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Linear parameter varying (LPV) models are being increasingly used as a bridge between linear and nonlinear models.
From a mathematical point of view, a large class of nonlinear models can be rewritten in LPV or quasi-LPV forms easing
their analysis. From a practical point of view, that kind of model can be used for introducing varying model parameters
representing, for example, nonconstant characteristics of a component or an equipment degradation. This approach is
frequently employed in several model-based system maintenance methods. The identifiability of these parameters is then
a key issue for estimating their values based on which a decision can be made. However, the problem of identifiability
of these models is still at a nascent stage. In this paper, we propose an approach to verify the identifiability of unknown
parameters for LPV or quasi-LPV state-space models. It makes use of a parity-space like formulation to eliminate the states
of the model. The resulting input-output-parameter equation is analyzed to verify the identifiability of the original model or
a subset of unknown parameters. This approach provides a framework for both continuous-time and discrete-time models
and is illustrated through various examples.
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1. Introduction

Parameter identifiability studies are motivated by the need
for well-posed problems in several applications (Verdière
et al., 2005; Coll and Sánchez, 2019). For instance,
estimating a parameter through optimization (Beelen and
Donkers, 2017) needs a unique set of parameters to satisfy
the inputs and outputs of the experiment (at least locally).
It is in this respect that the distinguishability property of
parameters is defined and forms the basis of the parameter
identifiability analysis.

Consider the general nonlinear system model of the
form

Σθ :

{
ẋ(t) = f(x(t), u(t), θ),

y(t) = h(x(t), u(t), θ)

(1a)

(1b)

with x ∈ R
n, u ∈ R

m, y ∈ R
p and constant parameters

θ ∈ R
q . The distinguishability property of a model

structure refers to (Ljung and Glad, 1994)

ỹ(t|θ′) ≡ ỹ(t|θ′′) ⇒ θ′ = θ′′, (2)

∗Corresponding author

where ỹ stands for the output (1b) computed as the
solution of the system (1) for an input ũ and θ′ (or
θ′′) as the parameter. The essence of distinguishability
is captured by the property of parameter identifiability,
which refers to whether the model parameter(s) can be
uniquely identified by a set of input-output data. It is to be
noted that the parameter identifiability property assumes
an error-free model and noise-free data and hence is not a
sufficient condition for the existence of a solution.

To understand the relevance of this property for
applications such as fault diagnosis or prognosis, consider
the problem of equipment degradation estimation in
large-scale systems. Maintenance activities are rare and
typically involve gathering data by deploying temporary
sensors (e.g., hand-held monitors). Consequently,
only a finite amount of data is available to estimate
relevant parameters that are indicative of the underlying
degradation phenomena. If a model-based estimation
is used, the procedure requires that the available
input-output data admit a unique solution for the set of
unknown parameters, at least within a known range of
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parameter values. This constraint can be reformulated as
the local parameter identifiability of the model.

To start with, in Section 2, we review the literature
on the available methods to verify identifiability, focusing
on continuous nonlinear state-space models. This
review includes the limited, but relevant works for the
identifiability of discrete-time models as well. This is
followed, in Section 3, by a reminder of the important
definitions on which the proposed work will be based.
Indeed, the literature contains several definitions for
identifiability and this section outlines those definitions of
interest and their relationships. This section ends with the
statement of the hypotheses relating in particular to the
models studied (LPV and quasi-LPV models). Section 4
presents the proposed algorithm in a step-by-step manner
for continuous-time models with examples illustrating
the procedure. The discrete-time models are treated
similarly, with a focus on the steps different from those
of continuous-time models, in Section 5. A discussion on
a systematic implementation of the proposed approach is
given in Section 6 followed by some concluding remarks
in Section 7.

2. Relevant literature

To characterize identifiability of a nonlinear model
encompassed by (1), there are several definitions in
the literature. These definitions and the corresponding
characterizations vary due to several factors, including the
following:

• the characteristics of the functions f and h (e.g.,
analytic, homogeneous, meromorphic),

• the characteristics of the inputs (sufficiently
continuous/differentiable, piecewise continuous,
etc.),

• the assumptions on the initial (state) conditions,

• the neighborhood of the identifiability
characterization (local around a particular θ or
global).

There are also nuances associated with strong and
weak notions of identifiability. For example, Němcová
(2010) notes that her identifiability definitions are weaker
compared with those of Xia and Moog (2003) because a
system is considered to be structurally identifiable if its
outputs corresponding to two different parameter values
differ for all inputs of an open dense subset of the set of
all admissible inputs whereas, in their own work, they just
require the existence of at least one such input 1

1However, at the same time, Němcová (2010) considers piece-wise
continuous inputs, which are more representative in biological system
identification.

2.1. Identifiability of continuous-time models.
Starting with the study of structural identifiability of linear
models by Bellman and Aström (1970), several methods
have explored the problem in the following decades. In a
broad sense, the methods to verify identifiability could be
classified as those that perform:

(i) analysis of observables,

(ii) analysis of the system map.

The term observables has been borrowed from Chis
et al. (2011) and roughly refers to the outputs and the
parameter information embedded in them. That is, the
first classification refers to verifying directly, whether
the outputs (and inputs) provide a way to validate the
distinguishability property in (2). Methods such as
the Taylor series approach and the generating series
approach fall into this category. The second class of
methods look at some specific properties of the system
model to check for identifiability. Isomorphism-based
approaches or approaches that consider identifiability as
an extended observability property belong to the second
class. This classification is not strict as several methods
cross over. For example, the implicit function theorem
based approach (Xia and Moog, 2003) and the differential
algebraic tools based approach (Bellu et al., 2007) exploit
system model properties to eliminate the latent (state)
variables and then analyze the observables.

2.1.1. Taylor series and generating series approaches.
The Taylor series approach is one of the first proposed
for identifiability analysis by Pohjanpalo (1978). By
considering the system output as an analytic function of
time, it exploits the fact that their derivatives should hold
all possible information about the unknown parameters
θ. The uniqueness of the Taylor series expansion of this
function is an indication of the system identifiability. If
the test fails, more coefficients are to be computed and
verified again.

