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Positive unlabeled (PU) learning is an important problem motivated by the occurrence of this type of partial observability
in many applications. The present paper reconsiders recent advances in parametric modeling of PU data based on empirical
likelihood maximization and argues that they can be significantly improved. The proposed approach is based on the fact
that the likelihood for the logistic fit and an unknown labeling frequency can be expressed as the sum of a convex and
a concave function, which is explicitly given. This allows methods such as the concave-convex procedure (CCCP) or its
variant, the disciplined convex-concave procedure (DCCP), to be applied. We show by analyzing real data sets that, by
using the DCCP to solve the optimization problem, we obtain significant improvements in the posterior probability and the
label frequency estimation over the best available competitors.
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1. Introduction

In the paper, we consider a supervised classification
setting when the data are subjected to a certain type
of censoring, which makes class indicators assigned to
objects (positive or negative in the case of a binary
classification) only partially available. In the positive and
unlabeled (PU) scenario considered here, it is assumed
that some observations from the positive class are labeled,
whereas the remaining observations (either positive or
negative) are unlabeled. Thus in the PU setting the
true binary class indicator Y is not observed directly
but only through a binary label S. One knows that
if S = 1 (labeled case), Y has to be 1, but for
S = 0 (unlabeled case) Y may be either 1 or 0.
Besides, each object is described by a vector of features
x. This setup encompasses a plethora of practical
classification problems, which explains why it is so
intensively investigated (see, e.g., the work of Bekker
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and Davis (2020) for a recent review). Many examples
include disease data (diagnosed patients with a specific
disease detected (S = 1), and patients yet to be diagnosed
who may be ill or not (S = 0)), web pages preferences
of specific users (pages bookmarked as ‘of interest’ and
pages not yet viewed) and ecological examples when
habitats are labeled if a specific species of interest lives
there, and unlabeled if this species has not been spotted
yet. For representative examples of such applications,
see, e.g., the works of Bahorik et al. (2014), Ward et al.
(2009), Liu et al. (2003) and Yang et al. (2014). Another
group of important applications from a different domain
is under-reporting in survey data when some respondents
fail to give a truthful answer to a sensitive question.
Under-reporting might occur when the question asked
concerns, e.g., reckless behavior such as texting while
driving. In such cases, S = 0 occurs in two situations,
the first one, when a driver abstains from texting during
the drive (Y = 0), and the second, when such behavior
takes place but is not reported (Y = 1) (see Sechidis
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et al., 2017).
One of the popular approaches to learn from PU

data is to impose certain parametric assumptions on
the distribution of (X,Y ), as it is commonly done in
the traditional classification task, together with some
additional assumptions on labeling mechanism S. This
is necessary as in a general situation the posterior
distribution of Y given x as well as prior probability
P (Y = 1) are not identifiable for the PU scenario
(Łazęcka et al., 2021). It is common to consider the
logistic type of dependence for the posterior probability
P (Y = 1|X = x) and assume that the censoring
mechanism acts indiscriminately of x and thus is
described only by the label frequency c = P (S = 1|Y =
1) (the SCAR assumption discussed below). The majority
of current learning approaches have been developed under
the SCAR assumption (see, e.g., Elkan and Noto, 2008).

In particular, for the task of the posterior distribution
estimation, Teisseyre et al. (2020) proposed the JOINT
method, which consisted in minimization of the empirical
risk for the observed data (Xi, Si), i = 1, . . . , n with
respect to the parameter of the logistic distribution and the
label frequency. The JOINT method can be considered as
a generic method with various variants possible depending
on the optimization technique used. The optimization
issue is a subtle one as it turns out that the empirical
risk to be minimized is not a convex function of its
parameters. In particular, Teisseyre et al. (2020) used the
BFGS algorithm, whereas the approach by Łazęcka et al.
(2021) in the context of prior estimation has been based on
the minorization-maximization (MM) technique. In the
present contribution, we argue that the superior estimators
can be obtained by exploiting the specific structure of the
empirical risk which turns out to be the sum of a convex
and a concave function.

