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In this paper, we propose a multi-group SEIR epidemic model with spatial diffusion, where the model parameters are
spatially heterogeneous. The positivity and ultimate boundedness of the solution, as well as the existence of a global
attractor of the associated solution semiflow, are established. The definition of the basic reproduction number is given by
utilizing the next generation operator approach, whereby threshold-type results on the global dynamics in terms of this
number are established. That is, when the basic reproduction number is less than one, the disease-free steady state is
globally asymptotically stable, while if it is greater than one, uniform persistence of this model is proved. Finally, the
feasibility of the main theoretical results is shown with the aid of numerical examples for a model with two groups.
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1. Introduction

Establishing mathematical models and studying
them can help people solve many practical problems
(Chaturantabut, 2020; El-Douh et al., 2022). It has
been widely recognized that spatial diffusion and
environmental heterogeneity are ubiquitous in the real
world and they have significant impact on the spread of
infectious diseases, e.g., influenza. Indeed, very recently,
these problems have attracted many researchers to study
the impact of the spatial heterogeneity of the environment
and the movement of individuals on the dynamical
behaviors of a disease in an analytical aspect; see the
works of Yang et al. (2020), Yang and Wang (2019), Song
et al. (2019), Li et al. (2017), Allen et al. (2008) and the
references therein.

Among the above-mentioned authors, Allen
et al. (2008) proposed a frequency-dependent SIS
(susceptible-infected-susceptible) reaction-diffusion epide-
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mic model for a population inhabiting a continuous
spatial habitat, and studied the properties of the basic
reproduction number and threshold-type results on the
global dynamics. Yang et al. (2020) proposed a diffusive
SIRS (susceptible-infected-recovered-susceptible) model
with a general incidence rate and a spatial heterogeneity,
and established threshold dynamics, including global
attractors of the disease-free equilibrium and uniform
persistence. Song et al. (2019) considered a kind of SEIRS
(susceptible-exposed-infected-recovered-susceptible) rea-
ction-diffusion model where the disease transmission
and recovery rates can be spatially heterogeneous,
and investigated the asymptotic profiles of the basic
reproduction number and the endemic equilibrium with
respect to diffusion coefficients. Li et al. (2017) provided
qualitative analysis of an SIS epidemic reaction-diffusion
system with a linear source in a spatially heterogeneous
environment, including the uniform bounds of solutions
and the threshold dynamics in terms of the basic
reproduction number.
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In addition, epidemic parameters are related to
the spatial location, taking account of the fact that
the total population should be classified into different
groups according to different communities, cities or
counties and the epidemic parameters should vary
among different population groups, which can also
make the description of complex disease dynamics more
realistic. Therefore, it is necessary and reasonable
to include multi-group into epidemic models. Some
recent developments on the dynamical properties of
multi-group effects epidemic models have been discussed
by Liu and Li (2020b; 2020a), Luo et al. (2019),
Zhao et al. (2018), Chen et al. (2016) and in the
references cited therein. Luo et al. (2019) investigated the
global dynamics of a reaction-diffusion multi-group SIR
epidemic model with nonlinear incidence in a spatially
heterogeneous and homogeneous environment. Zhao
et al. (2018) incorporated constant recruitment in a
two-group SIR epidemic model with time delay and
showed that the existence of traveling waves is determined
by the basic reproduction number. Chen et al. (2016)
analyzed multi-group coupled systems on networks with
multi-diffusion (MCSNMs) and analyzed the stability of
the systems by using the graph-theoretic approach and the
vertex Lyapunov function set to construct the appropriate
global Lyapunov function.

However, almost all reported results
for reaction-diffusion epidemic models with
environmental heterogeneity or multiple groups
are about the SIR (Susceptible-Infected-Recovered)
or SIS models and rarely about the SEIR
(Susceptible-Exposed-Infected-Recovered) model.
These models did not include the class of exposed
individuals and ignored the movement of exposed
individuals. For many infectious diseases, infected
individuals can experience incubation before showing
symptoms, e.g., malaria, West Nile virus, HIV/AIDS.
The travel of exposed individuals showing no symptoms
can spread the disease geographically, which makes the
disease harder to control. Therefore, it seems imperative
to include the exposed subclass and explore the influences
of exposed individuals’ movement on the disease spread.
The influence of the incubation period on the spread of
infectious diseases has been widely discussed by Xing
and Li (2021), Liu and Li (2020a), Song et al. (2019) and
in the references cited therein.

Motivated by the above discussion, we extend the
classic diffusive SEIR epidemic model to the situation in
which all the parameters are functions of the location x
and the population is divided into n groups according to
different contact patterns. Let Sk(t, x), Ek(t, x), Ik(t, x)
and Rk(t, x) be the densities of susceptible individuals,
exposed individuals, infectious individuals and recovered
individuals at time t and location x ∈ Ω in group
k ∈ {1, 2, . . . , n}, respectively, where the habitat Ω is

bounded and connected. Hence, the n-group diffusive
SEIR epidemic model has the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Sk

∂t
=∇ · (d1k(x)∇Sk) + Λk(x) − μk(x)Sk

−
n∑

j=1

βkj(x)SkIj ,

∂Ek

∂t
=∇ · (d2k(x)∇Ek) +

n∑

j=1

βkj(x)SkIj

− σk(x)Ek − (μk(x) + δ1k(x))Ek,

∂Ik
∂t

=∇ · (d3k(x)∇Ik) + σk(x)Ek − (μk(x)