The generating series approach by Walter and
Lecourtier (1982) is conceptually similar to the Taylor
series approach and is applicable to control affine models
of the form

ẋ(t) = f(x(t), θ) + g(x(t), θ)u(t),

x(t0) = x0(θ),

y(t) = h(x(t), θ). (3)

Instead of using derivatives, the Lie derivative
expansions of the output functions along the vector fields
f and g are computed. The coefficients of the output
functions and their Lie derivatives are termed the ex-
haustive summary. By verifying the uniqueness of the
exhaustive summary, the structural global identifiability
of the model is validated. A drawback of both these
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approaches lies in the need to know the number of output
derivatives over which the identifiability can be verified.
To mitigate some of these issues, iterative approaches
have been suggested. The identifiability tableau proposed
by Balsa-Canto et al. (2010) was applied for the Taylor
series approach while Chis et al. (2011) used it for
the generating series technique to develop the genSSI
MATLAB toolbox.

2.1.2. Isomorphism based approach. The isomor-
phism based approach answers the distinguishability
question by analyzing the relationship between
state-space realizations. This method exploits the
fact that, under certain conditions, indistinguishable
state space models have locally isomorphic state spaces.
Thus the identifiability analysis works to show that state
isomorphisms must have certain properties within the
class of state space systems considered. This helps to
parameterize indistinguishable state space models and if
the isomorphism can be shown to be the identity, then
global identifiability is also verified.

One of the earliest works to analyze the identifiability
property through the state-space realization theory is the
paper by Glover and Willems (1974). For nonlinear
systems, the local state isomorphism was investigated
by Vajda and Rabitz (1989), which was followed up
by the works of Joly-Blanchard and Denis-Vidal (1998)
for uncontrolled systems, Peeters and Hanzon (2005)
for homogeneous systems, and Němcová (2010) for
polynomial and rational models provided that piece-wise
continuous inputs are applied. These approaches assume
that the system model is minimal. However, minimality is
not a necessary condition for identifiability. One critique
of these approaches is the lack of a systematic method to
verify identifiability. While this was mitigated to some
extent in the systematic solution proposed by Denis-Vidal
and Joly-Blanchard (1996), this continues to remain an
issue when using this method for complex nonlinear
models (Chis et al., 2011).

2.1.3. Differential algebraic approach. The potential
of the differential algebraic tools for identifiability
problems was discussed in the seminal work by Ljung and
Glad (1994). The authors deploy Ritt’s algorithm to find
the characteristic set of the polynomial ideal generated by
the system model (assuming that it can be written in a
polynomial form). Given the system model Σθ in (1),
the idea is to rewrite the state-space model as a set of
polynomials,

gi

(
d

dt
, u(t), y(t), θ

)
= 0, i = 1, 2, . . . (4)

where d
dt stands for all the higher order derivatives of

the inputs and outputs and along with θ̇ = 0. Then,

after a careful choice of ranking of the variables, the
characteristic set of the ideal generated by the set of
polynomials (4) is obtained through Ritt’s algorithm. The
structure of the characteristic set provides an inference
of the identifiability characteristic of the original model
(local, global, non-identifiable). The authors also show
that the identifiability and the estimation of the parameters
are guaranteed to succeed when, for each parameter θj , a
linear regression form,

Pj

(
d

dt
, u(t), y(t)

)
+ θjQj

(
d

dt
, u(t), y(t)

)
= 0 (5)

is obtained.
The implementation of the differential algebra

approach has different flavors. One approach, proposed by
Saccomani et al. (1997), uses a differential ring that does
not consider θ, a strategy framed by Ollivier (1990). This
proves useful for biological systems. Since these models
have a large number of parameters, including them in the
differential ring incurs significant computational efforts.
This is elaborated by Audoly et al. (2001) who develop
identifiability tools for biological systems.

2.1.4. Differential geometric approach. Tunali and
Tarn (1987) employ the authors characterize identifiability
as an extended observability problem, where the
parameters are added to the state vector and the
observability of the new model is evaluated. These results
are local in nature, but have an intuitive appeal to it that it
lead to the development of the toolbox STRIKE-GOLDD
(Villaverde et al., 2016).

Xia and Moog (2003) employ the implicit function
theorem as a means to derive local identifiability results.
In particular, local structural identifiability is formulated
as algebraic identifiability and illustrated. While
relationships between the various local identifiability
characterizations are clearly given, the actual computation
steps to validate identifiability is slightly ambiguous and
the example provided seems not well-handled as was also
noted by Saccomani (2011).

2.2. Discrete-time identifiability. For the discrete-ti-
me case, the identifiability results are limited. Anstett
et al. (2006) formulated the cryptographic key’s ability to
be cracked as an identifiability problem and then reused
the continuous-time results in the discrete-time context.
Anstett et al. (2008) developed a discrete-time version
of the local state isomorphism theorem and used it to
establish identifiability results for discrete-time systems
with polynomial nonlinearities.

Nõmm and Moog (2004) develop discrete-time local
identifiability results using the implicit function theorem
similar to that employed for continuous time by Xia and
Moog (2003). These results, however, do not provide any
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specific systematic procedure, neither do the examples
provide any insights into the procedure.

2.3. Identifiability of LPV models. For identifiability
of LPV models, all the works consider models with
static dependences on the scheduling variables. Lee
and Poolla (1997) derive some perspectives on those
models that could be represented using the linear
fractional transformation (LFT) approach. They provide
an identifiability characterization of such models using
the existence of a similarity transformation between
two realizations. Dankers et al. (2011) deal with the
dual problems of identifiability and informativity that
concerns the parameter estimation (informativity being
defined as a weaker version of the condition of the
persistence of excitation for a given signal). The models
considered are the input-output models with an LPV-ARX
structure in contrast to the state-space models of interest
in this paper. Identifiability of a discrete-time affine
LPV model is discussed by Alkhoury et al. (2017),
who use the realization theory developed by Petreczky
and Mercère (2012). The authors provide a systematic
procedure that culminates in a rank condition that would
verify the presence of an isomorphism between the
realizations. The results are necessary and sufficient for
local structural identifiability and sufficient for global
structural identifiability.

