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Fuzzy numbers are often used for modeling imprecise perceptions of the real-valued observations. Such epistemic fuzzy
data may cause problems in statistical reasoning and data analysis. We propose a universal nonparametric technique, called
the epistemic bootstrap, which could be helpful when the existing methods do not work or do not give satisfactory results.
Besides the simple epistemic bootstrap, we develop its several refinements that aim to reduce the variance in statistical
inference. We also perform an extended simulation study to examine statistical properties of the approaches considered.
The discussion of the results is supplemented by some hints for practical use.
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1. Introduction

The bootstrap introduced by Efron (1979) turned out to be
extremely valuable in countless applications. As noticed
by Casella (2003), “the bootstrap has shown us how to use
the power of the computer and iterated calculations to go
where theoretical calculations cannot, which introduces a
different way of thinking about all of statistics”. It owes
its great success and recognition to its low requirements
(no assumptions are made about the distribution of the
sample, like normality; samples do not have to be large,
etc.), openness to different types of data, and general ease
of use. Consequently, the bootstrap can be applied in
many areas where the methods used so far do not work or
do not give satisfactory results. In particular, the bootstrap
turned out to be very useful in statistics with fuzzy data.

Fuzzy data have drawn increasing interest in recent
years. They appear in various fields and applications.
In particular, real-valued random variables are often
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imprecisely observed or they are so uncertain that the
results are recorded as fuzzy numbers which model
the precise outcomes of the experiment. There are
also situations where the exact values of some variable
are hidden deliberately because of the confidentiality
reasons. In all such cases as mentioned above, fuzzy
data represent the epistemic state of an agent so they are
called epistemic (Couso and Dubois, 2014). On the other
hand, there are situations when the experimental data
appear as essentially fuzzy-valued, e.g., when we collect
perceptions with no objective values behind or when we
describe regions with intrinsically gradual boundaries, etc.
Such data represent an objective entity and hence they are
called ontic (Couso and Dubois, 2014).

So far, applications of the bootstrap in fuzzy data
analysis have been limited to ontic fuzzy data. For
instance, the bootstrap turned out to be very useful
in hypotheses testing (Colubi et al., 2002; Gil et al.,
2006; González-Rodrı́guez et al., 2006; Montenegro et al.,
2004; Ramos-Guajardo and Lubiano, 2012), classification
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(Ramos-Guajardo and Grzegorzewski, 2016), fuzzy
rating in questionnaires (Lubiano et al., 2016; 2017),
quality control (Ramos-Guajardo et al., 2019; Wang and
Hryniewicz, 2015), and so on. Meanwhile, although
the epistemic fuzzy data seem to be more natural in
engineering and in other fields where we deal with
imprecise measurement results, bootstrap methods have
not been developed yet. The aim of this contribution is to
fill this gap.

Some preliminary ideas on the possibility of the
bootstrap application for epistemic fuzzy data were
proposed by Grzegorzewski and Romaniuk (2021). In
this paper, we develop and compare various methods
(like the so-called antithetic approach, or the RSS-based
resampling) to improve this simple epistemic bootstrap,
especially intending to reduce the variance. Apart from
broad numerical experiments related to various statistical
fields (like the estimation of the standard error and the
mean squared error, comparison of the power curves),
some practical hints are also provided.

The paper is organized as follows. Basic notions
on fuzzy data and the epistemic view on statistics
with fuzzy data are recalled in Section 2. In Section
3 we propose how to perform the bootstrap in the
framework of epistemic fuzzy data. Further on we
present the results of the extended simulation study on
various aspects of the epistemic bootstrap. We start
from its statistical justification in Section 4. Next, in
Sections 5 and 6, we consider the epistemic bootstrap in
estimation and hypotheses testing with epistemic fuzzy
data, respectively. We discuss different resampling
methods and compare the results with other methods used
so far. Theoretical considerations and analyses of the
results are supplemented with guidance for practitioners.

2. Basic notions and notation

2.1. Fuzzy data. Traditionally, most of the
experimental results are real-valued data and usually
statistical methods refer to such data. However, real-life
measurements are quite often imprecise. Moreover, in
many situations where the outcomes are even real-valued,
we are actually faced with their perceptions which are
not necessarily precise but somehow vague. Fuzzy set
theory delivers effective tools for modeling imprecision
and its analysis. A natural counterpart of the real-valued
outcomes x1, . . . , xn, where each xi ∈ R is just a real
number, are fuzzy numbers x̃1, . . . , x̃n.

