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We consider the positive-unlabelled multi-label scenario in which multiple target variables are not observed directly. In-
stead, we observe surrogate variables indicating whether or not the target variables are labelled. The presence of a label
means that the corresponding variable is positive. The absence of the label means that the variable can be either positive or
negative. We analyze embedded feature selection methods based on two weighted penalized empirical risk minimization
frameworks. In the first approach, we introduce weights of observations. The idea is to assign larger weights to observations
for which there is a consistency between the values of the true target variable and the corresponding surrogate variable. In
the second approach, we consider a weighted empirical risk function which corresponds to the risk function for the true
unobserved target variables. The weights in both the methods depend on the unknown propensity score functions, whose
estimation is a challenging problem. We propose to use very simple bounds for the propensity score, which leads to rela-
tively simple forms of weights. In the experiments we analyze the predictive power of the methods considered for different
labelling schemes.
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1. Introduction

1.1. Problem description. Multi-label classification
(Dembczyński et al., 2012; Zhang and Zhou, 2013; Gibaja
and Ventura, 2015) is a variant of the classification
task in which many binary target variables y1, . . . , yK
are considered simultaneously. The goal is to build a
model using training data which predicts values of the
target variables using feature vector x = (x1, . . . , xp).
In the positive-unlabelled multi-label (PU-ML) scenario,
the true target variables are not observed directly in
the training data. Instead, we observe surrogate target
variables s1, . . . , sK , which indicate whether the target
variables are labelled or not. The presence of the label
means that the target variable is positive, i.e., sk = 1
implies yk = 1. The absence of the label (sk = 0) means
that the true target variable can be either positive (yk = 1)

or negative (yk = 0). The objective is to predict the true
target variables using the model which is based on feature
vector x and surrogate target variables s1, . . . , sK .

Positive unlabelled multi-label (PU-ML) data appear
naturally in many different fields. As an example,
consider a problem of predicting multi-morbidity, i.e.,
co-occurrence of multiple diseases in one patient using
patients characteristics, which is a typical multi-label task
(Zufferey et al., 2015; Teisseyre, 2020). It may happen
that some diseases are not diagnosed or are not reported
in a given patient. However the absence of a diagnosis
does not mean that the patient does not have the disease in
question. Consequently, we can distinguish three groups
of patients: those with the diagnosed disease (sk = 1
and thus yk = 1); patients without diagnosed disease
who have the disease (sk = 0 and yk = 1) and, finally,
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patients without the diagnosed disease who really do not
have the disease (sk = 0 and yk = 0). The issue is
important as many studies indicate that certain diseases,
such as hypertension or diabetes, are often undiagnosed
(Walley, 2018) and, in consequence, the model fitted
on such incomplete labelled data may give misleading
predictions. The positive unlabelled learning is also
closely related to the problem of under-reporting (Sechidis
et al., 2017). An important example are under-reporting
adverse drug reactions (Hazell and Shakir, 2006). In this
case the first group consists of the respondents who report
adverse drug reactions (sk = 1 and thus yk = 1). The
second group experiences adverse reactions but does not
report it (sk = 0 and yk = 1). Finally, in the third group
the adverse drug reactions do not occur and this group has
nothing to report (sk = 0 and yk = 0).

1.2. Related work. PU-ML learning is a natural
generalization of the standard PU scenario (Bekker and
Davis, 2020) to the case of multiple target variables.
There are many partial observability schemes related to
PU learning. For example, in multi-label learning with
missing labels (Zhu et al., 2018; He et al., 2019) some
values of target variables are positive, some are negative
and the others are unlabelled (can be either positive or
negative). The PU-ML setting can be also seen as a
special case of the more general problem of learning
from noisy labels (Natarajan et al., 2013; Frenay and
Verleysen, 2014) when labels are incorrectly assigned. In
such general scenario, the value of the true class variable
yk can be flipped with some probabilities ω1 := P (sk =
0|yk = 1) and ω2 := P (sk = 1|yk = 0) and instead yk
we observe sk = 1− yk. This problem reduces to the PU
setting for ω2 = 0. The other related task is ‘coarse data’
analysis (Heitjan and Rubin, 1991; Couso et al., 2017),
where instead of the exact value of yk, only some subset
of the possible values of yk is given in the training data.