2. Notions and auxiliary results

We first introduce some basic notation. Let X ∈ R
p be

a random variable corresponding to a feature vector, Y ∈
{0, 1} be a true class label, and S ∈ {0, 1} an indicator
of an example being labeled (S = 1) or not (S = 0). We
assume that there is some unknown distribution PY,X,S

such that (Yi, Xi, Si), i = 1, . . . , n is an independent
and identically distributed (i.i.d.) sample drawn from it.
Observed data consist of (Xi, Si), i = 1, . . . , n. This is
the single sample scenario as opposed to the case-control
scenario when the samples from the positive class and
the general population are given (see Bekker and Davis
(2020) for a thorough discussion of differences between
both the scenarios). Only positive examples (Y = 1)
can be labeled, i.e., P (S = 1|X,Y = 0) = 0. Thus
we know that Y = 1 when S = 1 but when S = 0,
Y can be either 1 or 0. Our primary aim is to learn the
binary posterior distribution of Y given X = x, i.e.,

y(x) = P (Y = 1|X = x) when we only observe
samples from the distribution of (X,S), where S = Y
with a certain probability. We refer to the work of Scott
et al. (2013) for a possible generalization of the censoring
scenario considered.

To this end, we define the binary posterior
distribution of S given x equal s(x) = P (S = 1|x) and
the propensity score function e(x) = P (S = 1|Y = 1, x).
We note that by conditioning on Y we have

s(x) = P (S = 1|x)
= P (S = 1|Y = 1, x)P (Y = 1|x)

+ P (S = 1|Y = 0, x)P (Y = 0|x)
= e(x)y(x),

(1)

as P (S = 1|Y = 0, x) = 0.
In this paper we adopt the fundamental

selected-completely-at-random (SCAR) assumption,
which stipulates that e(x) does not depend on x; thus,

e(x) = P (S = 1|Y = 1) := c∗,

where c∗ stands for the labeling frequency. For
approaches relaxing this condition, we refer to the works
of Bekker et al. (2019) and Na et al. (2020). SCAR is
frequently assumed and is equivalent to the condition that
S and X are conditionally independent given Y . Another
way of viewing it is to say that S = ε × Y , where ε is
a {0, 1}-valued Bernoulli variable independent of (X,Y )
and such that P (ε = 1) = c∗. We stress, however, that it
is valid only when the label value is assigned regardless of
characteristics of an item and thus solely depends on the
value of Y . Under this assumption s(x) = c∗ × y(x) and
it is easy to see that PX|S=1 = PX|Y =1, whereas PX|S=0

is a mixture

PX|S=0 =
α− αc∗

1− αc∗
PX|Y =1 +

1− α

1− αc∗
PX|Y=0, (2)

and α = P (Y = 1) is a prior probability of Y = 1.
We also note that c∗ = P (S = 1|Y = 1) = P (S =
1)/P (Y = 1) = P (S = 1)/α. We do not assume
any previous knowledge of c∗ (although it is frequently
imposed (see, e.g., Elkan and Noto, 2008)) and thus we
only know that 0 ≤ c∗ ≤ 1. Estimation of c∗ will
be also investigated here as besides being of independent
interest, its quality has a major impact on the accuracy of
the posterior probability estimation.

We will adopt a parametric model for the posterior
probability y(x) assuming that it is governed by the
logistic function

y(x) =
exp(b∗Tx)

1 + exp(b∗Tx)
= σ(b∗Tx), (3)

where σ(s) = exp(x)/(1 + exp(s)) is a logistic function
and b∗ is an unknown parameter (note that all vectors here
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are considered as column vectors). This is commonly
assumed and the previous research suggests that the
empirical risk minimization described below is robust to
misspecification of y(x). Thus, in the setting considered,
our problem boils down to adequate estimation of (c∗, b∗).

Define the logistic risk R(b, c) =
−E

[
S log(cσ(bTx) + (1 − S) log(1 − cσ(bTx))

]
.