More specifically, x̃ : R → [0, 1] is a fuzzy number
if its α-cuts (x̃)α are nonempty compact intervals for all
α ∈ [0, 1], where

(x̃)α =

{

{x ∈ R : x̃ ≥ α} if α ∈ (0, 1],

cl{x ∈ R : x̃ > 0} if α = 0,

and where ‘cl’ stands for the closure. A family of all fuzzy
numbers will be denoted further on by F(R).

Two α-cuts of a fuzzy number x̃ are of special
interest: (x̃)α=0 called the support and (x̃)α=1 known
as the core. The support contains all real values that are
possible realizations (at least to some extent) of the object
perceived as x̃. On the other hand, the core contains all
reals totally compatible with the notion described by x̃.

A fuzzy number, as a function, may assume different
shapes. However, the most common fuzzy numbers are
the trapezoidal fuzzy numbers of the form

x̃(x) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x−a
b−a if a < x ≤ b,

1 if b ≤ x ≤ c,
d−x
d−c if c ≤ x < d,

0 otherwise,

(1)

where a, b, c, d ∈ R such that a ≤ b ≤ c ≤ d.
Such a trapezoidal fuzzy number x̃ is often denoted as
Tra(a, b, c, d). If b = c then x̃ is said to be a triangular
fuzzy number.

The reason for restricting attention to triangular or
trapezoidal fuzzy numbers is their simplicity since they
are easy to handle and have a natural interpretation.
Moreover, even if the original data set consists of fuzzy
numbers of other types, one may easily approximate
them by such fuzzy numbers. The broad collection of
approximation methods satisfying various requirements
can be found in the work of Ban et al. (2015).

To define basic arithmetic operations in F(R), we use
natural α-cut-wise operations on intervals. In particular,
the sum of two fuzzy numbers x̃ and ỹ is given by the
Minkowski addition of the corresponding α-cuts, i.e.,

(x̃+ ỹ)α =
[

inf(x̃)α + inf(ỹ)α, sup(x̃)α + sup(ỹ)α
]

,

for all α ∈ [0, 1]. Similarly, the product of a fuzzy number
x̃ by a scalar θ ∈ R is defined by the Minkowski scalar
product for intervals, i.e., for all α ∈ [0, 1]

(θ · x̃)α = [min{θ inf(x̃)α, θ sup(x̃)α},
max{θ inf(x̃)α, θ sup(x̃)α}] .

It is worth noting that the sum of trapezoidal fuzzy
numbers is also a trapezoidal fuzzy number. Indeed, if
x̃ = Tra(a1, b1, c1, d1) and ỹ = Tra(a2, b2, c2, d2) then

x̃+ ỹ = Tra(a1 + a2, b1 + b2, c1 + c2, d1 + d2).

Moreover, the product of a trapezoidal fuzzy number x̃ =
Tra(a, b, c, d) by a scalar θ is a trapezoidal fuzzy number

θ · x̃ =

{

Tra(θ · a, θ · b, θ · c, θ · d) if θ ≥ 0,

Tra(θ · d, θ · c, θ · b, θ · a) if θ < 0.

Unfortunately,
(

F(R),+, ·) has only a semilinear
structure since in general x̃ + (−1 · x̃) �= �{0}.
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Consequently, the Minkowski-based difference does not
satisfy, in general, the addition/subtraction property that
(x̃ + (−1 · ỹ)) + ỹ = x̃. To overcome this problem,
the so-called Hukuhara difference can be considered
(Hukuhara, 1967). Although now the desired properties
are satisfied, the Hukuhara difference does not always
exist. Therefore, one should be aware that there are
critical problems with a subtraction in F(R).

In general, due to the extension principle (Zadeh,
1973) any function f : Rn → R induces f̃ : F(R)n →
F(R) defined by

ỹ(y) = [f̃(x̃1, . . . x̃n)](y) (2)

= sup
(x1...,xn)∈Rn:y=f(x1...,xn)

min
i=1,...,n

x̃(x),

which allows us to extend any operation defined on real
numbers to an operation on fuzzy numbers. Note that
an attempt to define a different arithmetic on fuzzy sets
designed to avoid some of its shortcomings was proposed
by Piegat (2005).