+ δ2k(x) + ck(x))Ik + γk(x)Rk,

∂Rk

∂t
=∇ · (d4k(x)∇Rk) + ck(x)Ik − γk(x)Rk

− μk(x)Rk

(1)

for x ∈ Ω, with the homogeneous Neumann boundary
conditions

∂Sk

∂ν
=
∂Ek

∂ν
=
∂Ik
∂ν

=
∂Rk

∂ν
= 0, x ∈ ∂Ω,

and the initial conditions
{
Sk(0, x) = S0

k(x) > 0, Ek(0, x) = e0k(x) > 0,

Ik(0, x) = I0k (x) > 0, Rk(0, x) = r0k(x) > 0
(2)

for x ∈ Ω.
Here d1k(x), d2k(x), d3k(x), d4k(x) denote

the diffusion coefficients of susceptible individuals,
exposed individuals, infectious individuals and recovered
individuals in group k at location x, respectively. Λk(x),
μk(x) and ck(x) denote the recruitment rate of the
susceptible class, the per-capita natural death rate and
the recovery rate from the infectious class in group k
at location x, respectively. Furthermore, βkj(x) denotes
the transmission rate of the disease between susceptible
individuals in group k and infectious individuals in group
j at location x; δ1k(x) and δ2k(x) denote the additional
death rates of exposed and infectious individuals induced
by the infectious diseases in group k at location x,
respectively; σk(x) denotes the conversional rate from the
latent class in group k at location x and γk(x) denotes the
relapse rate from the recovered class into the infectious
class in group k at location x. The homogeneous
Neumann boundary conditions imply that there is no
population flux across the boundary ∂Ω. Throughout
this paper, we assume that all the model parameters are
continuous and positive functions on Ω.

The remainder of this paper is organized as
follows. In Section 2, some basic properties, including
the existence, uniqueness, positivity and ultimate
boundedness of solution, are established. Section 3
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is devoted to the threshold dynamics in terms of the
basic reproduction number. In Section 4, the threshold
criteria on the global stability of disease-free steady state
and the uniform persistence of model are stated and
proved. In Section 5, numerical simulations are reported
to supplement our theoretical results. A brief conclusion
is presented in Section 6.

2. Basic properties

We first recall a stability theorem for the the
reaction-diffusion equation, which is of importance
in proving our main results. Consider the following scalar
reaction-diffusion equation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ω

∂t
=∇ · (d(x)∇ω) + α(x)

− β(x)ω, x ∈ Ω, t > 0,

∂ω

∂ν
=0, x ∈ ∂Ω, t > 0,

(3)

where d(x), α(x) and β(x) are continuous and positive
functions on Ω.

Lemma 1. (Guo et al., 2012, Lemma 2.2) The system (3)
admits a unique positive steady state ω∗(x) satisfying the
equation

∇ · (d(x)∇ω∗(x)) + α(x) − β(x)ω∗(x) = 0,

subject to
∂ω∗(x)
∂ν

= 0 for x ∈ ∂Ω,

which is globally asymptotically stable inC(Ω,R+). Fur-
thermore, if d(·) ≡ d, α(·) ≡ α and β(·) ≡ β are positive
constants, then ω∗(x) ≡ α/β, ∀x ∈ Ω.

Define the functional space X = C(Ω,R4n)
equipped with the norm

|ψ|X = max
i

sup
x∈Ω

|ψi(x)|,

for ψ = (ψ1, ψ2, . . . , ψ4n) ∈ X and X+ = C(Ω,R4n
+ ).

Let T1k, T2k, T3k, T4k : C(Ω,R) → C(Ω,R) be the
C0-semigroups generated by ∇ · (d1k(x)∇) − μk(x),
∇·(d2k(x)∇)−(σk(x)+μk(x)+δ1k(x)), ∇·(d3k(x)∇)−
(μk(x)+δ2k(x)+ck(x)), ∇·(d4k(x)∇)−(γk(x)+μk(x))
subject to the Neumann boundary condition in group k,
respectively. Then, for all t > 0 and ϕ ∈ C(Ω,R), we
have

(Tik(t)ϕ)(x) =

∫

Ω

Γik(t, x, y)ϕ(y) dy,

where Γik(t, x, y) is the Green function.
We have that Tik, i = 1, 2, 3, 4, k = 1, 2, . . . , n

are compact and strongly positive for each t > 0 by the

Corollary 7.2.3 of Smith (1995). Let Aik : D(Aik) →
C(Ω,R) be the generator of Tik, i = 1, 2, 3, 4, k =
1, 2, . . . , n. Then T (t) = (T1, T2, T3, T4) is a semigroup
generated by the operator A = (A1,A2,A3,A4), where
Ti = (Ti1, Ti2, . . . , Tin) and Ai = (Ai1,Ai2, . . . ,Ain)
for i = 1, 2, 3, 4.

For all x ∈ Ω and φ = (φ1, φ2, φ3, φ4) ∈ X+, where
φi = (φi1, φi2, . . . , φin), let F = (F1,F2,F3,F4) :
X+ → X , where Fi = (Fi1,Fi2, . . . ,Fin) and

F1k(φ)(x) = Λk(x) −
n∑

j=1

βkj(x)φ1k(x)φ2j(x),

F2k(φ)(x) =

n∑

j=1

βkj(x)φ1k(x)φ2j(x),

F3k(φ)(x) = σk(x)φ3k(x) + γk(x)φ4k(x),

F4k(φ)(x) = ck(x)φ3k(x).