2.4. Software packages for identifiability evaluation.
While there are several systematic approaches to validate
identifiability for different systems, implementation of
each of those methods for comparison purposes is
difficult. In this respect, the continuous-time results
obtained in this paper are compared with those produced
by DAISY (Bellu et al., 2007).

DAISY is a package developed on the REDUCE
platform and implements the ideas that originated by
Saccomani et al. (1997) and were elaborated by Audoly
et al. (2001). The package uses Ritt’s algorithm to
eliminate the system states and compute the characteristic
set associated with the differential ideal generated by the
system differential equations. The differential ring used is
R[x, y, u] (instead of R[x, y, u, θ] as in the work of Ljung
and Glad (1994)) and hence a normalized input–output
relation is obtained from the characteristic set. The
exhaustive summary (Walter and Lecourtier, 1982) is
extracted from the normalized input–output relations by
gathering the functions of parameters that appear as
coefficients. Further, the authors assign random numerical
values to the parameters and employ the Buchberger
algorithm to compute their Gröbner basis (Buchberger,
2006). Depending upon the number of solutions it admits,
the original system is globally, locally or non-identifiable.

There are also other packages such as genSSI (Chis

et al., 2011) and STRIKE-GOLDD (Villaverde et al.,
2016) developed in MATLAB. The package genSSI
evaluates the identifiability of models in the control affine
form using the generating series approach from Walter
and Lecourtier (1982). STRIKE-GOLDD is based on
the extended observability approach of Tunali and Tarn
(1987). It computes n + q derivatives of the output
and then evaluates the Jacobian of the resulting equation
with respect to the extended state vector that includes the
unknown parameters.

2.5. Motivation for the present work. The above
summary of the literature illustrates a wide range of works
that have been carried out for identifiability of nonlinear
models. However, the literature is limited when it comes
to LPV models. The key objectives addressed in this paper
are the following:

• to develop a procedure to verify identifiability of
LPV (and quasi-LPV) models,

• to explore a unified procedure for a class of both
continuous-time and discrete-time LPV models,

• to utilize and exploit the theoretical and applied
results already in the literature.

With this in mind and the wide-ranging models that
can be represented through LPV/quasi-LPV models, the
elimination strategy seems appropriate in this context as
it can be applied, to some extent, irrespective of the
underlying model. One of the underlying themes in the
literature of elimination techniques is to arrive at the
exhaustive summary of a model. In the work of Walter
and Lecourtier (1982), it is through a generating series,
whereas in that of Audoly et al. (2001), it is through
differential algebra (Ritt’s algorithm). In this work, this
is achieved using a parity-space based approach.

Before the approach is discussed, some important
definitions related to the parameter identifiability of
nonlinear models must be recalled and the assumptions
about the structure and the properties of the models
studied must be made; this is the subject of the following
section.

3. Definitions and assumptions

In this section, the definitions of identifiability of interest
and the assumptions underlying the proposed procedure
are given.

The above definition formalizes the distin-
guishability property through structural identifiability. To
a priori verify identifiability using standard mathematical
tools, more tangible definitions are required. In this
respect two approaches of interest are discussed below,



Parameter identifiability for nonlinear LPV models 259

namely, structural identifiability by Audoly et al. (2001)
and algebraic identifiability by Xia and Moog (2003).
This characterization requires the following notations and
terminologies:

An exhaustive summary (Walter and Lecourtier, 1982)
of an experiment is a set of functions, Π(θ), if it contains
only, but all, the information about θ that can be extracted
from the knowledge of u and y. That is, they embody
the parameter dependence of the input-output model
completely. These are also referred to as the observational
parameter vector by Jacquez and Greif (1985). Some
authors use a slightly different terminology, for example,
Audoly et al. (2001) refer to the set of equations

Π(θ) = Π(θ̃) (6)

as exhaustive summary, where θ̃ refers to the specific
instance of θ used to verify if Π(θ)) admits only one
solution, that is, θ. In this work, we use exhaustive
summary to refer to the generic set of equations denoted
by Π(θ)) whereas (6) would be referred to as exhaustive
summary evaluation.

Identifiability equations (Xia and Moog, 2003) are q
equations which are functions of the known and measured
variables along with their derivatives, and the unknown
parameters. They are of the form:

Φ(θ, y, ẏ, ÿ, . . . , u, u̇, . . . ) = 0.

Given a system model (1), it is possible to obtain
its exhaustive summary through various methods and then
validate the number of solutions in θ admitted by it. This
characterization is formalized as follows. Note that the
use of y(Π(θ), t) is in reference to the experiment which
provides a set of measurement (outputs) that depend on
the exhaustive summary.

Definition 1. (Structural identifiability (Audoly et al.,
2001)) A parameter θi is

• globally (or uniquely) identifiable if and only if, for
almost any θ̃, the following system has only one
solution, θi = θ̃i, i ∈ {1, . . . , q}:

y(Π(θ), t) = y(Π(θ̃), t); (7)

• locally (nonuniquely) identifiable if and only if, for
almost any θ̃, the system (7) has (for θi) more than
one, but a finite number of solutions;

• non-identifiable if and only if, for almost any θ̃,
the system (7) has (for θi) an infinite number of
solutions.

The second definition of interest is the algebraic
identifiability by Xia and Moog (2003).

Definition 2. (Algebraic identifiability (Xia and Moog,
2003)) . The system model Σθ is said to be algebraically
identifiable if there exist a T > 0, a positive integer k and
a meromorphic function Φ : Rq ×R

(k+1)m ×R
(k+1)p →

R
q such that

det
∂Φ

∂θ
�= 0 (8)

and
Φ(θ, y, ẏ, . . . , y(k), u, u̇, . . . , u(k)) = 0 (9)

on [0, T ], for all (θ, u, . . . , u(k), y, ẏ, . . . , y(k)), where
(θ, x0, u) belong to an open and dense subset.

The relationship between the algebraic identifiability
and the local structural identifiability is clarified in the
following proposition. This is done by reiterating the
characterization of the two definitions to illustrate the
equivalence.

