it is observed that
the modified dense network plays an important role in
achieving better PSNR and SSIM values. The 3SFAM
module contributes a minimum performance boost for the
proposed method.

3.4. Complexity analysis of the deraining network.
The dual-channel RELU (DCReLU) activation function is
one of the driving forces to achieve a better reconstruction
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Fig. 6. Deraining results of various deraining networks on real-world rain data sets.

of rainy images and low convergence time. Due to the
presence of this activation function, the identification of
rain pixels is very fast compared with other activation
units such as Tanh or ReLU. During the training stage,
the network faces a vanishing gradient problem. This
problem regards an unstable behavior of the CNN, causing
poor convergence and failure in the weight update process.
In the worst case, a deep neural network terminates the
training process. With the usage of a proper activation
function in the CNN, vanishing gradient issues can be
avoided.

In this proposed CNN-based deraining framework,
the DCReLU activation function is used to solve the
vanishing gradient issues in both the positive and negative
phases of the feature map. In both the regions of the
feature map, the gradient of the loss function attains a

minimum value, rather than zero.

The computational complexity of the proposed
method is compared with other rain streak removal
deraining networks such as JORDER and SSDRNET. A
personal computer with an Intel Core i5 central processing
unit (CPU) at 4 GHz and NVIDIA GeForce GTX 2070
with 4 GB memory are the computational environment
used in the proposed research study. PyTorch is used
to assess the computational complexity of the proposed
method. Only a few rain images are considered due to
the memory limitation of the hardware platform to test
the computation time. The average computation times of
synthetic and real-time images are presented in Table 4.
From the complexity analysis it is observed that the
proposed dual-stage draining framework is faster than the
other two draining networks.
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Table 3. Deraining results (PSNR/SSIM) with different network architectures.
Network structure RAIN100L RAIN100H DID MDN DDN net RESCAN net

Network without
Stage II (derain
SRCNN)

34.56/0.9253 31.45/0.9045 35.62/0.8756 37.56/0.8953 30.12/0.8652

Network without
modified dense
network block

31.65/0.9356 24.5/0.8941 29.45/0.8915 32.45/0.9421 26.56/0.8564

Network with single
stage derain SRCNN
and MRDB unit

36.05/0.9541 30.45/0.9312 34.44/0.8845 36.45/0.9705 28.32/0.9002

Network without
3SFAM module

38.45/0.9654 33.11/0.9425 37.56/0.8992 40.52/0.9854 31.44/0.9125

Proposed dual stage
draining framework

40.12/0.9748 35.79/0.9511 40.75/0.9015 42.17/0.9912 34.72/0.9244

Table 4. Computation time.

Data set
Average computation time (sec)

JORDER SSDRNET Proposed net
RAIN100L 12.50 7.25 3.56
RAIN100H 16.32 4.45 1.45
DID MDN 25.53 14.32 5.65
DDN net 19.45 16.50 10.12
RESCAN net 28.12 21.56 13.56

4. Conclusion

In this paper, a novel dual-stage derain SRCNN model
with a residual dense network is developed for single
image deraining applications. In this proposed deraining
topology the derain SRCNN module is integrated with
MRDB and 3SFAM modules to achieve the effective
rain pattern removal process. The heavy rain patterns
are easily removed due to the presence of the six-stage
feature aggregation module and the dual channel ReLU
activation unit in this proposed deraining method. The
rain component extraction and rain feature refinement
process are performed through the cascading stages of
MRDB and 3SFAM units. The statistically independent
structural rain pattern has been removed through this
cascading topology. The effectiveness of the proposed
network was also demonstrated through an ablation
study wherein the effect of various deraining module
changes was studied. Finally, the proposed deraining
network topology is trained and tested on a higher-end
hardware platform using PyTorch. The extensive quality
performance experimental result shows that the proposed
deraining network provides higher quality measure values
compared with state-of-the-art deraining approaches on
five synthetic rain images data set and real-world data
sets. In future work, we will further explore the proposed
deraining network stages for video deraining applications.
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