In this paper we consider a problem of feature
selection for PU-ML data. Feature selection is an essential
part when building classification models (Guyon and
Elisseeff, 2003). First, it improves the prediction accuracy
of the models. Fitting the models based on a large
number of features includes estimation of a large number
of parameters. It is well known that fitting models with
many noisy features increases the variance of estimators
and thus decreases the prediction accuracy of the model
(see, e.g., Hastie et al., 2009, Chapter 7). Finally, feature
selection methods are used to discover a dependency
structure in data and to have a model which can be
interpreted (Biecek, 2018), which is particularly important
in biological and medical applications.

Although both positive unlabelled multi-label
learning (Sun et al., 2010; Bucak et al., 2011; Wei
et al., 2018; Wu et al., 2013; Kanehira and
Harada, 2016; Teisseyre, 2021) as well as the problem

of feature selection in multi-label classification (Pereira
et al., 2018; Kashef et al., 2018; Lee and Kim, 2017)
have attracted close attention, a combination of these
two problems, to the best of our knowledge, remains an
unexplored area. In this paper, we focus on penalized
empirical risk minimization frameworks. In all methods
considered we use �2,1 regularization which ensures
that the selected features will be shared across the
models corresponding to different target variables. Such
regularization is very natural in multi-label classification.
It has been effectively exploited in simultaneous
multi-task learning problems (Argyriou et al., 2008) and
also in multi-label classification (Ji et al., 2010; Naula
et al., 2014). The �2,1 regularization is useful when
one wants to fit the model subject to a constraint on the
number of features. Such constraints are important in
domains where the acquisition of the feature values is
costly or is associated with a certain risk. For example,
in medical diagnosis, each diagnostic test is associated
with its cost. Moreover, unnecessary diagnostic tests or
treatments may cause negative effects and even increase
the risk of death; examples include treatments under
general anesthesia (Lagasse, 2002) or diagnostic X-rays
(Hall and Brenner, 2008).

The key problem in the feature selection methods
considered is the choice of the empirical risk function.
The naive approach is to consider the risk function for the
surrogate (observed) target variables. Such an approach is
called ‘biased’ as the risk does not correspond to the risk
for the true target variables and, therefore, the resulting
estimates of the posterior probabilities will underestimate
the true posterior probabilities P (yk = 1|x). This
leads to poor predictive performance of the naive method,
especially when the fraction of labelled examples is small
(Teisseyre et al., 2020). On the other hand, in the previous
studies (Sechidis et al., 2014; Sechidis and Brown, 2018)
it was demonstrated that in the context of feature selection,
the naive approach can rank the features correctly (i.e.,
it assigns the highest scores to the relevant features),
provided that the SCAR (selected completely at random)
assumption is met. In particular, it has been shown that the
mutual information I(sk,x) = 0 if and only if I(yk,x) =
0. The above issues are confirmed by our experiments,
namely the naive method ranks the features correctly, but
its predictive power is significantly lower when compared
with the proposed methods.

1.3. Contribution. In this work, we consider two
weighted empirical risk minimization problems with �2,1
regularization. The difference between the methods is that
they use different risk functions. In the first proposed
method, we modify the naive approach by introducing
weights of observations. The idea is to assign larger
weights to observations for which there is a consistency
between the values of the true target variable and the
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corresponding surrogate variable, i.e., sk = yk, and
smaller weights to observations for which sk �= yk. This
is challenging as we only know that yk = sk, when
sk = 1, i.e., for labelled examples. In the second method,
we consider another weighted empirical risk function
which corresponds to the risk function for the true target
variables. The weights in both the methods depend on
the unknown propensity score function ek(x) = P (sk =
1|yk = 1,x) which is difficult to estimate. We overcome
this limitation by using simple, yet effective, bounds on
the propensity score. Both the proposed methods can be
treated as two-step procedures; in the first step we use the
naive method to estimate the weights; in the second step
we solve weighted empirical risk minimization problems
with the weights obtained in the first step. In the case of
the second method, we give a bound on the excess risk.

The article is structured as follows. In Section 2 we
formally describe the problem and the naive approach.
In Sections 3 and 4 we discuss the proposed methods.
The experiments are described in Section 5 and Section 6
summarizes our research.