Proposition 1. For a system model of type Σθ, the defini-
tions of algebraically identifiable and locally structurally
identifiable are equivalent.2

To verify this equivalence, the first step would be to
consider how one can obtain a set of q equations in the
form of Φ. In the procedure described in this paper as well
as those by Audoly et al. (2001), the elimination of states
would yield p equations (denote them by Ψ). If p < q,
then one could obtain more equations by differentiating
Ψ to obtain further equations until p = q. With this set,
one can readily verify Proposition 1 by checking that the
exhaustive summary satisfies the two definitions (locally
structurally or algebraic identifiable) if only if and the
set of identifiability equations also satisfy them. The
objective of this proposition would be put to use when
we consider equivalent approaches to verify identifiability
locally.

Assumption 1. (Model structure) The models of interest
are those nonlinear models that could be written in an LPV
or a quasi-LPV form with affine parametrization. That is,

ẋ(t) = A(ρ(t), θ)x(t) +B(ρ(t), θ)u(t),

ẏ(t) = C(ρ(t), θ)x(t) +D(ρ(t), θ)u(t) (10)

with x ∈ R
n, u ∈ R

m, y ∈ R
p, ρ ∈ R

ξ , θ ∈ R
q with

the appropriate dimensions for the system matrices X ∈
{A,B,C,D} which are of the form,

X(ρ(t), θ) = X0(ρ(t)) +

q∑
j=1

θjX̄j(ρ(t)). (11)

The scheduling or premise variable, ρ(t), is either
composed of external variables with static dependences
(in this case the model is LPV) or that of system variables
such as inputs, states and outputs (in this case the model
is quasi-LPV).

2Generically, for almost all cases.
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Assumption 2. (Premise variables) The premise
variables of the quasi-LPV model are known or measured.

Remark 1. The nonlinear models of the form (1)
can be rewritten in quasi-LPV forms using several of the
existing embedding techniques (see, e.g., Ohtake et al.,
2003; Kwiatkowski et al., 2006; Abbas et al., 2014). The
quasi-LPV representation is not unique, and one might
obtain models with different types of premise variables.
In this work, only those models with known or measured
premise variables are considered.

Assumption 3. (Characteristics of f and h in (1)) The
state and the output functions, f and h, respectively, are
assumed to be meromorphic. Further,

rank

(
∂h(x, θ, u)

∂x

)
= p. (12)

The assumptions on the model functions are a
superset to the assumptions given by Audoly et al. (2001)
as well as Xia and Moog (2003) to complete Definitions
1 as well as 2. In terms of the quasi-LPV model, this
condition requires the following:

• the nonlinearities that appear in the matrices A(·),
B(·), C(·), and D(·) are meromorphic

• the rows of the matrix C(·)x + D(·)u are locally
independent, that is,

rank

(
∂

∂x
[C(·)x+D(·)u]

)
= p.

Assumption 4. (Initial conditions) The initial state
conditions are arbitrary.

Assumption 5. (Inputs) Higher-order derivatives of the
inputs are defined and are known.

This assumption is required at least up to the order
required for identifiability analysis so that it is possible to
formulate Φ(·) in (9).

Remark 2. (Discrete-time case) The discussion in this
section has focused on continuous-time models, though
it holds for the discrete-time case with the exchange of
shift in discrete-time for derivatives in continuous time as
commented by Anstett et al. (2006).

4. Parameter identifiability for
continuous-time models

In this section, an overview of the proposed parity-space
based identifiability analysis method is given. The method
is illustrated with a set of examples and the results
obtained are compared with that from DAISY.

4.1. Step-by-step description. The procedure for
the identifiability analysis proposed is inspired by the
parity-space approach of Chow and Willsky (1984) as a
means to eliminate the states of the system. The procedure
could be summarized as follows.

Step 1: Formulation of algebraic equations. The
LPV/quasi-LPV model in (10) is rewritten as

x(1) = A(0)x(0) +B(0)u(0),

y(0) = C(0)x(0) +D(0)u(0). (13)

The superscript refers to the order of derivatives, i.e.,

A(j) =
dj (A(ρ(t), θ))

dtj
,

where the dependences on time, premise variables and
parameters are omitted for the sake of simplicity. If
the model has to be considered up to the second-order
derivatives of the output, it is possible to rewrite the above
as (with known and measured parts on the left-hand side),

⎡
⎢⎢⎢⎢⎣

y(0)

y(1)

y(2)

0
0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

−D(0) 0 0

−D(1) −D(0) 0
−D(2) −2D(1) −D(0)

B(0) 0 0
B(1) B(0) 0

⎤
⎥⎥⎥⎥⎦

⎡
⎣u

(0)

u(1)

u(2)

⎤
⎦

=

⎡
⎢⎢⎢⎢⎣

C(0) 0 0

C(1) C(0) 0

C(2) 2C(1) C(0)

−A(0) In 0

−A(1) −A(0) In

⎤
⎥⎥⎥⎥⎦

⎡
⎣x

(0)

x(1)

x(2)

⎤
⎦ . (14)

More generally, for up to an order w of the output
derivative,

[
Y

0w×n

]
+

[−D(θ)
B(θ)

]
U =

[
C(θ)
A(θ)

]
X, (15)

with the left hand side containing known and measured
terms. The presence of θ indicates the explicit appearance
of the parameter in the matrices. Notice, however, that
all the elements except U are indirectly dependent on the
parameter θ. Here

Y =
[
(y(0))T (y(1))T · · · (y(w))T

]T
,

U =
[
(u(0))T (u(1))T · · · (u(w))T

]T
,

X =
[
(x(0))T (x(1))T · · · (x(w))T

]T
,

(16)

and matrices B, D, C and A are given by Eqns. (17)–(20),
respectively.

As is apparent, each of these matrices forms a
Pascal’s triangle with the increasing order of derivatives.
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B(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B(0) 0 0 · · · 0

B(1) B(0) 0 · · · 0

B(2) 2B(1) B(0) · · · 0
B(3) 3B(2) 3B(1) · · · 0

...
...

...
...

B(w−1)
(
w
2

)
B(w−2)

(
w
3

)
B(w−3) · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

D(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

D(0) 0 0 · · · 0

D(1) D(0) 0 · · · 0
D(2) 2D(1) D(0) · · · 0

D(3) 3D(2) 3D(1) · · · 0
...