2.2. Epistemic view on statistics with fuzzy data.
When random experiments lead to imprecise data
which can be properly described by fuzzy values, the
mechanisms generating such elements can be treated
as fuzzy-valued random variables (Kwakernaak, 1978;
Kruse, 1982).

Definition 1. Given a probability space (Ω,F, P ), a
mapping ˜X : Ω → F(R) is said to be a fuzzy random
variable (f.r.v.) if for each α ∈ [0, 1] (inf ˜Xα) : Ω → R

and (sup ˜Xα) : Ω → R are real-valued random variables
on (Ω,F, P ).

Looking for an interpretation of a fuzzy random
variable, we may consider ˜X as a fuzzy perception of
a usual random variable X , called the original of ˜X ,
which unfortunately remains unknown. Similarly, a fuzzy
random sample ˜X1, . . . , ˜Xn may be treated as a fuzzy
perception of a random sample X1, . . . , Xn of the usual
real-valued random variables.

Following the extension principle (2) any statistic
T = T (X1, . . . , Xn) can be extended to a fuzzy statistic
˜T = ˜T ( ˜X1, . . . , ˜Xn). Given any realization x̃1, . . . , x̃n

of a fuzzy random sample ˜X1, . . . , ˜Xn, the corresponding
value of the fuzzy statistic ˜T is a fuzzy set ˜T (x̃1, . . . , x̃n)
described by the following family of its α-cuts

˜Tα = ˜T (x̃1, . . . , x̃n)

=
{

T (x1, . . . , xn) : x1 ∈ (x̃1)α, . . . , xn ∈ (x̃n)α
}

.

If T is regular (monotone, continuous, etc.), then the
α-cuts of ˜T are intervals and so to obtain ˜Tα it is
sufficient to find inf ˜Tα and sup ˜Tα. Thus computing
statistics under fuzzy uncertainty can be reduced to

several problems of computing statistics under interval
uncertainty. Sometimes it works smoothly. For instance,
the average of a fuzzy sample x̃1, . . . , x̃n is calculated
immediately using the Minkowski sum and the scalar
product; hence we obtain the following α-cuts:

( 1

n

n
∑

i=1

x̃i

)

α
=
[ 1

n

n
∑

i=1

inf(x̃i)α,
1

n

n
∑

i=1

sup(x̃i)α

]

,

where (x̃i)α = [inf(x̃i)α, sup(x̃i)α], i = 1, . . . , n.
Actual calculations are not always that

straightforward even if strict mathematical formulas
exist. For example, the sample variance of a fuzzy
sample x̃1, . . . , x̃n is defined by the extension principle
as follows:

s̃2 =
1

n− 1

n
∑

i=1

(

x̃i −
( 1

n

n
∑

i=1

x̃i

)

)2

,

where
(

s̃2
)

α
=
[

inf
(

s̃2
)

α
, sup

(

s̃2
)

α

]

,

α ∈ [0, 1], denote its α-cuts. Unfortunately, computing
sup

(

s̃2
)

α
is NP-hard (Vavasis, 1991). Although there

are algorithms that compute S2 in a more effective
time (i.e., O(n log n) or even O(n)) but they impose
some restrictions on the fuzzy sample (Nguyen et al.,
2012). A new approximate algorithm based on asymptotic
reasoning for computing the upper bound of the sample
variance which works in the O(n) time was proposed
recently (Kołacz and Grzegorzewski, 2019).

It is also worth emphasizing that even if obtaining
˜T (x̃1, . . . , x̃n) involves no calculation problems, it may
not be satisfying for practitioners, especially if the
ranges of α-cuts of ˜T are too large. Consequently, the
solutions offered in such cases are too conservative and
hence do not fully meet the expectations of potential
users. Therefore, researchers are faced with the task
of constructing statistical procedures which—despite
imprecise input data—lead to “more precise” final
decisions. In parametric models, i.e., when the population
distribution is known up to a parameter value, several
approaches to improve estimation based on imprecise
data were discussed by Grzegorzewski and Goławska
(2021). However, it appears that under imprecision
nonparametric (distribution-free) methods would be much
more desirable. Such a new promising nonparametric
method is discussed in the next section.