2. Multi-label positive unlabelled learning

2.1. Background. In multi-label classification,
each instance is described by feature vector x =
(x1, . . . , xp) ∈ X and label vector y = (y1, . . . , yK) ∈
{0, 1}K . In the positive unlabelled (PU) setting we do
not observe label vector y directly, we only observe a
vector of surrogate variables s = (s1, . . . , sK). The
surrogate variable sk indicates whether the k-th target
is labelled (and thus positive, i.e. sk = 1 =⇒
yk = 1) or not (sk = 0). Note that sk = 0 does
not imply that yk = 0. Indeed, unlabelled examples
(sk = 0) can be either positive (yk = 1) or negative
(yk = 0). In this paper we assume the so-called single
data scenario (Elkan and Noto, 2008), according to which
there is some unknown distribution P (x,y, s) such that
(x(i),y(i), s(i)), i = 1, . . . , n constitute an independent
and identically distributed sample drawn from it and only
data D = {(x(i), s(i)), i = 1, . . . , n} are observed. The
above setting is a generalization of the positive unlabelled
scenario for single label classification to the case of
multi-label classification. The goal of feature selection is
to reduce the dimensionality of x, i.e., to choose relevant
features which affect labels y using only observed training
data (x(i), s(i)). We will focus on penalized empirical risk
minimization methods.

Below we recall some basic quantities which play
an important role in the PU setting. Let qk(x) :=
P (yk = 1|x) and sk(x) := P (sk = 1|x) be the
posterior probabilities for the k-th target. In the PU
setting, qk(x) cannot be directly estimated as we do not
observe yk, whereas it is possible to estimate sk(x) by
learning a model using data (x(i), s

(i)
k ) (this approach is

called ‘biased learning’ or ‘naive learning’, see the next
subsection). Importantly, it follows from the Law of Total
Probability that the above two quantities are related as

P (sk = 1|x) = ek(x)P (yk = 1|x), (1)

where ek(x) := P (sk = 1|yk = 1,x) is the so-called
propensity score function for the k-th target. The
propensity score describes the labelling mechanism for
the k-th target. It measures the likelihood of being labelled
for the positive example described by feature vector x.
The estimation of ek(x) is a very challenging task and
therefore recovering the posterior for the true target yk is
not straightforward in a general scenario. Most authors
try to deal with this problem by imposing additional
assumptions, e.g., the SCAR assumption according to
which the probability of labelling for positive example
does not depend on feature vector x, i.e., P (sk = 1|yk =
1,x) = P (sk = 1|yk = 1) = ck, where ck is a constant
(label frequency) which has to be estimated (Elkan and
Noto, 2008; Ramaswamy et al., 2016; Jain et al., 2016;
Plessis et al., 2017; Bekker and Davis, 2018; Jaskie
et al., 2020; Łazęcka et al., 2021). Since the SCAR is
very often an unrealistic assumption (Bekker et al., 2019),
in this paper, we try to avoid the SCAR by using simple
bounds on the propensity score function.

2.2. Naive approach: Empirical risk minimization
for surrogate target variables. Let A ∈ R

K×p be a
matrix of parameters, whose k-th row ak is a parameter
vector corresponding to the model for the k-th label. The
linear predictor for the k-th label is aTk x. The quality
of the prediction for the k-th label is assessed by a loss
function l(ŷ, y). For example, the logistic loss is written
as −[y log(σ(ŷ)) + (1 − y) log(1 − σ(ŷ))], where σ is
a sigmoid logistic function. A natural approach is to
consider the empirical risk for surrogate variables

R̂0(A) =

K∑

k=1

1

n

n∑

i=1

l(aTk x
(i), s

(i)
k ). (2)

This approach is called ‘naive’ (or biased) learning
as it is based on observed target variables s and
not the true target variables y. We learn matrix A
by minimizing the penalized empirical risk Â(0) =
argminA∈RK×p [R̂0(A) + λ

∑p
j=1 ||Aj ||2], where Aj is

the j-th column of matrix A. The �2,1 penalty term
ensures a common sparsity pattern in A and thus it allows
us to select features which are relevant to predict all labels
simultaneously.

3. Method 1: Weighted risk for surrogate
target variables

The main limitation of the naive method is related to using
the noisy target variables s, i.e., for some observations
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it may happen that s
(i)
k �= y

(i)
k . The main goal of

the proposed method is to modify the naive method
by introducing weights of observations wk(x

(i)) which
describe the consistency between sk and yk. In the
proposed method, we consider the weighted empirical risk
function

R̂1(A) =

K∑

k=1

1

n

n∑

i=1

wk(x
(i))l(aTk x

(i), s
(i)
k ) (3)

and solve the related regularized problem Â(1) =
argminA∈RK×p [R̂1(A) + λ

∑p
j=1 ||Aj ||2]. The crucial

element in the above method is the choice of the weights
wk(x

(i)). Note that in the PU scenario, one can
distinguish three groups: (a) observations for which yk =
1, sk = 1 (labelled examples), (b) yk = 0, sk = 0
(unlabelled, negative examples) and (c) yk = 1, sk = 0
(unlabelled positive examples). For the first two groups,
there is a consistency between sk and yk, whereas for
group (c), the values of sk and yk do not match.