...
...

...
D(w)

(
w+1
2

)
D(w−1)

(
w+1
3

)
D(w−2) · · · D(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

C(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C(0) 0 0 · · · 0

C(1) C(0) 0 · · · 0

C(2) 2C(1) C(0) · · · 0
C(3) 3C(2) 3C(1) · · · 0

...
...

...
...

C(w)
(
w+1
2

)
C(w−1)

(
w+1
3

)
C(w−2) · · · C(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

A(θ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−A(0) In 0 · · · 0
−A(1) −A(0) In · · · 0

−A(2) −2A(1) −A(0) · · · 0
−A(4) −3A(2) −3A(1) · · · 0

...
...

...
...

−A(w−1) −(
w
2

)
A(w−2) −(

w
3

)
A(w−3) · · · In

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

(17)

(18)

(19)

(20)

This is useful when the algorithm is implemented. The
representation in (15) is further simplified to indicate the
dependence on the unknown parameter

Y0 +G(θ)U = O(θ)X. (21)

Notice that the matrixO(θ) has a dimension of (wp+
(w − 1)n)× ((w − 1)n).

Step 2: Computation of the null space. Once a set
of algebraic equations are formulated, the next step is to
eliminate the state variables and their derivatives. This is
achieved by computing the left null space of O(θ), that is,
to find a matrix Ω(θ), such that,

ΩT (θ)O(θ) = 0.

For a givenO(θ), the null-spaceΩ(θ), if it exists, can
be computed using symbolic computations (e.g., using the
Symbolic Math Toolbox of MATLAB). The existence of
the null-space is directly related to the output and the state
matrices which populate O(θ).

Step 3: Formulation of the input-output-parameter (I-
O-P) equations. Once the null-space has been obtained,

one can compute from (21),

ΩT (θ) (Y0 +G(θ)U) = 0, (22)

which can alternatively be represented as

Ψ(θ, y, · · · , y(w), u, · · · , u(w)) = 0, (23)

where Ψ(·) is termed the input-output-parameter (I-O-P)
equations to signify its dependence on inputs, outputs and
parameters, and their derivatives.

Step 4: Identifiability evaluation. Once the I-O-P
equations are obtained, identifiability is verified through
one of the following approaches:

• Following the final step in the DAISY package of
Bellu et al. (2007):

– Extract the coefficients of Ψ(·) considering
as polynomials in inputs, outputs, and their
derivatives. Those coefficients that depend on
the parameters θ form the exhaustive summary
Π(θ).

– Assign symbolic values to each of the
parameters {θ1, . . . , θq} and evaluate the
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exhaustive summary to obtain Π(θ̃). For
large-scale problems, symbolic values can be
replaced with numerical values.

– Apply the Buchberger algorithm on Π(θ̃) to
obtain all the solutions. Depending on the
number of solutionsΠ(θ̃) admits, identifiability
can be evaluated using Definition 1. In the case
of the numerical approach, the last two steps
are repeated several times. Since the results are
generic, that is, valid for almost all numerical
values except for a set of measure zero,
this repetition would help to avoid reaching
conclusions based on possibly choosing a
numerical value of this set of measure zero.

• A local identifiability verification using Jacobians
(inspired by Proposition 1):

– Obtain the set of q identifiability equations
Φ(·). Note that the number of I-O-P equations
is equal to the number of outputs p; thus, if p <
q, one has to differentiate the I-O-P equations
and set θ̇ = 0 to obtain q equations (i.e., Φ).

– Compute the Jacobian of Ψ(.) with respect to
the parameters θ, that is,

rank

(
∂Ψ

∂θ

)
= q.

– If the rank is q, then local identifiability is
verified.

4.2. Illustrative examples. In this section, several
examples are given to show the steps involved in the
parity-space approach. The results obtained from the
parity-space approach are validated by comparing them
with those produced by DAISY, STRIKE-GOLDD and
genSSI software packages. Further, the intermediate step
of the exhaustive summary is compared with that obtained
using DAISY.

Example 1. This example is used to show all the steps of
the proposed approach. Further, it also concerns a model
which is not identifiable. Consider the second-order
nonlinear model

ẋ1 = θ1x1 + θ2x2u,

ẋ2 = θ3x1 − x2,

y = x1u,

A quasi-LPV equivalent form with x = [x1 x2]
T

and ρ = u is

ẋ =

[
θ1 θ2u
θ3 −1

]
x, y =

[
u 0

]
x

corresponding to (10) with B = 0 and D = 0. Based
on the specifications of the model structure required, the
genSSI software cannot handle this example. Using the
parity-space approach with output up to ÿ, we obtain the
following representation corresponding to that in (21),
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
ẏ
ÿ
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u 0 0 0 0 0
u̇ 0 u 0 0 0
ü 0 2u̇ 0 u 0

−θ1 −θ2u 1 0 0 0
−θ2 −θ3 0 1 0 0
0 −θ2u̇ −θ1 −θ2u 1 0
0 0 −θ2 θ3 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
ẋ1
ẋ2
ẍ1
ẍ2

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where the matrix G(θ) is equal to 0. The left null space of
the matrix O(θ) is given by

ΩT (θ)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ22u
3 + uü− 3u̇2 + θ1θ3u

2 − 2θ1uu̇+ θ3uu̇

u3

3u̇+ θ1u− θ3u)

u2

− 1

u
−(u̇− θ3u)

u

θ2u
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

which leads to the I-O-P equation

Ψ(·) = θ1u
2y − 3u̇2y − u2ÿ − u2ẏ + θ1u

2ẏ

+ uu̇y + 3uu̇ẏ + uüy − 2θ1uu̇y + θ2θ3u
3y.