The maximum likelihood method is based on the
observation that if (3) holds for b∗ and the SCAR is valid
then

argmin
b,c

R(b, c) = (b∗, c∗), (4)

which follows from the information inequality (see, e.g.,
Cover and Thomas, 1991, Theorem 2.6.3). Thus one
considers the empirical risk of observed data (si, xi)

n
i=1

(the negative of the log-likelihood function divided by the
sample size) equal to

Rn(b, c) = − 1

n

n∑

i=1

(
Si log(cσ(b

TXi))

+ (1 − Si) log(1− cσ(bTXi))
)
,

(5)

and defines the maximum likelihood estimator (ĉ∗, b̂∗T )
of (c∗, b∗) as a minimizer of Rn(b, c). The rationale here
is that since in the view of the law of large numbers
Rn(b, c) approaches R(b, c) almost surely, the minimizer
of the former function should be close to that of the
latter. Once b̂∗ is obtained, we define an estimator of the
posterior probability as ŷ(x) = σ(b̂∗Tx)

This problem seems rather easy to solve, however, it
turns out that the introduction of the additional parameter
c into the empirical risk destroys its convexity, i.e.,
Rn(b, c) is not a convex function of b in contrast to
Rn(b, 1), i.e., the logistic risk. There are two existing
approaches to find the minimizer of (5): the first one
called the JOINT method (introduced by Teisseyre et al.
(2020)) which relies on the BFGS algorithm, and the
other is its variant based on the majorization-minimization
(MM) algorithm, introduced by Łazęcka et al. (2021) and
relying on iterative minimization of a suitably constructed
convex bound to Rn(b, c). Here we propose a substantial
modification of the generic JOINT method which uses
an explicit representation of the log-likelihood as the
difference of two convex functions and applies the
concave-convex procedure (CCCP) tailored for such a
case, as well as its disciplined version—DCCP.

3. Convex-concave representation of the
empirical risk

Previous research (Teisseyre et al., 2020) indicates that
the JOINT method yields excellent results in PU tasks. It
achieved state-of-the-art results both on multiple real data
sets and synthetic examples. We note, however, the that
general-purpose BFGS method was applied in the original

JOINT method, and in the context of c∗ estimation it was
replaced by the MM algorithm (which optimizes a convex
minorant of the risk) by Łazęcka et al. (2021). Thus
the natural question arises whether the generic JOINT
method can be improved by using the knowledge about
the specific form of the risk in the PU problem. We show
that the answer is positive and is based on the following
important lemma.

Lemma 1. The empirical risk functionRn(b, c) in (5) can
be represented as the sum of convex and concave functions
of b (referred to as a convex-concave function). Moreover,
it is a convex function of c.

Proof. We note that the empirical risk in (5) may be
written as −n−1

∑n
i=1 Ki(b, c), where

Ki(b, c) = si log(cσ(b
Txi))

+ (1− si) log(1− cσ(bTxi)).
(6)

Elementary transformations yield (we omit index i in
Ki(b, c) to avoid notional clutter)

K(b, c) = s log

(
ceb

T x

1 + ebTx

)

+ (1− s) log

(

1− ceb
T x

1 + ebT x

)

= s log c+ s log

(
eb

T x

1 + ebT x

)

+ (1− s) log

(
1

1 + ebTx

)

+ (1− s) log
(
1 + (1− c)eb

T x
)

= s log c+ s log σ(bTx)

+ (1− s) log
(
1− σ(bTx)

)

+ (1− s) log
(
1 + (1− c)eb

T x
)

=: f1(c) + f2(b) + f3(b, c),

(7)

where

f1(c) = s log c,

f2(b) = s log σ
(
bTx

)
+ (1 − s) log

(
1− σ(bTx)

)
,

f3(b, c) = (1− s) log
(
1 + (1− c)eb

T x
)
.