3. Epistemic bootstrap

Suppose, our sample X1, . . . , Xn consists of n
independent and identically distributed random variables
from the unknown distribution. However, instead of
a real-valued realization (x1, . . . , xn) of this sample
we observe only its imprecise perception modeled
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by a fuzzy sample (x̃1, . . . , x̃n). We assume that for
each i = 1, . . . , n the fuzzy set x̃i contains an actual
real-valued realization of the i-th observation but we
do not know where it is precisely located. Instead, a
membership function of x̃i attributes to each point the
possibility that this very point is the true realization xi of
the random variable Xi.

Therefore, a fuzzy perception x̃i might be considered
as a fuzzy neighbor of the desired but unknown real value
xi. Hence, by an appropriate selection of the element x∗

i

from x̃i which takes into account the degree of possibility
that x∗

i is the true outcome of the experiment, we obtain an
innovative technique to reconstruct a real-valued sample
from the epistemic fuzzy sample. Its main idea is
based on a random selection of elements from the input
sample which resembles somehow the bootstrap. Since
the suggested method can be adapted only to epistemic
fuzzy samples (not ontic), it should come as no surprise
that this approach has been called the epistemic bootstrap
(Grzegorzewski and Romaniuk, 2021).

Suppose we have a fuzzy sample x̃1, . . . , x̃n ∈ F(R).
To generate a single element x∗

i of a bootstrap sample, we
need just one loop with two steps: firstly, we generate an
α-cut, and secondly, we draw randomly a real value from
this very α-cut. More specifically, we generate randomly

Step 1: a real numberαi from the uniform distribution on
the unit interval [0, 1], i.e., αi ∼ U[0, 1],

Step 2: a real number x∗
i from the uniform

distribution on the α-cut (x̃i)αi , i.e., x∗
i ∼

U
[

inf(x̃i)αi , sup(x̃i)αi

]

.

Proceeding in this way n times, we complete the entire
bootstrap sample x∗

1, . . . , x
∗
n. But to settle for a single

bootstrap sample does not seem to be enough. Indeed,
following the aforementioned two steps, we consider only
one α-cut for each fuzzy observation. Here one may ask
a natural question: Why should we limit ourselves to a
single α-cut? Let us recall that the bootstrap world, as
proposed by Efron, is very generous: we can generate
as many bootstrap samples as we want or we have time
for. Therefore, we may generate several (say, B ≥ 1)
α-cuts for each fuzzy set which provides a multiplicity
of bootstrap samples, i.e., (x∗

1j , . . . , x
∗
nj), where j =

1, . . . , B, as it can be seen in Fig. 1. This general idea
of drawing bootstrap samples from epistemic fuzzy data
is also shown in Algorithm 1.

In solving practical problems we usually have
only one random sample (x1, . . . , xn) of experimental
outcomes. In turn, it gives a single value of the desired
statistic T = T (x1, . . . , xn) necessary to achieve the
desired goal, like an estimator, a test statistic, etc.
However, in the bootstrap world each bootstrap sample
provides another realization T ∗

j (x
∗
1j , . . . , x

∗
nj) of the

statistic of interest, called the bootstrap replication. Thus,

α11

x∗
11

αn1

x∗
n1

...
...

α1B

x∗
1B

αnB

x∗
nB

Fig. 1. General idea of the epistemic bootstrap, i.e., drawing
bootstrap samples from epistemic fuzzy data.

Algorithm 1. Epistemic fuzzy bootstrap.

Require: Initial fuzzy sample x̃1, . . . , x̃n ∈ F(R).
Ensure: B bootstrap samples.

for j = 1 to B do
for i = 1 to n do

Generate randomly a real number αij from the
uniform distribution on the unit interval [0, 1].
Generate randomly a real number x∗

ij from the
uniform distribution on the α-cut (x̃i)αij .

end for
end for
Bootstrap samples x∗

1j , . . . , x
∗
nj , where j = 1, . . . , B.

following the methodology introduced by Efron, the final
bootstrap statistic T ∗ is obtained by some aggregation of
the bootstrap replications T ∗

1 , . . . , T
∗
B. The most common

solution is to aggregate the bootstrap replications by
simple averaging, i.e., to consider T ∗ = 1

B

∑B
j=1 T

∗
j in

further inference, like to determine a bootstrap estimator
or to evaluate the standard error, to design bootstrap
confidence intervals or to verify hypotheses. Some
applications of the proposed approach in reasoning with
epistemic fuzzy data are discussed in Section 4.