The exhaustive summary is obtained by extracting
the coefficients considering Ψ(·) as a polynomial in
inputs, outputs and their derivatives. Considering only
those coefficients that depend on various inputs, outputs,
their derivatives and their product combinations, the
following is obtained:

Π(θ) = {1− 2θ1, θ1 − 1, θ1, θ2θ3}. (24)

To verify the number of solutions admitted by
this exhaustive summary, a Gröbner basis analysis is
performed. One strategy is to assign a symbolic value
to for each of the parameters (θ̃1 = a, θ̃2 = b, θ̃3 = c)
and evaluate the exhaustive summary to obtain the specific
exhaustive summary,

{2θ1 − 2a, θ1 − a, θ1 − a, θ2θ3 − bc}.
For this simple example, it is easy to see that only θ1

is identifiable as it admits a unique solution and the other
two parameters θ2 and θ3 may have several solutions.
Hence the model is not identifiable. To formally verify
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this, these polynomial equations were given as input to
the Buchberger algorithm implemented in MuPAD CAS
under MATLAB. The Gröbner basis for this set is

{θ1 − a, θ2θ3 − bc}
which, if the equations admit a unique solution should
have returned θi = θ̃i for i = 1, 2, 3. However, it is not
the case here and so the model is not identifiable (or only
θ1 is identifiable).

Comparison with DAISY. The normalized input-
output equation obtained through the DAISY package is
given by

Γ = üu4y − 3u̇2u3y + 3u̇ẏu4 + u̇u4y(−2θ1 + 1)

− ÿu5 + ẏu5(θ1 − 1) + u6yθ2θ3 + u5yθ1,

which has the same set of exhaustive summary as given
in (24). The DAISY package results also verify those
inferred above. �
Example 2. In this example, the case of local
identifiability is illustrated.

ẋ =

[
θ1 θ2u
θ2 −θ3

]
x,

y =
[
u 0

]
x.

Using the parity-space approach, the I-O-P equation
obtained is

Ψ(·) = θ1u
2ẏ − u2ÿ − 3u̇2y − θ3u

2ẏ + θ22u
3y

+ 3uu̇ẏ + uüy − 2θ1uu̇y + θ3uu̇y + θ1θ3u
2y

which has the exhaustive summary of

Π(θ) = {θ3 − 2θ1, θ1 − θ3, θ1θ3, θ
2
2}.

The Gröbner basis for this summary with the
symbolic assignment of θ̃1 = a, θ̃2 = b and θ̃3 = c was
obtained as

{θ1 − a, θ3 − c, θ22 − b2},
which indicates that while θ1 and θ3 are identifiable, θ2
is only locally identifiable. The results and the exhaustive
summary compare with those obtained from DAISY. �
Example 3. (Air handling unit) Consider a simple model
of a heat exchanger used by Srinivasarengan et al. (2016).
The model has been simplified by assuming that the inlet
air temperature and the water temperature are known and
constant. A quasi-LPV representation of that model is[

ẋ1
ẋ2

]
=

[−θ1u1 − θ2 θ2
θ4 −θ3u2 − θ4

] [
x1
x2

]

+

[
θ1 0
0 5θ3

] [
u1
u2

]
,

y =
[
1 0

] [x1
x2

]
.

The exhaustive summary obtained from the parity
space approach for this model is3

Π(θ) = {3− θ4 − θ2, θ2 + θ4 − 2, θ1, −θ1,
5θ2θ3, −θ3, θ3 − θ2θ3, θ1θ4, −θ1,
2θ1 − θ1θ4, θ1θ3, −θ1θ3}.

For large-scale models, performing Gröbner analysis
with symbolic values for the parameters could become
intractable. In such cases, especially when practical
applications are involved (where the range over which
the parameters can take values is predictable), one can
reliably use numerical values. By choosing arbitrary
numerical values, θ̃1 = 1, θ̃2 = 2, θ̃3 = 3, θ̃4 = 5, the
specific instance of the exhaustive summary was obtained
and the Gröbner basis obtained is

{θ2 − 2, θ4 − 5, θ3 − 3, θ1 − 1}

indicating that the model is globally identifiable. These
results comply with those obtained by DAISY both for
the exhaustive summary and the eventual identifiability
interpretation. Because a numerical value was used, the
results are local in nature. Further, as suggested by
Bellu et al. (2007), to obtain confidence on the obtained
results, this analysis should be repeated for several sets of
arbitrary numerical values. �

5. Parameter identifiability for
discrete-time models

In practical scenarios, parameter estimation involves
discrete time models. Hence it is vital to consider the
identifiability of system models in discrete-time. In this
section, a brief outline to extend the parity-space method
to discrete time quasi-LPV models is given. It is to be
noted that the effect of discretization on the identifiability
is not treated here. Consider a discrete-time quasi-LPV
model of the form

xk+1 = A(ρk, θ)xk +B(ρk, θ),

yk = C(ρk, θ)uk +D(ρk, θ). (25)

For this type of model, the procedure for parameter
identifiability follows a similar path. The key difference
is in the first step where the set of algebraic equations
is obtained in a different way. For simplicity, in the
following, Ak would be used in place of A(ρk, θ) and
similarly for other matrices.

For the discrete-time case, the algebraic equations
take a far simpler structure compared with that in the
continuous-time case. The continuous-time algebraic

3The reader will notice that duplicate terms have not been removed
here, but their presence does not change the obtained result.
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equations in (15) are rewritten for the discrete-time case
as [

Yk

0w×n

]
+

[−Dk

Bk

]
Uk =

[
Ck

Ak

]
Xk, (26)

where

Yk =
[
yTk yTk+1 · · · yTk+w

]T
,

Uk =
[
uTk uTk+1 · · · uTk+w

]T
,

Xk =
[
xTk xTk+1 · · · xTk+w

]T
, (27)

and

Bk =

⎡
⎢⎢⎢⎣
Bk 0 · · · 0 0
0 Bk+1 · · · 0 0
...

...
. . .

...
...

0 0 · · · Bk+w−1 0

⎤
⎥⎥⎥⎦ , (28)

Dk =

⎡
⎢⎢⎢⎣
Dk 0 · · · 0
0 Dk+1 · · · 0
...

...
. . .

...
0 0 · · · Dk+w

⎤
⎥⎥⎥⎦ , (29)

Ak =

⎡
⎢⎢⎢⎣

−Ak In 0 · · ·
0 −Ak+1 In · · ·
...

...
...

0 0 0 · · ·
0 0
0 0
...

...
Ak+w−1 In

⎤
⎥⎥⎥⎦ , (30)

Ck =

⎡
⎢⎢⎢⎣
Ck 0 · · · 0 0
0 Ck+1 · · · 0 0
...