The main idea is to assign larger weights to
observations from groups (a) and (b) and smaller weights
to observations from group (c). In this way we can
eliminate (or at least reduce) the influence of observations
from (c). For the remaining observations, sk can be
replaced by yk and then (3) will mimic the risk function
for the true unobserved target variables.

This is a challenging task as yk is not observable and
therefore it is not possible to distinguish directly between
groups (b) and (c).

A natural choice of weights for the k-th label is to
assign wk(x) = 1 when sk = 1 and

wk(x) = P (yk = 0|x) = 1− sk(x)

ek(x)

when sk = 0. Such weights meet the above assumptions.
As was mentioned in Section 2, estimation of the
propensity score ek(x) is a challenging task. The existing
methods, proposed for the single label case, such as the
EM-type algorithm (Bekker et al., 2019), require multiple
iterations and are too computationally demanding in
the context of the multi-label case and applying �2,1
regularization. To deal with this problem, we propose
two simple yet effective solutions. In the first one, we use
inequality sk(x) ≤ ek(x) ≤ 1 and simply replace ek(x)
by 0.5(1+sk(x)), which is the average of the two ends of
the interval [sk(x), 1]. The other possibility is to simply
assume that ek(x) = c and, using inequalityP (sk = 1) ≤
c ≤ 1, replace ek(x) by 0.5(1 + P (sk = 1)). This leads
to the following estimators of weights. Since, sk(x) can
be relatively easily estimated (using the naive approach),

we express the weights in terms of sk(x). We have

w
(1)
k (x)

:=

⎧
⎨

⎩
1− sk(x)

0.5(1 + sk(x))
=

1− sk(x)

1 + sk(x)
if sk = 0,

1 if sk = 1

and

w
(2)
k (x) :=

⎧
⎨

⎩
max(0, 1− 2sk(x)

1 + P (sk = 1)
) if sk = 0,

1 if sk = 1.

In the latter case we use the max function to ensure the
positiveness of the weights. In the proposed method,
we first estimate sk(x) by using the naive method
(we compute Â(0)) and determine the above weights.
Probability P (sk = 1) is estimated as a fraction of
observations for which sk = 1. The whole procedure
consists of two steps: in the first step we apply the naive
approach to estimate the weights and then we compute
Â(1).

The other natural approach is to consider

wk(x) = P (yk = 0|x, sk = 0)

= 1− P (yk = 1|x, sk = 0) (4)

= 1− P (sk = 0|x, yk = 1)P (yk = 1|x)
P (sk = 0|x) (5)

= 1− 1− ek(x)

ek(x)

sk(x)

1− sk(x)
,

where (4) follows from the Bayes theorem and (5) follows
from (1). In much the name case as in the case of the
above weights, we can replace ek(x) by 0.5(1+sk(x)) or
by 0.5(1 + P (sk = 1)), which leads to another definition
of weights,

w
(3)
k (x) :=

⎧
⎨

⎩

1

1 + sk(x)
if sk = 0,

1 if sk = 1

and

w
(4)
k (x)

:=

⎧
⎨

⎩
1− 1− P (sk = 1)

1 + P (sk = 1)

sk(x)

1− sk(x)
if sk = 0,

1 if sk = 1.

Figure 1 shows weights as a function of sk(x). As
expected, all weights decrease with sk(x). In the case of
the weights of Methods 1 and 2 we usually assign smaller
values than in the case of the weights of Methods 3 and
4. In addition, the weights of Methods 2 and 4 depend on
P (sk = 1).
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Fig. 1. Weights of observations for Method 1 with respect to
P (sk = 1|x), for P (sk = 1) = 0.5.

4. Method 2: Approximating the risk for
true target variables

We consider the theoretical risk corresponding to the true
unobserved target variables

R(A) = Ex,y

K∑

k=1

l(aTk x, yk) =
K∑

k=1

Ex,yk
l(aTk x, yk).

(6)
The empirical version of the above risk function cannot
be directly optimized as we do not observe y. However,
the following result shows that R(A) can be written in an
alternative form which will be used in our method. We
consider loss functions that can be decomposed as

l(aTk x, yk) =

{
l+(aTk x) if yk = 1,

l−(aTk x) if yk = 0,
(7)

where l+(·) and l−(·) are losses for positive and negative
examples, respectively.