Here a natural question arises on why the uniform
distribution, not another, is applied in generating random
values in both steps of the suggested method. It seems that
several justifications can be made.

Firstly, in accordance with the principle of maximum
entropy, if nothing is known about the distribution then the
least informative one should be chosen as default. Thus
information theory shows that the distribution with the
greatest entropy is the desired one. Several motivations
justify this claim. In particular, physical systems usually
tend to a configuration that maximizes entropy over
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time. Moreover, by maximizing entropy we minimize the
amount of prior information contained in the distribution.
Now, keeping in mind that the bootstrap approach needs
a distribution on a closed interval (both each α-cut (x̃i)αi

is a closed interval and the range of admissible α-cuts is a
closed interval [0, 1]), we have to include the well-known
result that the uniform distribution on a given interval is
the maximum entropy distribution among all continuous
distributions having support which coincide with this
interval. This very property can be also related to the
Laplace principle of indifference.

Going back for motivations for applying the uniform
distribution one may also indicate a correspondence with
Effron’s classical bootstrap where the bootstrap samples
are drawn randomly from the primary sample with equal
probabilities, which means that they are generated from
the uniform distribution, but on a finite set.

Finally, using the uniform distribution prevents
repetitions from occurring which is the bane of the
classical bootstrap where most of the so generated
bootstrap samples contain repeated values. Even worse, if
the sample size n is small, all resulting bootstrap samples
usually consist of only a few distinct observations, which
is a highly undesirable effect, especially if the unknown
population distribution is continuous (so the probability
of at least two identical observations equals zero). To
overcome this problem one has to apply some modified
versions of the bootstrap like the smoothed bootstrap
for real-valued data (De Angelis and Young, 1992; Hall
et al., 1989; Silverman and Young, 1987) or a flexible
resampling for ontic fuzzy data (Grzegorzewski et al.,
2019; 2020a; 2020b; Romaniuk, 2019; Romaniuk and
Hryniewicz 2019; 2021), whereas the epistemic bootstrap
we propose is free from such problems under any
circumstances and regardless of the primary sample size.

4. Empirical bootstrap and its statistical
justification

Before applying our new bootstrap method in statistical
reasoning let us check whether it can approximate the
actual population distribution.

Let X1, . . . , Xn denote a sample of independent
and identically distributed (i.i.d.) random variables with
the cumulative distribution function (c.d.f.) F . The
Glivenko–Cantelli lemma proves that the empirical
distribution function (e.d.f.) ̂F based on X1, . . . , Xn

converges with probability 1 to F as n tends to infinity.
This means that the empirical distribution based solely on
the empirical results approaches the actual c.d.f. if the
sample size is large enough.

Let (x̃1, . . . , x̃n) denote a fuzzy perception of the
random sample and let (x∗

1j , . . . , x
∗
nj), where j =

1, . . . , B, be a collection of the bootstrap samples
obtained from the initial fuzzy sample (x̃1, . . . , x̃n)
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Fig. 2. Empirical vs. theoretical c.d.f. for the normal distribu-
tion and the epistemic bootstrap from F(N,U,U,1) per-
formed on a single α-cut, i.e., B = 1.
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Fig. 3. Empirical vs. theoretical c.d.f. for the exponential distri-
bution and the epistemic bootstrap from F(E,U,U,1) per-
formed on B = 10 α-cuts.

according to Algorithm 1.
Set ̂F ∗

j as the bootstrap counterpart of the e.d.f. ̂F
based on the j-th bootstrap sample (x∗

1j , . . . , x
∗
nj), where

̂F ∗
j (t) =

1

n

n
∑

i=1

�(−∞,x∗
ij)
(t).

Many simulation experiments were performed to
check if the e.d.f. ̂F ∗ estimates F well. Some exemplary
results are given in Figs. 2 and 3 showing both the
theoretical c.d.f. and the e.d.f. obtained from fuzzy
samples with the epistemic bootstrap. A comparison
pictured in Fig. 2 corresponds to data from the normal
distribution, while in Fig. 3 we illustrate results obtained
for the exponential distribution. In both cases, the sample
size n = 200 and all simulations were performed using
the R package.