We denote by

u(t, ·, φ) = (S(t, ·, φ), E(t, ·, φ), I(t, ·, φ), R(t, ·, φ))

the solution of (1) with an initial-value function φ, where
S = (S1, S2, . . . , Sn), E = (E1, E2, . . . , En), I =
(I1, I2, . . . , In) and R = (R1, R2, . . . , Rn). Then we can
rewrite system (1) as follows:

⎧
⎨

⎩

du

dt
= Au+ F(u), t > 0,

u(0, ·, φ) = φ ∈ X+.
(4)

Let Bθ(φ) denote the open ball with center φ and
radius θ.

Definition 1. (Lyapunov stability) A solution u(t, ·, φ)
to system (4) is said to be Lyapunov stable (stable) if, for
each ε > 0, there exists θ(ε) > 0 such that for every
ϕ ∈ Bθ(φ) the relation

‖u(t, ·, φ)− u(t, ·, φ)‖ < ε

holds for all t ≥ 0.

Definition 2. (Asymptotic Lyapunov stability) A solution
u(t, ·, φ) to system (4) is said to be asymptotically
Lyapunov stable (asymptotically stable) if it is Lyapunov
stable and there exists η > 0 such that for every ϕ ∈
Bη(φ), one has the relation

‖u(t, ·, φ)− u(t, ·, φ)‖ → 0, as t→ ∞.

For convenience, we shall write (y1, y2, . . . , yn)
T ≥

(z1, z2, . . . , zn)
T whenever yi ≥ zi for all i = 1, 2, . . . , n.
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Let α(x) = maxk
∑n

j=1βkj(x)φ2j(x). We get

φ(x) + hF(φ)(x) =

⎛

⎜
⎜
⎝

φ1(x) + hF1(φ)(x)
φ2(x) + hF2(φ)(x)
φ3(x) + hF3(φ)(x)
φ4(x) + hF4(φ)(x)

⎞

⎟
⎟
⎠

T

≥

⎛

⎜
⎜
⎝

φ1(x)(1 − hα(x))
φ2(x)
φ3(x)
φ4(x)

⎞

⎟
⎟
⎠

T

for h > 0. This implies that φ + hF(φ) ∈ X+ for all
small h > 0.

Let φ∗ = φ + hF(φ) + h2φ. Then φ∗ ∈ X+.
Furthermore,

1

h
|φ+ hF(φ)− φ∗|X = h|φ|X → 0,

as h→ 0+. Thus, we have

lim
h→0+

1

h
dist(φ+ hF(φ), X+) = 0, ∀φ ∈ X+.

It is obvious that the subtangential conditions in
Corollary 4 of Martin and Smith (1990) are satisfied.
Let [0, τφ) denote the maximum interval of existence for
solution u(t, ·, φ). Then the following lemma is valid
according to Corollary 4 of Martin and Smith (1990).

Lemma 2. For each initial function φ ∈ X+, the system
(1) has a unique mild solution u(t, ·, φ) on [0, τφ), τφ ≤
∞. Moreover, u(t, ·, φ) ∈ X+ for all t ∈ [0, τφ) and this
solution is a classical solution.

Next, we establish the following results on the
existence and ultimate boundedness of the global solution,
and the existence of a global attractor for model (1). For
convenience, we write

m = max
x∈Ω

m(x), m = min
x∈Ω

m(x)

for any functionm(x) defined on Ω.

Theorem 1. The system (1) has a unique solution
u(t, ·, φ) ∈ X+ on [0,∞) with φ ∈ X+ and this solu-
tion is also ultimately bounded.

Proof. We first prove the existence of a global solution.
Suppose that τφ <∞. We have

‖u(t, ·, φ)‖X → ∞ as t→ τφ (5)

by Theorem 2 of Martin and Smith (1990).
We define the total population size in group k at time

t and location x as

Nk = Sk + Ek + Ik +Rk.

Adding the equations of system (1), we get
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Nk

∂t
≤∇ · (Dk(x)∇Nk) + Λk(x)

− μk(x)Nk, x ∈ Ω, t > 0,

∂Nk

∂ν
=0, x ∈ ∂Ω, t > 0,

(6)

where Dk(x) = max{d1k(x), d2k(x), d3k(x), d4k(x)}
for x ∈ Ω and k = 1, 2, . . . , n. The standard parabolic
comparison theorem (Smith, 1995, Theorem 7.3.4)
implies that Nk is uniformly bounded, and so are Sk,
Ek , Ik and Rk, which leads to a contradiction to (5).
Therefore, τφ = ∞ and the global existence of u(t, ·, φ)
is derived.

We now show that the solution is also ultimately
bounded. It follows from (6), Lemma 1 and the
standard parabolic comparison theorem (Smith, 1995,
Theorem 7.3.4) that

lim sup
t→∞

Nk ≤ Λk

μ
k

uniformly for x ∈ Ω.

Then there exists a t1 > 0 such that

Nk ≤ 2
Λk

μ
k

, ∀t ≥ t1.

Thus, we get

Sk, Ek, Ik, Rk ≤ 2
Λk

μ
k

, ∀t ≥ t1,

which implies that Sk,Ek , Ik ,Rk are ultimately bounded.
�

Corollary 1. The solution semiflow Φ(t) : X+ → X+ of
(1), defined by

Φ(t)φ = u(t, ·, φ), t ≥ 0,

admits a global attractor.