Many popular loss functions can be represented as
(7). For example, in the case of the log loss (cross entropy
loss) l(ŷ, y) = −[y log(σ(ŷ))+(1−y) log(1−σ(ŷ))] we
have l+(ŷ) = − log[σ(ŷ)] and l−(ŷ) = − log[1 − σ(ŷ)].
Moreover, define an auxiliary loss

l̃(aTk x, sk)

=

{
l+(aTk x) if sk = 1,

wk(x)l
−(aTk x) + (1− wk(x))l

+(aTk x) if sk = 0,

where weights wk(x) = P (yk = 0|sk = 0,x) were
already considered in Method 1. The following result will
be crucial for Method 2. We will prove that the theoretical

risk for the k-th target variable can be expressed as the
expected value of the auxiliary loss, where the expectation
is taken with respect to (x, sk).

Theorem 1. The following equality holds:

Ex,yk
l(aTk x, yk) = Ex,sk l̃(a

T
k x, sk).

Proof. Using the Law of Total Probability and the facts
that P (sk = 1, yk = 0|x) = 0 and P (sk = 1, yk =
1|x) = P (sk = 1|x), we have

Eyk|xl(a
T
k x, yk)

= P (sk = 1|x)l+(aTk x)
+ P (sk = 0, yk = 0|x)l−(aTk x)
+ P (sk = 0, yk = 1|x)l+(aTk x)

= P (sk = 1|x)l+(aTk x)
+ wk(x)P (sk = 0|x)l−(aTk x)
+ (1 − wk(x))P (sk = 0|x)l+(aTk x)

= Esk|xl̃(a
T
k x, sk).

Taking the expectation with respect to x yields the desired
assertion. �

Importantly, the empirical version of the expression
given in Theorem 1 can be directly optimized. Thus,
using Theorem 1, the theoretical risk (6) and its empirical
version can be written as

R(A) =

K∑

k=1

Ex,sk l̃(a
T
k x, sk),

R̂(A) =

K∑

k=1

1

n

n∑

i=1

l̃(aTk x
(i), s

(i)
k ),

respectively.
Observe that l̃(aTk x

(i), s
(i)
k ) depends on ek(x).

Therefore, as in Method 1, we first estimate sk(x) by
using the naive method and then estimate ek(x) as 0.5(1+
sk(x)). In the next step, we compute the matrix of
parameters as

Â := argmin
A

[
R̂(A) + λ

p∑

j=1

||Aj ||2
]
. (8)

Note that it is equivalent to solving Â :=
argminA∈A R̂(A), where class A := {A ∈ R

K×p :∑p
j=1 ||Aj ||2 ≤ Λ} and Λ is related to λ.

In the following we will bound the excess risk
for Â using the Rademacher complexity bounds. The
multi-label Rademacher complexity is defined as

RD(A) := Eε

[
1

n
sup
A∈A

n∑

i=1

K∑

k=1

εki
(
aTk x

(i)
)
]
.
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Here, the expectation is over εki , which are i.i.d.
Rademacher random variables, i.e., P (εki = 1) =
P (εki = −1) = 0.5. It has been already shown (Kakade
et al., 2012) that the multi-label Rademacher complexity
for class A can be bounded by

RD(A) ≤ O

(
ΛB

√
K log(p)

n

)
, (9)

where D = {(x(i), s(i)) : i = 1, . . . , n} and B > 0 is
a constant, such that maxi ||x(i)||∞ < B. To produce
a bound to the excess risk, it is necessary to know that
the loss function is Lipschitz with respect to its first
argument. It is very easy to check that when both l+()
and l−() are Lipschitz with some constant ρ then l̃(·, ·)
is Lipschitz with constant 2ρ with respect to its first
argument, as wk(x) ≤ 1. For example, in the case of the
log loss, it is easy to check that l+() and l−() are Lipschitz
with constant 1. In the following result we bound the
(expected) excess risk. Let A∗ := argminA∈A R(A) be
the optimal solution corresponding to the theoretical risk.

Theorem 2. Assume that maxi ||x(i)||∞ < B and l+(·)
and l−(·) are ρ-Lipschitz. Then we have

ED[R(Â)−R(A∗)] ≤ O

(
2ρΛB

√
K log(p)

n

)
.