Fuzzy samples x̃1, . . . , x̃n used in simulations
consist of trapezoidal fuzzy numbers of the form (1).
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Obviously, the primary reason for using trapezoidal
fuzzy numbers is numerical simplicity since to generate
x̃i ∈ F(R) one needs only four real numbers which
characterize the endpoints of its support [ai, di] and core
[bi, ci], respectively. However, this is not the only reason
why we use such fuzzy numbers. Trapezoidal fuzzy
numbers are not only easy to handle but they have a
natural interpretation (Ban et al., 2015) which usually
suffices in fuzzy modeling of uncertainty (Pedrycz, 1994).
Moreover, if the original fuzzy sample consists of
arbitrary fuzzy numbers, one often approximates them
by trapezoidal fuzzy numbers before further processing
(for a review of approximation algorithms satisfying
various requirements, we refer the reader to Ban et al.
(2015)). All this makes trapezoidal fuzzy numbers
standard tools in statistical simulation and many other
numerical computations.

Thus, to obtain a fuzzy number x̃i, we generated
ai ≤ bi ≤ ci ≤ di, for i = 1, . . . , n, according to the
following formulas:

ai = X − Sl − Cl, bi = X − Cl,

ci = X + Cr, di = X + Cr + Sr,

where X is a random variable corresponding to the
“true” population distribution, while Cl, Cr, Sl and Sr

are some random variables applied for modeling fuzzy
perception of the crisp input. These five random variables
were generated independently from various distributions
described in Table 1. For example, x̃i ∈ F(N,U,U,1) means
that X is simulated from the standard normal distribution,
while both random variables Cl and Cr are generated
from the uniform distribution on the interval (0, 0.6) and
both random variables Sl and Sr are simulated from
the uniform distribution on the interval (0, 0.8). The
last two types included in Table 1, i.e., F(β,Ucond,1)

and F(β,Ucond,2) are simulated in a more complex way
described in detail by Lubiano et al. (2017).

The same distributions for Cl, Cr (and Sl, Sr,
respectively) are used because in the non-parametric
setting we cannot assume additional knowledge about
some “asymmetric” tendency for X . If these distributions
are not the same, it leads to a permanent left- or right-hand
shift of X compared with its simulated fuzzy counterpart
x̃, and to a possible bias of the obtained estimator. In
such a case, we need additional assumptions about the
value of this shift to remove this bias, e.g., by adding
some weights in the averaging procedure. For a similar
approach concerning simulations of fuzzy variables, see,
e.g., the work of Lubiano et al. (2017), Romaniuk and
Hryniewicz (2019) or Grzegorzewski et al. (2020b).

Here we actually touch on the problem of a possible
bias in data. Generally, it is usually difficult to tell if
the available data are biased, especially if the data are
human-generated. Moreover, bias in data is a complex

Table 1. Simulation scenarios for fuzzy samples.

Type X Cl, Cr Sl, Sr

F(N,U,U,1) N(0,1) U(0,0.6) U(0,0.8)

F(N,U,U,2) N(0,2) U(0,1) U(0,2)

F(E,U,U,1) Exp(0.5) U(0,0.4) U(0,0.6)

F(E,U,U,2) Exp(1) U(0,0.6) U(0,1.2)

F(N,E,U) N(0,1) Exp(1) U(0,0.8)

F(Γ,U,U,1) Γ(1, 1) U(0,0.5) U(0,0.8)

F(Γ,U,U,2) Γ(2, 2) U(0,0.5) U(0,0.8)

F(Γ,E,E) Γ(2, 2) Exp(0.5) Exp(1)

F(W,E,E) Weibull (1, 1.5) Exp(2) Exp(2)

F(W,U,U) Weibull (1, 1.5) U(0,0.6) U(0,0.8)

F(β,Ucond,1) β(2, 2) U (conditional)

F(β,Ucond,2) β(4, 2) U (conditional)

phenomenon and there are various sources and types of
it including the bias called historical, the representation
bias, measurement bias, and so on (Suresh and Guttag,
2021). To prevent bias, one may try to make sure that
samples are representative and not convenient ones (when
in doubt, to use additional randomization), to use diverse
data sources if possible, etc. Anyway, identifying bias in
data is often difficult or sometimes even not tractable.