We note that f2(b) corresponds to the log-likelihood
in the logistic model; thus, it is a concave function of b
and, moreover,

∂2

∂b2
f3(b, c)

= (1− s)(1 − c)
eb

T x

(
1 + (1− c)ebT x

)2xx
T . (8)
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As the matrix xxT is obviously nonnegative definite, we
obtain that f3(b, c) is a convex function of b. Thus K(b, c)
is a sum of a concave and a convex function of b. This is
obviously true also for Rn(b, c) which is the average of
the functions −Ki(b, c).

The concavity of K(b, c) with respect to c follows
from the observation that

∂2

∂c2
K(b, c)

= − s

c2
− (1− s)

e2b
T x

(
1 + (1− c)ebT x

)2 ≤ 0, (9)

and thus −Ki(b, c) is convex with respect to c. �
The algorithms proposed in the next section are

motivated by Lemma 1.

4. JOINT method risk revisited: Proposed
algorithms

The proposed approach is inspired by the variant of
the JOINT method variant described by Łazęcka et al.
(2021). A novel CD+MM procedure, combining cyclic
coordinate descent (CD) and majorization-minimization
(MM) algorithms, was proposed there and shown to
outperform the JOINT method for the problem of class
prior estimation. In a nutshell, the algorithm consists in
minimization of a convex function, which majorizes the
given non-convex function and the convex majorant is
changed in an appropriate way at each step. Further on,
we will refer to that approach as the MM method.

In this section we will introduce two new
JOINT method variants, reutilizing the CD procedure
(Algorithm 1). The procedure treats the value of one
optimization variable as fixed while performing the
optimization of the other variable. The variables are
then swapped, and the procedure works in the loop until
convergence. Thus in Step 4 minimization with respect
to c is performed while the current value of b is held
fixed, whereas in Step 5 optimization is with respect to
b with c held fixed. Cyclic coordinate descent allows
us to separate the optimization variables; as shown in
Lemma 1, the summands of the JOINT risk function have
different curvatures with respect to b and c. It allows us
to utilize the optimization methods designed for both of
them.

It is important to note that while Step 4 of
Algorithm 1 is a routine convex optimization task, Step 5
is much harder to perform effectively. Convex-concave
functions require different optimization algorithms, which
will be the subject of the discussion which follows. More
specifically, we propose variants of two algorithms, CCCP
and DCCP, which are applied to perform the task in Step
5 above.

Algorithm 1. Cyclic coordinate descent.

Require: b(0), c(0): initial guesses for parameter vector
and label frequency, kmax: maximal number of
iterations, ε: tolerance

1: k := 0
2: repeat
3: Next iteration. k := k + 1.
4: Minimize w.r.t. c. Minimize convex function

R̂joint(c) := − 1

n

n∑

i=1

[
si log

(
cσ(xT

i b
(k−1)
est )

)

+ (1 − si) log
(
1− cσ(xT

i b
(k−1)
est )

)]

c
(k)
est := argmin(R̂joint(c)).

5: Minimize w.r.t. b. Minimize convex-concave
function

R̂joint(b) := − 1

n

n∑

i=1

[
si log

(
c
(k)
estσ(x

T
i b)

)

+ (1− si) log
(
1− c

(k)
estσ(x

T
i b)

)]

b
(k)
est := argmin(R̂joint(b)).

6: Next iteration. k := k + 1.
7: until

∣
∣c(k)est − c

(k−1)
est

∣
∣ < ε or k = kmax

8: return best := b(k), cest := c(k) {returns optimal
parameter vector and label frequency.}

The key difference here with the previous research
is an explicit use of the concave-convex nature of the
JOINT risk function. The MM method, used previously
in this context, is a popular tool to optimize any
non-convex function. The methods used in our paper,
which will be introduced in Sections 4.1 and 4.2, are
designed to minimize the convex-concave functions, and
therefore might significantly improve the performance of
the procedure.

4.1. CCCP variant. The convex-concave procedure
(CCCP) was proposed by Yuille and Rangarajan (2003).
For a review of the present state of the ART, see the work
of Lipp and Boyd (2016). The paper stems from the
observation that although any sufficiently smooth function
can be represented in a convex-concave form, substantial
gains can be obtained from the usage of the explicit form
of the representation. This resulted in the proposal of the
CCCP procedure itself, which is the iterative algorithm
that can be used to minimize convex-concave functions. In
its basic form, the algorithm requires the inverse function
of the derivative of the convex part in each step, which is
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not feasible for some functions. An alternative version
is provided for such cases. The procedure is stated in
Theorem 1 for an easy reference.