Proof. Note that

ED[R(Â)−R(A∗)]

≤ ED[R(Â)− R̂(Â)]

≤ ED sup
A∈A

[R(A)− R̂(A)],

where the first inequality follows from the fact that
R(A∗) = EDR̂(A∗) ≥ EDR̂(Â), as Â minimizes
the empirical risk R̂ within class A. Next, it follows
from adaptation of Lemma 26.2 by Shalev-Shwartz and
Ben-David (2013) to the multi-label case and the fact
that l̃(·, ·) is Lipschitz with constant 2ρ that the last term
is bounded by 2ρEDRD(A). This, combined with (9),
yields the desired assertion. �

5. Experiments

In the experiments we compare the methods described in
the previous sections: the naive method, Method 1 and
Method 2. We also consider the oracle method which
assumes the full knowledge of target variables. The
oracle method serves as a reference method and obviously
it cannot be used in practise for PU-ML data. In the
experiments we investigate how much we lose compared
with the oracle method and how much the proposed
methods improve the prediction accuracy of the naive
approach. We also explore the impact of various labelling
schemes and the choice of optimal weights in Method 1.

5.1. Data sets. We consider two artificial data sets
(called ‘Artificial 1’ and ‘Artificial 2’). The main
advantage of using artificial data sets is that we know in
advance which features are relevant and which are noisy.
Therefore, in addition to the classification performance,
we can also assess the quality of feature ranking. We use
the following method of generating artificial data sets. We
first generate the feature vector x ∼ N(0, I), where I is
the p× p identity matrix. Then we generate the true target
variables from the Bernoulli distribution with probability
of success

P (yk = 1|x) = σ(xT
Tk
βTk

),

where σ(·) is a sigmoid activation function σ(s) =
1/(1 + exp(−s)), Tk ⊆ {1, . . . , p} is a set of the indices
corresponding to the relevant features for the k-th target
variable, xTk

is a subvector of x corresponding to features
from Tk and β is a parameter vector.

Artificial data set 1. We consider K = 5, n = 500, p =
50 features and define sets of relevant variables as Tk =
{1, . . . , k}, where k = 1, . . . ,K . We consider βTk

=
(1, . . . , 1)T . Observe that in such scenario, y1 is affected
by only one feature, whereas yK by K features. The first
feature is relevant for all target variables considered, the
second feature is relevant for all but one target variable,
etc. The K-th feature is only relevant for the K-th target
variable. Features {K + 1, . . . , p} are not relevant they
only serve as noisy features to make; the feature selection
task more challenging.

Artificial data set 2. We consider K = 5, n = 500,
p = 50 features and define sets of relevant variables as
Tk = {1, . . . , 5k}, where k = 1, . . . ,K and βTk

=
(0.5, . . . , 0.5)T . Features {5K+1, . . . , p} are not relevant
they only serve as noisy features. This data set contains 25
relevant variables.

Real multi-label data sets. We also consider 4 real data
sets, representing different domains, from the MULAN
repository (Tsoumakas et al., 2011): music, scene, yeast
and genbase. The average label densities (fractions of
active labels) are 31%, 17%, 39% and 10%, respectively.

We have chosen data sets for which there is a
significant gap in performance between the oracle and
the naive methods as for such data sets there is room for
an improvement. As in other related studies (see, e.g.,
Kanehira and Harada, 2016; Bekker and Davis, 2018)
we created PU data sets from the original completely
labelled data sets. In this way, we can control the labelling
mechanism. We used two labelling schemes described
below.

5.2. Labelling schemes. We consider two methods of
generating observed target variables s1, . . . , sK based on
the true target variables y1, . . . , yK . The first scheme
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Fig. 2. Hamming and subset measures with respect to the number of selected features for the first artificial data set and different values
of parameter c (labelling scheme 1).

corresponds to the SCAR assumption whereas for the
second scheme the SCAR is not satisfied.

Scheme 1: If yk = 0 then we set sk = 0. When
yk = 1, we draw sk from the Bernoulli distribution
with probability of success ek(x) = P (sk = 1|yk =
1,x) = c, where c is a parameter which varies in
simulations. We consider c = 0.4, 0.6, 0.8.

Scheme 2: If yk = 0 then we set sk = 0. When
yk = 1, we draw sk from the Bernoulli distribution
with probability of success ek(x) = P (sk = 1|yk =
1,x) = σ(bxT e), where e = (1, . . . , 1)T and b ∈
R is a parameter which varies in simulations. For
larger b, the dependence between x and s increases,
whereas for b = 0, we have P (sk = 1|yk = 1,x) =
0.5 which corresponds to Scheme 1. Note that ek(x)
is a function of all the features considered.