...
. . .

...
0 0 · · · 0 Ck+w

⎤
⎥⎥⎥⎦ . (31)

The other three steps in this case follow those of
the continuous the time approach with the derivatives
replaced with time shifts (Steps 2 to 4 in Section 4).

All the software packages in the literature are
available only for continuous-time models. Hence,
comparison of results with any the existing packages is not
feasible. Hence, the examples are picked from the existing
literature on discrete-time identifiability and the results
compared with those obtained from methods proposed in
this work.

Example 4. Consider the following example of the
Henon map adapted from Anstett et al. (2006):

x1,k+1 = θ1x
2
1,k + θ2x2,k + uk,

x2,k+1 = θ3x1,k + θ4uk,

yk = x1,k.

The I-O-P equation is

Ψ(·) =− θ2θ3y
2
k − uk+1 + yk+2 − uk(θ2θ4 + θ1yk+1)

+ θ1yk+1(uk − yk+1).

The exhaustive summary obtained using the
parity-space approach is

Π(θ) = {θ1, θ2θ4, θ2θ3}.

The identifiability results comply with those from
Anstett et al. (2006) in that only the parameter θ1 is
identifiable. �

Example 5. This is also an example of the Burgers map
from Anstett et al. (2006)

x1,k+1 = (1 + θ1)x1,k + x1,kx2,k + uk,

x2,k+1 = (1 − θ2)x2,k − x21,kuk,

yk = x1,k.

The I-O-P equation obtained for this case is

Ψ(·) = yk+2 − uk+1 + (yk+1 − θ2yk+1)(θ1 + 1)

− uk(1− yk+1y
2
k + θ1)

+
(uk − yk+1)(yk + yk+1 + θ1yk − θ2yk+1)

yk
.

The exhaustive summary obtained for this example is

Π(θ) = {θ1, θ2, θ1 − θ2 − θ1θ2}.

It is easy to see that the model is identifiable and
agrees with the results of Anstett et al. (2006). �

6. Towards a systematic formulation

In this section, we discuss how to realize a systematic
implementation of the proposed algorithm. This includes
some algorithmic steps for sample scenarios. The
implementation and realization as a toolbox is planned
as a topic for future work. These formulations are
for both continuous-time and discrete-time models with
appropriate modifications, though the discussion focuses
on continuous-time models.

6.1. Choice of the number of derivatives. The
discussion in the preceding sections did not explicitly
considerw, the number of derivatives (or shifts in discrete
time) for which the null-space ΩT (θ) exists and hence the
I-O-P equations and the exhaustive summary that follow.
This corresponds to the observability index of the system
model. A detailed discussion on the observability index
of a nonlinear system was lead by Nijmeijer and Van der
Schaft (1990) though a brief idea is given below. Consider
a SISO system of the form (1); the observability index of
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this model is defined as w > 0, and in the neighborhood
of x0 we have

rank
[
Lw−1
f h, Lw−2

f h, · · · , L0
fh

]
= w

and rank
[
Lw
f h, L

w−1
f h, · · · , L0

fh
]
= w

where, Lfh corresponds to the Lie derivative of h over f ,
that is,

Lfh � ∂h(x, u, θ)

∂x
f(x, u, θ)

and Li
fh refers to the i-th successive application of the

Lie derivative. Essentially this means that, locally, the
dimension of the space spanned by the model does not
grow after w − 1 derivatives. For MIMO systems,
the observability index is defined for each output. A
discrete-time version of this issue is briefly discussed by
Anstett (2006, Chapter 5).

This means that for a SISO system, using w
derivatives would guarantee that ΩT (θ) exists and hence
would provide the I-O-P equation corresponding to the
output. The next question is to know whether the
observability index has been connected to the system
dimensions theoretically. That is, is it possible to obtain
the index without verifying the rank condition. For linear
systems, this is less than or equal to the number of states
(easy to verify using the Cayley–Hamilton theorem). For
nonlinear systems, for the following two classes:

• models of the form (1) where the functions are
rational,

• models in a control-affine form (3) with analytical
functions,

it has been shown that, locally, the observability index
has an upper bound, equal to the number n of states of
the system. This means that n derivatives of outputs are
sufficient to guarantee that the null-space ΩT (θ) exists.
For a more detailed discussion, see (Anguelova, 2007).
This is an upper bound because: (i) the model may not
be minimal and has unobservable spaces and hence the
observability index is less than n; (ii) for MIMO systems,
each output would have different observability indices and
hence the total number of derivatives required to span the
entire observability space can be less than n.

Consequently, for single-output systems, n
derivatives of the output would guarantee that the
null-space ΩT (θ) exists. Hence w = n for SISO systems.
For MIMO systems, this is further complicated. Each
output’s observability index has an upper bound of n, but
is more likely to be lower than n. A systematic approach
to handle this scenario is discussed later in this section.

6.2. Algorithm for parameter identifiability. The
algorithm used for the analysis of the identifiability of

Algorithm 1. Analysis of parameter identifiability.
1: Choose an upper bound on the number of derivatives
w = n, and matrices A,B,C,D.

2: Evaluate the matrices (17)–(20) and their higher order
(element-wise) derivatives.

3: for w = 0 to n do
4: Formulate Y0 +G(θ)U = O(θ)X as in (21).
5: Compute ΩT (θ), the left null-space of O(θ) using

symbolic computation.
6: Obtain the I-O-P equations Ψ(·) and extract the

coefficients to obtain the exhaustive summary
Π(θ).

7: for j = 1 to number of iterations do
8: Choose random values for the parameters

θ1, . . . , θq
9: Evaluate the Gröbner basis and verify the

number of solutions admitted by the exhaustive
summary

10: end for
11: if global or local identifiability is satisfied then
12: END
13: end if
14: end for

the illustrative examples discussed in the previous section
is summarized as Algorithm 1. The implementation
was done in the MATLAB computing environment
with the use of the Symbolic Math Toolbox and the
MuPAD computer algebra system (CAS). Once the set of
I-O-P equations is obtained and the exhaustive summary
extracted, the Gröbner basis evaluation is performed
through MuPAD CAS scripts. Hence, at this moment,
there are components of the algorithms that require
manual intervention. The first step in the algorithm
chooses the upper bound on the number of derivatives
to be n. This is feasible for the simple models chosen
for illustrative examples, but not necessarily for more
complicated situations. Further, for MIMO systems, since
the observability index depends on individual outputs,
a step-by-step analysis starting from 0 derivatives is
considered. Further optimization is envisaged in this
respect.