Theorem 1. (Yuille and Rangarajan, 2003) Let E(b) =
Evex(b) + Ecave(b) be a convex-concave function. Then
the CCCP update rule for the E(b) minimization bt →
bt+1 can be stated as

bt+1 = argmin
b

Et+1(b),

where for b = (b1, . . . , bp)
T ∈ R

p

Et+1(b) = Evex(b) +

p∑

j=1

bj
∂

∂bj
Ecave(b

t). (10)

Note that for each t functionEt+1(b) is convex as the
sum of convex and linear functions.

In the case of Rn(b, c) (see the proof of Lemma 1)

Ecave(b) = − 1

n

∑

i

(f1,i(b) + f3,i(b))

and

Evex(x) = − 1

n

∑

i

f2,i(b).

Thus, according to the CCCP procedure, the step bt →
bt+1 consists in minimizing the convex function Et+1 (b)
which equals

− 1

n

[
∑

i

(
si log σ(x

T
i b)+(1−si) log

(
1− σ(xT

i b)
) )

+
∑

j

bj
∑

i

(1− si)(1 − c)
xi,je

xT
i bt

1 + (1− c)ex
T
i bt

]

,

where xi = (xi,1, . . . , xi,p)
T .

The final form of the algorithm is presented as
Algorithm 2. Note that Step 4 of the algorithm
(minimization with respect to to b) might be achieved
using traditional convex optimization algorithms, such as
CGD or BFGS. We recall the the algorithm below is used
to perform the task in Step 5 of Algorithm 1.

4.2. DCCP variant. Disciplined convex-concave
programming (cf. Shen et al., 2016) combines the ideas
of the CCCP and disciplined convex programming (DCP).
Problems expressed using DCP can be automatically
converted to a standard form and solved by a generic
solver. In order to do that, an objective function to be
minimized must be expressed as a result of compositions
of atomic functions, where applied operations belong
to a family of composition rules which ensure that
the curvature (convexity or concavity) of the resulting

Algorithm 2. JOINT risk minimization—the CCCP
method.
Require: b(0): initial parameter values, kmax: maximal

number of iterations, ε: tolerance, c: label frequency
1: k := 0
2: repeat
3: Next iteration. k := k + 1.
4: Perform CCCP step. Minimize convex function

E(b) equal to

− 1

n

[
∑

i

(
si log σ(x

T
i b)

+ (1 − si) log(1 − σ(xT
i b))

)

+
∑

j

bj
∑

i

(1−si)(1−c)
xi,je

xT
i b(k−1)

1 + (1− c)xi,jex
T
i b(k−1)

5: Next iteration. k := k + 1.
6: until maxi

∣
∣b(k)i − b

(k−1)
i

∣
∣ < ε or k = kmax

7: return best {returns optimal parameter vector.}

expression is known. Functions that conform to those
requirements will be referred to as DCP-compliant.

Any convex-concave problem of the form Evex(b) +
Ecave(b) can obviously equivalently be expressed as
difference of two convex functions f(b)−g(b), where both
f(b) = Evex(b) and g(b) = −Ecave(b) are convex. We
can formally formulate this as the DCCP problem:

minimize f(x)− t

subject to t = g(x),
(11)

where t is a new optimization variable. Note that when
f(b) has a DCP-verified curvature, f(b) − t has it as
well, in contrast to f(b) − g(b). Contrary to standard
DCP problems, which restrict curvatures of the objective
function and the constraints to convex functions, DCCP
problems can use expressions of arbitrary curvatures, as
long as they are DCP-compliant.