5.3. Evaluation measures. We present the results for
two popular evaluation measures: the subset accuracy
and the Hamming measure. Importantly, the conclusions
remain the same for other measures, e.g., the F-measure.1

Below we recall definitions of the measures considered.
Let y = (y1, . . . , yK) be a vector of true labels and

1The results for other evaluation measures are available in the sup-
plement: https://github.com/teisseyrep/mlpu_erm.

ŷ = (ŷ1, . . . , ŷK) be the vector of predicted labels
for some instance x. The subset accuracy for a pair
(y, ŷ) is defined as I(y = ŷ), which is directly related
to a subset loss. It measures the correctness of joint
prediction for all labels and is restrictive, especially when
the number of labels K is large. It may happen that the
subset accuracy is zero whereas other measures achieve
significantly higher values. The Hamming measure,
defined as 1

K

∑K
k=1 I(yk = ŷk), is the average number of

correct predictions. Both the above measures are averaged
over all instances in testing data.

5.4. Results. We first explore how the classification
accuracy of the methods considered depends on the
number of features included in the model. The number
of selected features is controlled by the regularization
parameter λ, which varies between λmax (for which all
parameters are zero) and λmin = 0.0001λmax. For larger
λ, the K × p matrix of estimated parameters (e.g., Â(1)

for Method 1 or Â for Method 2) will be sparse, which
means that most of its columns will be zero and only the
columns corresponding to the most relevant features will
contain non-zero values. For small λ we include much
more features in the model.

Figures 2–5 show how the evaluation measures
depend on the number of features included in the
model for Scheme 1 (the results are averaged over 10

https://github.com/teisseyrep/mlpu_erm
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Fig. 3. Hamming and subset measures with respect to the number of selected features for the second artificial data set and different
values of parameter c (labelling scheme 1).

cross-validation folds). For better clarity, in the case
of Method 1, we only present the curves corresponding
to weights w

(2)
k as this variant usually outperforms the

remaining ones. As expected, we observe the highest
accuracy for the oracle method and the smallest for
the naive method and the difference between these two
methods is significant, especially for small c. Parameter c
can be interpreted as a measure of difficulty of the PU-ML
problem. Indeed, for small c, only for a small fraction of
observations the target variables are assigned labels.

The poor performance of the naive method is
associated with the fact that this method underestimates
the posterior probability P (yk = 1|x) and the bias
increases with decreasing c. The accuracy of the methods
increases with c, as for larger c we are approaching the
case of full data observability. For larger c, the differences
between the methods considered and the oracle method
become non significant, which suggests that the proposed
methods can be successfully applied when the discrepancy
between the true target variables and the observed ones
is not very pronounced. In some cases, the proposed
methods achieve even larger accuracies than the oracle
method, see, e.g., Fig. 2 for c = 0.8.

Interestingly, for the artificial data, we can observe
that all curves reach first plateau after including the first
five features, which indicates that the methods rank the
relevant features correctly as this data set contains five

relevant features. The relevant features appear earlier
on the regularization path than the noisy features. We
observe this property even for the naive method when
c = 0.6 or c = 0.8. Note, however, that although the
naive method selects the relevant features before noisy
ones, its accuracy is much lower when compared with the
remaining methods, which is due to the biased estimation
of the posterior probability. The above-mentioned effect is
not so pronounced for the second artificial data set which
contains much more relevant features and ranking them
correctly is more challenging. In this case, only the oracle
method clearly stabilizes after including top 25 features.
For some real data sets (e.g., music), we observe that the
curves decrease for a small value of λ which is related to
over-fitting.

Tables 1–4 contain the values of the measures for
Schemes 1 and 2. The results are averaged over c =
0.4, 0.6, 0.8 (for Scheme 1) and b = 0.5, 1, 2 (for
Scheme 2), 100 values of λ and 10 CV folds. The winner
method (among all methods considered except the oracle
method) is in bold face. Although Method 1 has a deeper
theoretical justification, Method 1 with weights w

(2)
k

usually outperforms other methods, whereas Method 2
is the second best. Importantly, the proposed methods
work significantly better than the naive method (which
is confirmed by the t-test), also for Scheme 2, when
the SCAR assumption is not satisfied, which indicates
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Fig. 4. Hamming measure with respect to the number of selected features for real data sets (labelling scheme 1).
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Fig. 5. Subset accuracy with respect to the number of selected features for real data sets (labelling scheme 1).

that they are quite robust against departures from the
SCAR assumption.