Figures 2 and 3 show that if the sample size is
large enough then, even if the bootstrap samples are
drawn using a single α-cut, our method provides quite a
satisfying approximation of the population distribution.

Although the figures shown in this section illustrate
a very limited situation (two distributions only), the other
experiments also confirmed the desired behavior of the
e.d.f. based on the epistemic bootstrap that if the epistemic
fuzzy sample size is large enough then ̂F ∗ tends to the
population c.d.f. F .

5. Point estimation based on the epistemic
bootstrap

Some simulation results of point estimation with the
epistemic bootstrap were published by Grzegorzewski
and Romaniuk (2021). Although different simulation
scenarios (like those given in Table 1), sample sizes
n, and the numbers B of the α-cuts considered were
discussed, the results confirmed that estimators were
consistent. An interesting and somewhat surprising result
is that increasing B does not substantially improve the
estimation quality. Unfortunately, it turned out that the
standard error of the estimators considered was relatively
large. This can be explained by the overlap of the two
sources of variability: the first one inherently connected
with randomness, and the second, caused by imprecision.
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Hence the resulting standard error of an estimator actually
measures the overall effect instead of focusing on that
related to randomness. Thus, the immediate conclusion
was to enrich estimation with a variance reduction method
or to learn how to exclude the diminished effects of data
imprecision.

Following this idea, we performed an extensive
numerical experiment to examine several improvements
of our standard epistemic bootstrap (further on called
simple bootstrap) with various refinements including the
so-called antithetic sampling, the ranked set sampling
(RSS) (Wolfe, 2004), usual jackknife and the jackknife
combined with the antithetic approach. In the
above-mentioned antithetic method, two random numbers
are generated based on the “the same” draw αij for
x̃i, the first one from the αij-cut and the second one
from its complement, i.e., the 1 − αij -cut, respectively
(see Algorithm 2). This idea resembles in some way
the antithetic approach which is aimed at reducing the
variance of the MC methods (Kroese et al., 2011).

We considered different point estimators and various
population distributions as described in Table 1. Some
simulation results can be found in Tables 2–5. To make
the comparison easier, the best estimates in each category
are given in boldface.

We were mostly interested in estimating the
population mean and variance. We estimated the mean
with the average X , while to estimate the variance we
used both the well-known sample variance S2 as well as
its corrected version W of the form

varW =
1
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which, in some way, separates the within- and
between-group variations.

Each experiment in the simulation study was
repeated m = 1000 times. The estimated standard error
(SE) and the mean squared error (MSE) of each estimator
are calculated from the formulas
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MSE(θ̂) =
1
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, (5)

where the first subscript in θ̂∗ib stands for the i-th the
repetition of the experiment while the second subscript
indicates the b-th bootstrap sample.

Algorithm 2. Antithethic epistemic fuzzy bootstrap.

Require: Initial fuzzy sample x̃1, . . . , x̃n ∈ F(R).
Ensure: B bootstrap samples.

for j = 1 to B do
for i = 1 to n do

Generate randomly a real number αij from the
uniform distribution on the unit interval [0, 1].
Generate randomly two real numbers: x

′
ij from

the uniform distribution on the α-cut (x̃i)αij , and
x

′′
ij from the uniform distribution on the 1− α-cut

(x̃i)1−αij .
Let x∗

ij =
1
2

(

x
′
ij + x

′′
ij

)

.
end for

end for
Bootstrap samples x∗

1j , . . . , x
∗
nj , where j = 1, . . . , B.

The variance estimator for the RSS was obtained
using function varRSS (with Montip) from the
RSSampling library (Sevinc et al., 2019). Therefore, to
compare properly results obtained for the RSS with other
methods instead of (4), the standard error was estimated
from the formula

AcSE(θ̂) =

√
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where θ̂∗i denotes the bootstrap estimator obtained in
the i-th experiment. Formula (6) was also applied for
the jackknife method and the estimator W including a
correction for the variance.

Let us discuss the results of the simulation study.
We shall start from the comparison of point estimators
based on the bootstrap methods, i.e., the simple epistemic
bootstrap, the antithetic approach, and the RSS-driven
method.