To solve such a problem, a penalized version is used.
First, curvatures of all expressions are checked. Then
equality constraints are replaced by a pair of inequality
constraints and slack variables are introduced to cope with
the issue of infeasibility (we refer to Shen et al. (2016) for
details). Note that the penalized CCCP defined in this way
is a convex problem.

In our case (see the proof of Lemma 1) f(b) =
Ecave(x) = −∑

i (f1,i(b) + f3,i(b)) /n and g(b) =
−Evex(b) =

∑
i f2,i(b)/n. In order to use the DCCP

method, however, we need to ensure that curvatures of
those expressions can be DCP-verified. The main issue
are the expressions involving the logarithmic function
appearing in the definitions of f2 and f3. For example,
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log(1 + exp(x)) is a concave function of its convex
argument 1 + exp(x). Curvatures of such expressions are
impossible to check using solely DCP rules.

In order to support such scenarios (similar
expressions are present, e.g., when optimizing the
traditional logistic classifier), the logistic function
(defined as logistic(x) = log(1 + exp(x))) has to
be introduced as an atomic function of a known
curvature (in this case, convex). Therefore, using
elementary transformations, we can obtain the following
DCP-compliant form of risk components:

f2(b) = sxT b− logistic(xT b)

f3(b) = (1− s) logistic
(
log(1− c) + xT b

)
.

(12)

Equations (12) are used to define a valid DCCP
problem. The final form of the algorithm is presented
as Algorithm 3. The DCCP problem present in Step 2
of the algorithm might be solved using existing DCCP
solvers, such as the DCCP extension of the CVXPY Python
package. As in the case of CCCP, the present algorithm is
applied to solve the task in Step 5 of Algorithm 1.

5. Experiments: Analysis of real data sets

We tested all of the approaches proposed in the preceding
section on 12 popular benchmark classification data sets
from the UCI repository,1 presented in Table 1. Their
sizes range from a few hundred to tens of thousands
of observations, with different dimensionalities and class
priors. Is it thus apparent that selected data sets
pose diverse classification problems, varying in size and
complexity. A common approach used in the literature
(Teisseyre et al., 2020; Bekker and Davis, 2018), which
we employed as well, is to use common classification data
sets to create artificial PU data sets by applying random
labeling with a given label frequency c. The advantage
of such a data set construction is the knowledge of the
true class labels of each sample, which allows for better
performance assessment, which in general constitutes a
formidable challenge in PU learning (Bekker and Davis,
2020).

A general preprocessing procedure was used to
prepare data for learning. Missing values were imputed
using the mean feature value, and then the 5 best features
were selected according to the mutual information
filter. The filter relies on calculating plug-in estimators
Î(Xk, Y ) of the mutual information (Cover and Thomas,
1991) between individual features Xk and response Y and
then selecting features corresponding to 5 largest values of
Î(Xk, Y ). Finally, the 80:20 train/test split was applied
and the resulting data sets were standardized. Python

1https://archive.ics.uci.edu/ml/datasets.php.

Algorithm 3. JOINT risk minimization—the DCCP
method.
Require: c: label frequency

1: Determine DCP-compliant form of functions

f(b) := − 1

n

∑

i

(
s log c+ sxT

i b− logistic(xT
i b)

)
,

g(b) :=
1

n

∑

i

(
(1 − s)logistic

(
log(1− c) + xT b

))
.

2: Solve DCCP problem: best solves

minimize f(b)− t

subject to t = g(b).

3: return best {Returns optimal parameter vector.}

Table 1. Analysed datasets and their statistics.
Name Size Features Class prior α
Adult 32561 57 0.24

BreastCancer 699 9 0.34
ILPD 583 10 0.28

credit-a 690 38 0.44
credit-g 1000 48 0.30
diabetes 768 8 0.35
heart-c 303 19 0.46

ionosphere 351 34 0.64
madelon 4400 500 0.5
spambase 4601 57 0.39

vote 435 32 0.39
wdbc 569 31 0.37

procedures used to obtain results presented in this paper
are publicly available on GitHub.2