Proof. According to Theorem 1, we know that
the solution to system (1) is ultimately bounded, which
implies that the solution semiflow Φ(t) is point dissipative
on X+. By Theorem 2.2.6 of Wu (1996), we can get that
Φ(t) is compact for any t > 0. Thus, from Theorem 3.4.8
of Hale (1988), we further obtain that Φ(t) has a global
attractor. �

3. Basic reproduction number

We consider the following susceptible subsystem of
model (1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Sk

∂t
=∇ · (d1k(x)∇Sk) + Λk(x)

− μk(x)Sk, x ∈ Ω, t > 0,

∂Sk

∂ν
=0, x ∈ ∂Ω, t > 0.
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By Lemma 1, system (1) admits a unique positive steady
state S0

k(x), satisfying the equation

∇ · (d1k(x)∇S0
k(x)) + Λk(x)− μk(x)S

0
k(x) = 0,

subject to
∂S0

k(x)

∂ν
= 0, x ∈ ∂Ω,

which is globally asymptotically stable in C(Ω,R+).
Moreover, if Λk(·) ≡ Λk and μk(·) ≡ μk are positive
constants, then S0

k(x) = Λk

μk
. Therefore, model (1) has a

unique disease-free steady state E0(x) = (S0(x),0,0,0)
with S0(x) = (S0

1 (x), S
0
2 (x), . . . , S

0
n(x)) and 0 =

(0, 0, . . . , 0)n.
We now utilize the next-generation operator

approach developed by Wang and Zhao (2012) to derive
the basic reproduction number of system (1). Let
w = (E1, . . . , En, I1, . . . , In, R1, . . . , Rn)

T . Then the
last 3n equations of system (1) could be rewritten in the
following form:

∂w

∂t
= ∇ · (D(x)∇w) + F (x,w) − V (x,w),

where

D(x) = diag(d21(x), . . . , d2n(x), d31(x), . . . , d3n(x),

d41(x), . . . , d4n(x)),

and

F (x,w) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n∑

j=1

β1j(x)S1Ij

...
n∑

j=1

βnj(x)SnIj

0
...
0
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

V (x,w)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(σ1(x) + μ1(x) + δ11(x))E1

...
(σn(x) + μn(x) + δ1n(x))En

−(σ1(x)E1 + (μ1(x) + δ21(x) + c1(x))I1
−γ1(x)R1)

...
−(σn(x)En + (μn(x) + δ2n(x) + cn(x))In

−γn(x)Rn)
−c1(x)I1 + (γ1(x) + μ1(x))R1

...
−cn(x)In + (γn(x) + μn(x))Rn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Here F (x,w) accounts for new infections and
V (x,w) accounts for other transfers into and out of
compartment. Linearizing F (x,w) − V (x,w) about the
disease-free steady state E0(x) gives the matrix F (x) −
V (x), where

F (x) =

(
∂F (x,E0(x))

∂w

)

, V (x) =
∂V (x,E0(x))

∂w
.

Moreover, 3n× 3n matrices F (x) and V (x) are given by

F (x) =

⎛

⎝
0 F12 0
0 0 0
0 0 0

⎞

⎠ ,

V (x) =

⎛

⎝
V11 0 0
V21 V22 V23
0 V32 V33

⎞

⎠ ,

where

F12 =

⎛

⎜
⎜
⎜
⎝

β11(x)S
0
1 (x) β12(x)S

0
1 (x)

β21(x)S
0
2 (x) β22(x)S

0
2 (x)

...
...

βn1(x)S
0
n(x) βn2(x)S

0
n(x)

· · · β1n(x)S
0
1 (x)

· · · β2n(x)S
0
2 (x)

. . .
...

· · · βnn(x)S
0
n(x)

⎞

⎟
⎟
⎟
⎠
,

V11 = diag(σ1(x) + μ1(x) + δ11(x), σ2(x) + μ2(x)

+ δ12(x), . . . , σn(x) + μn(x) + δ1n(x)),

V21 = diag(−σ1(x),−σ2(x), . . . ,−σn(x)),

V22 = diag(c1(x) + μ1(x) + δ21(x), c2(x) + μ2(x)

+ δ22(x), . . . , cn(x) + μn(x) + δ2n(x)),

V23 = diag(−γ1(x),−γ2(x), . . . ,−γn(x)),
V32 = diag(−c1(x),−c2(x), . . . ,−cn(x)),

V33 = diag(γ1(x) + μ1(x), γ2(x) + μ2(x),

. . . , γn(x) + μn(x)).

For each initial function φ ∈ X+, we denote by
φ̄ = (φ2(x), φ3(x), φ4(x)) the distribution of initial
infection. As time evolves, the distribution of new
infected individuals becomes F (x)(T̄ (t)φ̄)(x) at time t,
where T̄ (t) = (T2(t), T3(t), T4(t)). Then, the total
distribution of the new infected individuals is

∫ ∞

0

F (x)(T̄ (t)φ)(x) dt

=

∫ ∞

0

F12(x)(T3(t)φ3)(x) dt.
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Therefore, the next-generation operator L is given by

L(ϕ)(x) = F12(x)

∫ ∞

0

(T3(x)ϕ)(x) dt,

ϕ ∈ C(Ω,R+).