As mentioned in the end of Step 4 of the method
presented in Section 4.1, the assignment of numerical
values (rather than symbolic ones) to the parameters needs
to be repeated for guaranteeing the obtained result. This
iteration loop begins from Line 7 and ends in Line 10.

Analyzing outputs independently. One of the
assumptions that is part of the problem specification (and
adopted from Xia and Moog (2003)) is

rank

(
∂h(x, u, θ)

∂x

)
= p.
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Algorithm 2. Checking local structural identifiability.
1: Choose the maximum value for observability index

for each output (w1, . . . , wp) is n.
2: Evaluate the matrices (28)–(31) and their higher-order

(element-wise) derivatives.
3: for i = 1 to p (for each output) do
4: for w = 0 to n do
5: Formulate Y0 +G(θ)U = O(θ)X as in (21).
6: Compute ΩT (θ), the left null space of O(θ)

using symbolic computation.
7: Obtain the I-O-P equation ψi(·).
8: if one I-O-P equation is obtained then
9: End of search for output i

10: end if
11: end for
12: Add the I-O-P for output to the overall I-O-P,

Ψ(·) = {Ψ(·), ψi(·)}
13: end for
14: Evaluate ∂Ψ

∂θ and compute the rank.
15: if rank ∂Ψ

∂θ = q then
16: Model is locally structurally identifiable
17: else
18: Model is not identifiable
19: end if

That is, the outputs are at least locally independent.
This provides an opening to develop local structural
identifiability analysis methods that can provide the
following advantages:

• Obtain the local identifiability results through
Jacobian analysis instead of the Buchberger
algorithm to obtain the Gröbner basis.

• As suggested by Bellu et al. (2007), there are p
normalized input-output equations. By considering
one input at a time, the stopping criterion for the
algorithm could be set as one I-O-P equation per
output by considering the system with one output at
a time.

Note that this approach makes sense only if p ≥ q,
as discussed in the paragraph following Proposition 1.
Otherwise, one has to differentiate the I-O-P equations to
obtain an appropriate set of identifiability equations Φ(·),
which involves combinatorial possibilities and is beyond
the scope of the current attempt. This limited case is
realized as Algorithm 2.

7. Concluding remarks and perspectives

In this paper, we proposed a procedure for verifying
the identifiability of LPV and quasi-LPV models in
continuous-time and discrete-time cases. The procedure
exploits the parity-space approach to eliminate the states

and uses the residual set of input-output-parameter
equations to verify the model identifiability. Through
several examples the procedures were illustrated and
compared with the results obtained from the existing
literature. With these preliminaries, the algorithm looks
to be a useful candidate in the domain of LPV model
analysis. Given the nature of this paper, there are several
paths for improvements to realize a robust identifiability
procedure.

Extending results to a newer class of system models.
It was noted that the parity-space approach would work
well for polynomial parametrization as well. This should
be formally extended. While the initial conditions were
considered arbitrary in this paper, there are cases where
such an assumption can be detrimental (see Example 4
of Villaverde and Banga (2017) and Example 2 of
Denis-Vidal et al. (1999)). These cases need to be
carefully handled in the implementation to cover a larger
spectrum of models and initial conditions. Further, the
case of known initial conditions and partially known
initial conditions will also be handled in this extension.
The results were restricted to measured or known premise
variables. This could be extended to LPV models which
have unmeasured or estimated premise variables.

Systematic implementation. A systematic implemen-
tation of the procedure is an immediate topic for future
work. The realization could be in the form of a toolbox
in MATLAB similar to those reported by Chis et al.
(2011) or Villaverde et al. (2016). This toolbox would
provide a detailed strategy for the model input, options
for evaluating local/global identifiability results, the final
display of the results and other relevant information.

Numerical approach. The STRIKE-GOLDD toolbox
(Villaverde et al., 2016) evaluates identifiability either
numerically or symbolically. In the numerical approach,
a random set of initial conditions are chosen for the
states and random values are associated with inputs and
their derivatives (these random values are chosen as
prime numbers to avoid undesirable cancellations). This
significantly reduces the computational effort required to
compute the Jacobian. It is to be noted that the numerical
approach here is not completely numerical. It still requires
computing symbolically the Lie derivatives to set up
the so-called “observability-identifiability matrix” in their
paper. A similar inclusion of numerical methods can
reduce the symbolic computations. In Algorithm. 2, this
would change the initial assignment step and the Jacobian
computation step. The null-space computation steps could
also be replaced by exploiting the works on polynomial
null-space computation (e.g., Anaya and Henrion, 2009;
Khare et al., 2010).
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Computational complexity and efficiency. The
computational complexity analysis of the proposed
algorithm would be a topic of future interest once the
implementation is realized completely in a computational
environment like MATLAB. This would include
analysing the relative efficiencies of deploying the
Buchberger algorithm for the Gröbner basis computations
versus the Jacobian evaluation for local structural
identifiability.

Another related interest is in the computational
comparison with other methods. The DAISY software
package envisioned to reduce the computational
complexity of the approach by Ljung and Glad (1994)
by the choice of a differential ring that does not contain
θ. This works well for biological systems with a large
number of parameters and a small number of states.
However, in engineering systems one often encounters
a model with a large number of states and relatively
few parameters. An application such as DAISY suffers
from the same type of computational overhead as Ljung
and Glad (1994) had for biological systems. It is to be
analyzed whether the parity-space approach can bring in
any specific advantages. Similarly, to analyze the same
type of models for same characteristics, the parity-space
approach should also be compared with genSSI and
STRIKE-GOLDD toolboxes. Further, as in the recent
work by Joubert (2020), a numerical sensitivity analysis
of the work would be imperative to better understand the
numerical properties of the algorithm.
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