The proposed CCCP and DCCP PU algorithms
were compared with the basic JOINT method and its
modification using the MM algorithm, which was used
by Łazęcka et al. (2021) to estimate the label frequency.
Additionally, we tested the performance of the weighted
logistic regression method introduced by Bekker et al.
(2019). It is important to note that this needs an
accurate label frequency estimate in order to approximate
the posterior probability. We provided it using two
algorithms, the classic Elkan–Noto approach (Elkan and
Noto, 2008) (EN), and the state-of-the-art TIcE (Bekker
and Davis, 2018) method. We focused on the weighted
logistic regression and the basic JOINT for comparison
purposes as it was shown by Teisseyre et al. (2020) that
the basic JOINT outperforms other competitors.

The results were evaluated using two metrics.

2https://github.com/adamw00000/PU-joint-CCCP-
DCCP-2021.

https://archive.ics.uci.edu/ml/datasets.php
https://github.com/adamw00000/PU-joint-CCCP-DCCP-2021
https://github.com/adamw00000/PU-joint-CCCP-DCCP-2021
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The first one is motivated by the fact that an ideal
PU classifier should behave like a traditional logistic
regression classifier. We will refer to such a method as
the oracle method, since it describes an idealized situation
where we have access to true class labels for all samples.
The key metric will therefore be the approximation error
of the posterior probability (AE). It is defined as

AE = n−1
n∑

i=1

|ŷoracle(xi)− ŷmethod(xi)| ,

where “method” stands for any of the tested methods.
It measures how well the model trained on PU data
can approximate the oracle estimator of the posterior
probability. The other metric that we used was the label
frequency estimation error, defined as LFE = |ĉ− c|.

Label frequency is the other parameter estimated by
the proposed methods, and the quality of its estimation
will greatly influence the prediction performance of the
models. Moreover, we also evaluated the computing
time. The compared methods all require different learning
procedures, and thus using a standard measure (e.g.,
the number of function evaluations or iterations) yields
inappropriate results. It led us to use the training time,
measured in seconds, as the performance metric. All of
the results presented below were averaged over 100 runs.
The initial parameter vector was a zero vector, while the
initial the label frequency estimate utilized a fact that label
frequency c satisfies P (S = 1) ≤ c ≤ 1 and we used a
midpoint (P̂ (s = 1) + 1)/2 as c(0).

6. Results

First, we evaluated the AE metric for each data set and the
label frequency value (Fig. 1), and assessed the variability
of the estimates. The main conclusion is that although no
clear winner is performing the best on all the data sets
considered, the three JOINT-based methods (MM, CCCP,
and DCCP) perform overall very well and are superior
to its competitors (the original JOINT and the weighted
logistic regression). The performance of the DCCP is the
most variable among the three modified versions: some
data sets have proven to be difficult for this method (e.g.,
Adult, wdbc), but on the other hand, it was by far the
best method on multiple other data sets (e.g., credit-a,
credit-g, diabetes, heart-c, madelon). The difference is
most noticeable for low label frequency values. This is
expected in the PU setting; as the c value grows, more
information on Y is available, which makes the task
easier. It is the best method when averaged performance
with respect to c is considered (see Table 1).

MM and CCCP variants proved more stable than the
DCCP method. Their performance is usually comparable,
but overall they both substantially outperform the basic
JOINT method. Both variants of the weighted method
underperform on most of the data sets, which is hardly

surprising, as the previous study (Teisseyre et al., 2020)
has shown their inferiority to the original JOINT method.

Table 2 presents AE results for each data set averaged
over c (the best results are in boldface). We see that overall
the DCCP method clearly outperforms its competitors.
Nevertheless, there are a few data sets where this classifier
achieves inferior results (see, e.g. the Adult data set).
On the other hand, CCCP and MM usually perform very
similarly, with MM being slightly superior on most of the
tested datasets. A notable exception is once again the
Adult data set, where CCCP is the clear winner. The MM
method performed satisfactorily overall, but its results
are rarely the best. All of the JOINT-based approaches
substantially outperform the weighted method, which
yields poor results outside of the BreastCancer data set.