6. Conclusions

We presented a study of two embedded feature selection
procedures. In both the approaches we estimate the
weights of observations using the naive method in the first
step, and solve the weighted penalized risk minimization
problem in the second step. We give a theoretical
justification for Method 2, namely the empirical risk in
Method 2 corresponds to the theoretical risk of the oracle
method. Moreover, we bound the (expected) excess risk
for Method 2. It follows from the experiments that

Method 1 with weights w
(2)
k and Method 2 have the

largest predictive power among the methods considered.
The methods work properly for various labelling schemes
including the cases in which the propensity score function
is not constant.

There are still interesting issues for future research.
The problem of the propensity score estimation is
important and worth further investigations. Although
the proposed simple method of the propensity score
estimation works effectively and is very fast, we believe
that there is still room for improvements. Accurate
estimation of ek(x) could improve the performance
of both proposed methods. Combining the proposed
empirical risk functions with other forms of regularization
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Table 1. Hamming measure for labelling scheme 1 averaged over different c = 0.4, 0.6, 0.8, different values of λ and 10-cross-
validation folds. The winner method (among all methods considered except the oracle method) is in boldface. The star *
denotes that the method is significantly better than the naive method according to the t-test (for α = 0.05).

oracle naive Method 1 w1 Method 1 w2 Method 1 w3 Method 1 w4 Method 2
Art1 0.757 ± 0.055 0.598 ± 0.037 0.669 ± 0.049 0.673 ± 0.052 * 0.627 ± 0.048 0.656 ± 0.047 0.670 ± 0.048
Art2 0.658 ± 0.059 0.528 ± 0.036 0.596 ± 0.044 0.600 ± 0.044 * 0.562 ± 0.041 0.572 ± 0.049 0.586 ± 0.047

music 0.756 ± 0.03 0.696 ± 0.014 0.713 ± 0.02 0.716 ± 0.021 * 0.702 ± 0.018 0.708 ± 0.021 0.715 ± 0.02
scene 0.837 ± 0.017 0.825 ± 0.007 0.828 ± 0.011 0.829 ± 0.012 0.826 ± 0.009 0.828 ± 0.011 0.829 ± 0.011 *
yeast 0.752 ± 0.02 0.742 ± 0.007 0.748 ± 0.013 0.749 ± 0.014 * 0.745 ± 0.01 0.747 ± 0.012 0.736 ± 0.013

genbase 0.951 ± 0.036 0.918 ± 0.018 0.926 ± 0.025 0.928 ± 0.028 * 0.922 ± 0.021 0.927 ± 0.026 0.928 ± 0.025
avg. rank 1.0 6.8 3.8 2.2 5.8 4.7 3.7

Table 2. Subset measure for labelling scheme 1 averaged over different c = 0.4, 0.6, 0.8, different values of λ and 10-cross-validation
folds. The winner method (among all methods considered except the oracle method) is in boldface. The star * denotes that
the method is significantly better than the naive method according to the t-test (for α = 0.05).

oracle naive Method 1 w1 Method 1 w2 Method 1 w3 Method 1 w4 Method 2
Art1 0.360 ± 0.034 0.245 ± 0.017 0.289 ± 0.022 0.292 ± 0.025 * 0.260 ± 0.021 0.280 ± 0.021 0.289 ± 0.027
Art2 0.195 ± 0.028 0.123 ± 0.014 0.157 ± 0.017 0.161 ± 0.017 * 0.138 ± 0.014 0.143 ± 0.018 0.153 ± 0.018

music 0.243 ± 0.022 0.040 ± 0.044 0.123 ± 0.04 0.136 ± 0.037 * 0.075 ± 0.05 0.107 ± 0.047 0.125 ± 0.034
scene 0.272 ± 0.063 0.064 ± 0.069 0.145 ± 0.089 0.166 ± 0.091 * 0.096 ± 0.08 0.140 ± 0.093 0.157 ± 0.077
yeast 0.076 ± 0.072 0.024 ± 0.018 0.048 ± 0.046 0.052 ± 0.05 * 0.032 ± 0.03 0.040 ± 0.04 0.049 ± 0.042

genbase 0.539 ± 0.34 0.223 ± 0.168 0.294 ± 0.238 0.319 ± 0.267 * 0.255 ± 0.201 0.307 ± 0.247 0.314 ± 0.24
avg. rank 1.0 7.0 4.0 2.0 6.0 4.8 3.2

as well as with classical information criteria for feature
selection (such as AIC, BIC or EBIC) is also worth
studying.
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