Motivated by Wang and Zhao (2012), we define the basic
reproduction number R0 of model (1) as the spectral
radius of L,

R0 := r(L).

Next we study the stability of E0(x) in terms of R0.
We first consider the eigenvalue problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (d2k(x)∇ϕ2k) + S0
k(x)

n∑

j=1

βkj(x)ϕ3j

−(σk(x) + μk(x) + δ1k(x))ϕ2k = λϕ2k,

∇ · (d3k(x)∇ϕ3k) + σk(x)ϕ2k − (μk(x)

+δ2k(x) + ck(x))ϕ3k + γk(x)ϕ4k = λϕ3k,

∇ · (d4k(x)∇ϕ4k) + ck(x)ϕ3k − (γk(x)

+μk(x))ϕ4k = λϕ4k,

∂ϕ2k

∂ν
=
∂ϕ3k

∂ν
=
∂ϕ4k

∂ν
= 0, x ∈ ∂Ω.

(7)

By the Krein–Rutman theorem (Du, 2006, Theorem 1.2),
the eigenvalue problem (7) has a unique principal
eigenvalue λ0. Furthermore, according to Theorem 3.1
of Wang and Zhao (2012), we get the following result.

Theorem 2.

(i) R0−1 has the same sign as the principal eigenvalue.

(ii) If R0 < 1, then the disease-free steady state E0(x)
is locally asymptotically stable for model (1).

(iii) If R0 > 1, then E0(x) is unstable.

The biological meaning of the basic reproduction
numberR0 is the effective number of secondary infections
caused by a typical infectious individual during his entire
period of infectiousness. From Theorem 2, we get that
when an infectious individual spreads the disease to more
than one susceptible individual over his expected lifetime,
the disease will reach a disease-free steady state which
means the disease will be eliminated in local time. In turn,
when an infectious individual spreads the disease to less
than one susceptible individual over his expected lifetime,
the disease-free steady state is unstable and the disease
will not be eliminated.

4. Asymptotic behaviors

4.1. Stability of disease-free steady state.

Theorem 3. If R0 < 1, then the disease-free steady
state E0(x) of model (1) is globally asymptotically stable
in X+.

Proof. We denote by (η2(x), η3(x), η4(x)) the eigen-
function corresponding to the principal eigenvalue λ0
associated with the eigenvalue problem (7), where η2 =
(η21, η22, . . . , η2n), η3 = (η31, η32, . . . , η3n), η4 =
(η41, η42, . . . , η4n). Define the functional

L(u) =

∫

Ω

n∑

k=1

(η2kEk + η3kIk + η4kRk) dx.

Now we prove that L(u) is a Lyapunov functional
for system (1). For an arbitrary solution u = (S,E, I, R)
of system (1), we have

dL(u)

dt

=

∫

Ω

n∑

k=1

{

η2k
[∇ · (d2k(x)∇Ek)

+
n∑

j=1

βkj(x)SkIj

− (σk(x) + μk(x) + δ1k(x))Ek

]

+ η3k
[∇ · (d3k(x)∇Ik) + σk(x)Ek

− (μk(x) + δ2k(x) + ck(x))Ik + γk(x)Rk

]

+ η4k
[∇ · (d4k(x)∇Rk) + ck(x)Ik

− (γk(x) + μk(x))Rk

]
}

dx

=

∫

Ω

n∑

k=1

[

(Sk − S0
k(x))

n∑

j=1

βkj(x)Ij

+ λ0(η2kEk + η3kIk + η4kRk)

]

dx.

(8)

From the first equation of model (1), we have
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Sk

∂t
≤∇ · (d1k(x)∇Sk) + Λk(x)

− μk(x)Sk, x ∈ Ω, t > 0,

∂Sk

∂ν
=0, x ∈ ∂Ω, t > 0.

By the standard parabolic comparison theorem
(Smith, 1995, Theorem 7.3.4) and Lemma 1,

lim sup
t→∞

Sk ≤ S0
k(x)

uniformly for x ∈ Ω, 1 ≤ k ≤ n.
Within loss of generality, we assume that Sk ≤

S0
k(x)(1 ≤ k ≤ n) for all t > 0 and x ∈ Ω. By

Theorem 2, R0 < 1 yields λ0 < 0. Besides, Sk, Ek, Ik,
Rk and βkj , η2k, η3k, η4k are positive for all 1 ≤ k, j ≤ n,
which implies dL(u)/dt < 0.

Next define

L̇0(u) :=
dL(u)

dt

∣
∣
∣
∣
∣
t=0

,



Global behavior of a multi-group SEIR epidemic model . . . 277

M = {φ ∈ X+ : L̇0(u) = 0},
where φ = (φ1, φ2, φ3, φ4) ∈ X+ is the initial function
of (1). By (8), we have M = {(φ1, φ2, φ3, φ4) ∈ X+ :
φ2i = φ3i = φ4i = 0, 1 ≤ i ≤ n} if λ0 < 0. It follows
from (1) that for λ0 < 0, the maximal invariant set in M
is given by

M̂ := {(φ1, φ2, φ3, φ4) ∈ X+ :

φ2i = φ3i = φ4i = 0, 1 ≤ i ≤ n}.
Therefore, by the LaSalle invariant principle (Hale, 1969,
Theorem 1), we obtain

(Ek, Ik, Rk) → (0, 0, 0) as t→ ∞.