Figure 2 shows the quality of label frequency
estimates on each data set versus the true label frequency
value. Note that while for the weighted regression
approach using both label frequency estimation methods,
the label frequency error increases as c gets larger, for
the JOINT-based methods its behavior is mostly stable.
Interestingly, there are also a few data sets where the
label frequency error starts decreasing for large c values.
The relative stability of the estimation quality of c with
regard to its value is a remarkable property of the methods
considered based on the minimization of the empirical
risk.

We can clearly see that the proposed CCCP and
DCCP variants, along with the MM method, improve
the label frequency error for difficult data sets (e.g.,
credit-a, credit-g, diabetes, heart-c, madelon). Estimation
performance depends on the data set; for example, the
DCCP method is unrivaled on the diabetes and madelon
data set, whereas it is slightly poorer when used on the
Adult data set.

The overall results gathered in Table 3 indicate that
DCCP achieves the lowest averaged error value; it proved
better than the alternatives for 5 data sets. CCCP also
managed to outperform the MM algorithm for the label
frequency estimation. Even though the difference in the
mean results is not large, CCCP consistently estimates the
label frequency better than the MM method, except for the
spambase data set.

While the results presented above seem very
promising, it is also important to highlight the drawbacks
of the proposed algorithms. Table 4 shows that,
similarly to the MM method, using DCCP and CCCP
significantly increases the training time. This behavior
is expected, as the cyclic coordinate descent requires
multiple classification model fits internally, and all three
of those algorithms are iterative by nature, as well. The
internal minimization problem for both the proposed
algorithms is also more complex than for the MM
method and thus both of those approaches are even more
computationally expensive.
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Fig. 1. Approximation error of the posterior vs. the label frequency c.
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Fig. 2. Label frequency error vs. the true label frequency.
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Table 2. Approximation error of the posterior per data set averaged over the labeling frequency c. Standard errors are given in brackets.
Dataset Weighted (EN) Weighted (TIcE) Joint MM CCCP DCCP
Adult .272 (.003) .198 (.010) .034 (.011) .033 (.010) .027 (.011) .060 (.004)

BreastCancer .036 (.007) .033 (.005) .047 (.006) .044 (.008) .046 (.006) .055 (.012)
ILPD .464 (.017) .484 (.023) .221 (.041) .133 (.033) .191 (.044) .140 (.025)

credit-a .145 (.013) .140 (.013) .135 (.023) .116 (.017) .118 (.017) .098 (.016)
credit-g .447 (.024) .404 (.030) .182 (.037) .155 (.036) .160 (.038) .137 (.020)
diabetes .301 (.014) .269 (.016) .136 (.028) .122 (.022) .129 (.024) .095 (.016)
heart-c .194 (.014) .185 (.015) .141 (.022) .126 (.018) .131 (.018) .115 (.019)

ionosphere .220 (.017) .200 (.018) .235 (.021) .205 (.018) .209 (.016) .205 (.019)
madelon .466 (.008) .325 (.025) .180 (.048) .085 (.025) .088 (.028) .044 (.012)
spambase .219 (.017) .192 (.016) .105 (.007) .083 (.005) .085 (.005) .100 (.009)

vote .056 (.010) .063 (.006) .054 (.014) .069 (.015) .062 (.014) .057 (.013)
wdbc .055 (.009) .055 (.008) .042 (.008) .050 (.010) .050 (.009) .053 (.012)
Mean .238 .213 .132 .106 .113 .099

7. Conclusions

In this paper we introduce two new variants of the
JOINT method, CCCP and DCCP. Both of the methods
achieve approximation errors better or on par with the
newly proposed MM method. The DCCP method seems
especially promising, outperforming the competitors on
multiple data sets. Both the methods also achieve very low
label frequency errors, without the need of using external
estimation procedures. Moreover, for the task of label
frequency estimation, they outperform existing TIcE and
EN methods handily and achieve better results than the
MM variant. The proposed algorithms are recommended
in practice for the smaller tasks; for large data sets, the
high computation costs highlighted in this paper might
make their usage problematic.
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