Then we obtain Sk → S0
k(x) as t→ ∞. �

4.2. Uniform persistence.

Theorem 4. If R0 > 1, there exists a constant ε0 such
that for any initial value φ = (φ1, φ2, φ3, φ4) ∈ X+ with
φ2i �= 0 and φ3i �= 0 (1 ≤ i ≤ n), solution u(t, x, φ) =
(S(t, x, φ), E(t, x, φ), I(t, x, φ), R(t, x, φ)) of model (1)
satisfies

lim inf
t→∞ Sk(t, x, φ) ≥ ε0,

lim inf
t→∞ Ek(t, x, φ) ≥ ε0,

lim inf
t→∞ Ik(t, x, φ) ≥ ε0,

lim inf
t→∞ Rk(t, x, φ) ≥ ε0,

uniformly for x ∈ Ω and 1 ≤ k ≤ n. Moreover, system
(1) admits at least one endemic equilibrium.

Proof. Firstly, we show the uniform persistence
of Sk(t, x, φ). The ultimate boundedness obtained in
Theorem 1 implies that there exists a constantM > 0, for
any solution (S(t, x, φ), E(t, x, φ), I(t, x, φ), R(t, x, φ))
of model (1), and there exists t0 > 0 such that
Ij(t, x, φ) ≤ M for all x ∈ Ω, t ≥ t0 and 1 ≥ j ≥ n.
Thus, from the first equation of model (1) we have

∂Sk

∂t
≥∇ · (d1k(x)∇Sk) + Λk(x)

− (μk(x) +M
n∑

j=1

βkj(x))Sk,

for any t ≥ t0, which implies that

lim inf
t→∞ Sk(t, x, φ) ≥ Λk

μk +M
n∑

j=1

βkj

,

by Lemma 1 and the standard parabolic comparison
principle (Smith, 1995, Theorem 7.3.4).

Define

W = {(φ1, φ2, φ3, φ4) ∈ X+ :

φ2i �= 0 and φ3i �= 0 and φ4i �= 0, 1 ≤ i ≤ n},
and

∂W = {(φ1, φ2, φ3, φ4) ∈ X+ :

φ2i = 0 or φ3i = 0 or φ4i = 0, 1 ≤ i ≤ n}.
Clearly, W⋃

∂W = X+. From the strong maximum
principle for parabolic equations, we have Φ(t)W ⊂ W
for all t > 0, where Φ(t) is the solution semiflow of (1).
Write

M∂ = {φ = (φ1, φ2, φ3, φ4) ∈ X+ :

Φ(t)φ ∈ ∂W , t ≥ 0}.
It is easy to verify that M∂ = {φ = (φ1, φ2, φ3, φ4) ∈
X+ : φ2i = φ3i = φ4i = 0, 1 ≤ i ≤ n}.

Let ω(φ) be the ω-limit set of Φ(t)φ and

M̂∂ =
⋃

φ∈M∂

ω(φ).

Then, we prove that M̂∂ = {E0(x)}. For any φ ∈ M∂ ,
i.e., Φ(t)φ ∈ ∂W for all t ≥ 0, we have Ek(t, x, φ) =
Ik(t, x, φ) = Rk(t, x, φ) = 0 for all x ∈ Ω, t ≥ 0 and
1 ≤ k ≤ n. From model (1), we have the following
subsystem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Sk

∂t
=∇ · (d1k(x)∇Sk) + Λk(x)

− μk(x)Sk, x ∈ Ω, t > 0,

∂Sk

∂ν
=0, x ∈ ∂Ω, t > 0.

By Lemma 1, we have limt→∞ Sk(t, x, φ) → S0
k(x)

uniformly for x ∈ Ω. Hence, M̂∂ = {E0(x)}. Therefore,
{E0(x)} is an isolated invariant set for Φ(t) restricted in
M∂ . Next, we show that there exists some constant ε
independent of initial values such that

lim sup
t→∞

|Φ(t)φ − E0(x)|X ≥ ε, ∀φ ∈ W . (9)

From R0 > 1 and Theorem 2, we have λ0 > 0,
where λ0 is the principal eigenvalue of the eigenvalue
problem (7). Consider the following eigenvalue problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (d2k(x)∇ξ2k) + (S0
k(x)− ε)

n∑

j=1

βkj(x)ξ3j

−(σk(x) + μk(x) + δ1k(x))ξ2k = λξ2k,

∇ · (d3k(x)∇ξ3k) + σk(x)ξ2k − (μk(x)

+δ2k(x) + ck(x))ξ3k + γk(x)ξ4k = λξ3k,

∇ · (d4k(x)∇ξ4k) + ck(x)ξ3k − (γk(x)

+μk(x))ξ4k = λξ4k,

∂ξ2k
∂ν

=
∂ξ3k
∂ν

=
∂ξ4k
∂ν

= 0, x ∈ ∂Ω,



278 P. Liu and H.-X. Li

and denote by λ0(ε) its principle eigenvalue. Note that
limε→0 λ0(ε) = λ0 > 0.

Then there exists a sufficiently small constant ε1 > 0
such that λ0(ε1) > 0 and S0

k(x) − ε1 > 0 for all x ∈ Ω.
Moreover, from the Krein–Rutman theorem (Du, 2006,
Theorem 1.2), the eigenfunction (ξ2(x), ξ3(x), ξ4(x))
corresponding to λ0(ε1) is also strictly positive for x ∈ Ω.

Contrary to (9), we assume that there exists some
initial value φ∗ such that

lim sup
t→∞

|Φ(t)φ∗ − E0(x)|X < ε1.

Then there exists a sufficiently large t1 such that

Sk(t, x, φ
∗) > S0

k(x)− ε1

for all x ∈ Ω, t > t1 and 1 ≤ k ≤ n. By the strong
maximum principle of parabolic equations,

Ek(t, x, φ
∗), Ik(t, x, φ∗), Rk(t, x, φ

∗) > 0

for all t > 0. Then we can find a small positive
constant c0 such that Ek(t1, x, φ

∗) ≥ c0ξ2k(x),
Ik(t1, x, φ

∗) ≥ c0ξ3k(x) and Rk(t1, x, φ
∗) ≥

c0ξ4k(x) for x ∈ Ω. It is easy to verify
that (Ek(t, x, φ

∗), Ik(t, x, φ∗), Rk(t, x, φ
∗)) is a

supersolution of the problem
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Ek

∂t
=∇ · (d2k(x)∇Ek) + (S0

k(x)− ε1)

×
n∑

j=1

βkj(x)Ij − (σk(x) + μk(x)

+ δ1k(x))Ek,

∂Ik
∂t

=∇ · (d3k(x)∇Ik) + σk(x)Ek − (μk(x)

+ δ2k(x) + ck(x))Ik + γk(x)Rk,

∂Rk

∂t
=∇ · (d4k(x)∇Rk) + ck(x)Ik − (γk(x)

+ μk(x))Rk,

∂Ek

∂ν
=
∂Ik
∂ν

=
∂Rk

∂ν
= 0, x ∈ ∂Ω,

(10)

for t > t1 and

Ek(t1, x) = c0ξ2k(x),

Ik(t1, x) = c0ξ3k(x),

Rk(t1, x) = c0ξ4k(x),

where

(c0e
λ0(ε1)(t−t1)ξ2(x), c0e

λ0(ε1)(t−t1)ξ3(x),

c0e
λ0(ε1)(t−t1)ξ4(x))

is the unique solution to system (10). Note that λ0(ε1) >
0; therefore,

Ek(t, x, φ
∗) ≥ c0e

λ0(ε1)(t−t1)ξ2k(x),

Ik(t, x, φ
∗) ≥ c0e

λ0(ε1)(t−t1)ξ3k(x),

Rk(t, x, φ
∗) ≥ c0e

λ0(ε1)(t−t1)ξ4k(x) → ∞
uniformly in Ω as t → ∞. This contradiction completes
the proof of (9), which implies that WS({E0(x)})

⋂W
is an empty set, where WS({E0(x)}) is the stable set of
{E0(x)} for Φ(t). Then, from Theorem 1.3.1 of Zhao
(2003) and together with the fact that {E0(x)} is an
isolated invariant set for Φ(t) in X+, Φ(t) is uniformly
persistent. Moreover, by Theorem 1.3.7 of Zhao (2003),
(1) admits at least one endemic equilibrium. �

5. Numerical simulations

To proceed, we implement numerical simulations in
order to demonstrate our theoretical findings and explore
the effect of population diffusion and environmental
heterogeneity on disease transmission. By adopting the
finite difference method to solve sets of partial differential
equations in Matlab, graphs of the solution to model (1)
are drawn as the numerical results in this section. We
focus on the following 2-group SEIR epidemic model
with spatial diffusion in a heterogeneous environment,
which is a special case of system (1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂S1

∂t
=∇ · (d11(x)∇S1) + Λ1(x)− (μ1(x)

+ β11(x)I1 + β12(x)I2)S1,

∂S2

∂t
=∇ · (d12(x)∇S2) + Λ2(x)− (μ2(x)

+ β21(x)I1 + β22(x)I2)S2,

∂E1

∂t
=∇ · (d21(x)∇E1) + β11(x)S1I1 + β12(x)

× S1I2 − (σ1(x) + μ1(x) + δ11(x))E1,

∂E2

∂t
=∇ · (d22(x)∇E2) + β21(x)S2I1 + β22(x)

× S2I2 − (σ2(x) + μ2(x) + δ12(x))E2,

∂I1
∂t

=∇ · (d31(x)∇I1) + σ1(x)E1 − (μ1(x)

+ δ21(x) + c1(x))I1 + γ1(x)R1,

∂I2
∂t

=∇ · (d32(x)∇I2) + σ2(x)E2 − (μ2(x)

+ δ22(x) + c2(x))I2 + γ2(x)R2,

∂R1

∂t
=∇ · (d41(x)∇R1) + c1(x)I1 − (γ1(x)

+ μ1(x))R1,

∂R2

∂t
=∇ · (d42(x)∇R2) + c2(x)I2 − (γ2(x)

+ μ2(x))R2.

(11)

For the sake of convenience, in both the cases, we
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(a) state trajectories for S1(t, x) (b) state trajectories for S2(t, x)

Fig. 1. State trajectories for R0 < 1.

(a) state trajectories for E1(t, x) (b) state trajectories for E2(t, x)

Fig. 2. State trajectories for R0 < 1.

take Ω = (0, 1) and the initial functions are given by

S1(0, x) = 2 · (2 + sinπx),

S2(0, x) = 5 · (2 + sinπx),

E1(0, x) = 4 · (2 + sinπx),

E2(0, x) = 13 · (2 + sinπx),

I1(0, x) = 3 · (2 + sinπx),

I2(0, x) = 2 · (2 + sinπx),

R1(0, x) = 20 · (2 + sinπx),

R2(0, x) = 10 · (2 + sinπx).

In addition, we fix some parameters of the model as

follows

d11(x) = 0.3 · 10−3x, d21(x) = 0.2 · 10−2x,

d12(x) = 0.1 · 10−3x, d22(x) = 0.1 · 10−2x,

d31(x) = 0.3 · 10−2x, d41(x) = 0.5 · 10−3x,

d32(x) = 0.2 · 10−2x, d42(x) = 0.6 · 10−3x,

and

Λ1(x) = 1 + 0.5 cosπx,

Λ2(x) = 2 + 0.5 cosπx,
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(a) state trajectories for I1(t, x) (b) state trajectories for I2(t, x)

Fig. 3. Case of R0 < 1, state trajectories for I1(t, x) and I2(t, x).

(a) state trajectories for R1(t, x) (b) state trajectories for R2(t, x)

Fig. 4. Case of R0 < 1, state trajectories for R1(t, x) and R2(t, x).

σ1(x) = 0.1 · 10−3(1 + 0.3 cosπx),

σ2(x) = 0.2 · 10−3(1 + 0.2 cosπx),

β11(x) = 0.3 · 10−1(1 + 0.2 cosπx),

β21(x) = 0.2 · 10−1(2 + 0.1 cosπx),

β12(x) = 0.9 · 10−1(2 + 0.1 cosπx),

β22(x) = 0.6 · 10−1(1 + 0.1 cosπx),

δ11(x) = 0.5 · 10−1(1 + 0.2 cosπx),

δ21(x) = 0.4 · 10−1(1 + 0.6 cosπx),

δ12(x) = 0.4 · 10−1(1 + 0.1 cosπx),

δ22(x) = 0.5 · 10−1(1 + 0.9 cosπx),

c1(x) = 75 · (1 + 0.8 cosπx),

c2(x) = 55 · (1 + 0.7 cosπx),

γ1(x) = 2 · (1 + 0.2 cosπx),

γ2(x) = 3 · (1 + 0.1 cosπx).

Example 1. We choose μ1(x) = 0.2 · (1 + 0.5 cosπx)
and μ2(x) = 0.4 · (1 + 0.5 cosπx); then R0 < 1.
Hence, system (1) is globally asymptotically stable, and
all solutions of the system converge to the disease-free
steady state E0(x), see Figs. 1–4. �

From Theorem 3, the disease-free steady state E0(x)
of model (1) is globally asymptotically stable if R0 < 1.
Figures 1–4 show that the solutions for model (1) tend
to a disease-free steady state, i.e., the infectious disease
extincts. Hence, Example 1 in which parameters meet the
condition R0 < 1 is an illustration of Theorem 3.

Example 2. We chooseμ1(x) = 0.001·(0.4+0.5 cosπx)
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(a) state trajectories for S1(t, x) (b) state trajectories for S2(t, x)

Fig. 5. Case of R0 > 1, state trajectories for S1(t, x) and S2(t, x).

(a) state trajectories for E1(t, x) (b) state trajectories for E2(t, x)

Fig. 6. Case of R0 > 1, state trajectories for E1(t, x) and E2(t, x).

and μ2(x) = 0.25 · (0.5 + 0.5 cosπx); then R0 > 1.
Hence, system (1) is uniformly persistent, see Figs. 5–8.

Theorem 4 shows that system (1) is uniformly
persistent and admits at least one endemic equilibrium
if R0 > 1. It can be seen from Figs. 5–8 that the
solutions of model (1) tend to an endemic steady state,
i.e., the infectious disease will break out. Therefore,
Example 1 in which parameters meet the condition R0 >
1 demonstrates the validity of Theorem 4. �

6. Conclusion

Treating the environmental heterogeneity as an important
factor in disease dynamics may not only give insights into
disease spread and control in reality, but also suggest new
aspects and considerations for modeling spatial-temporal

dynamics of infectious diseases. In order to understand
the impact of the spatial heterogeneity of the environment
and the movement of individuals on the spread of
infectious diseases in an analytical aspect, in this paper,
we incorporate the diffusion terms and environmental
heterogeneity into the classical SEIR epidemic model to
drive a multi-group SEIR epidemic model with spatial
diffusion in a heterogeneous environment. For this model,
the basic reproduction number R0 is defined by applying
the next-generation operator.

With the help of the comparison principle of
reaction-diffusion equations, global asymptotical stability
of the disease-free steady state E0(x) is proved when
R0 < 1, which means that the disease will extinct.
Moreover, when R0 > 1, the uniform persistence of
the model and the existence of endemic steady state are
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(a) state trajectories for I1(t, x) (b) state trajectories for I2(t, x)

Fig. 7. Case of R0 > 1, state trajectories for I1(t, x) and I2(t, x).

(a) state trajectories for R1(t, x) (b) state trajectories for R2(t, x)

Fig. 8. Case of R0 > 1, state trajectories for R1(t, x) and R2(t, x).

obtained by using the theory of persistence of dynamical
systems. However, it is difficult to establish a criterion for
the global asymptotic stability of the endemic equilibrium
when R0 > 1 for model (1) in spatially heterogeneous
environments. We leave this as an open problem.
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