Although the estimates obtained with these three
methods usually do not differ significantly, some
differences can be noted for the dispersion estimators,
especially for the RSS-driven approach. Here one should
keep in mind that this method is more computationally
demanding. Thus, it appears that the antithetic
approach might be recommended especially if we have
computational constraints. Moreover, W generally leads
to lower values than S2 when estimating the variance.
Actually, it is not surprising since the observed dispersion
stems both from randomness related to the population
distribution and the imprecise perception. Hence this
lowering effect of W looks promising.

More visible differences between estimators reveal
their standard errors. Assuming SE as the quality
criterion, the antithetic approach seems to be favored.
Indeed, if we compare the simple bootstrap with its
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Table 2. Comparison of the estimators for F(N,U,U,1).

Type simple antithetic RSS jack+std jack+anti

X 0.0022 0.0019 0.0018 0.0014 0.0013
S 1.0307 1.0069 0.9871 1.0620 1.0381
S2 1.1230 1.0719 1.0196 1.1221 1.0719
W 1.0246 1.0240 NA NA NA

SE(X) 0.0959 0.0669 0.0686 0.0965 0.0670
SE(S) 0.0984 0.0698 NA 0.1017 0.0719
SE(S2) 0.2035 0.1407 NA 0.2030 0.1398
AcSE(S2) 0.4888 0.4867 0.4392 0.4898 0.4869
AcSE(W ) 0.4886 0.4866 NA NA NA

MSE(X) 0.0949 0.0950 0.0948 0.0967 0.0950
MSE(S) 0.0505 0.0517 0.0447 0.0568 0.0573
MSE(S2) 0.2470 0.2355 0.1911 0.2435 0.2346
MSE(W ) 0.2324 0.2303 NA NA NA

Table 3. Comparison of the estimators for F(N,U,U,2).

Type simple antithetic RSS jack+std jack+anti

X −0.0017 −0.0032 −0.0020 −0.0017 −0.0032
S 2.0757 2.0301 1.9879 2.1415 2.0913
S2 4.5395 4.3401 4.1182 4.5509 4.3334
W 4.1346 4.1432 NA NA NA

SE(X) 0.1944 0.1375 0.1399 0.1956 0.1362
SE(S) 0.1993 0.1407 NA 0.2102 0.1480
SE(S2) 0.8314 0.5708 NA 0.8458 0.5813
AcSE(S2) 1.9376 1.9294 1.7239 1.9390 1.9200
AcSE(W ) 1.9364 1.9301 NA NA NA

MSE(X) 0.4087 0.4020 0.4028 0.4061 0.4002
MSE(S) 0.2067 0.2067 0.1763 0.2358 0.2319
MSE(S2) 4.0499 3.7611 3.0257 4.0142 3.7923
MSE(W ) 3.7596 3.6616 NA NA NA

antithetic counterpart, then SE can be reduced even by
about 20–30%. Lower values of AcSE(S2) were obtained
for the RSS approach. The differences obtained for
AcSE(W ) are not significant but the antithetic approach
is still favored.

Quite similar conclusions result from the comparison
of the mean squared errors. Differences in MSE between
estimators of the mean are not significant, unlike the case
of measures of dispersion, where the MSE can be reduced
even by about 20–30%. Considering MSE as a quality
criterion, the RSS-driven approach seems to be the best,
but if we are interested in smaller computational costs,
rather the antithetic approach is recommended.

If, instead of the bootstrap, the resampling methods
related to the jackknife are used, the general conclusions
are nearly unchanged. The jackknife combined with the
simple bootstrap in some cases can slightly lower SE and
MSE or produce estimates closer to original distribution

parameters. However, this does not happen in general.
Better results are achieved if the jackknife is used together
with the antithetic approach, similar to the case of the
above-mentioned bootstrap methods.

To sum up, taking into account various statistical
properties as well as the computational costs, the
antithetic approach (combined with the bootstrap or
jackknife method) should be recommended.

We also numerically investigated the similar
examples with bigger initial samples (i.e., n = 100). In
general, the obtained differences between estimators were
lower but the conclusions remained unchanged.

In our numerical study we also compared the quality
of the estimators considered with the results provided by
the fuzzy version of the classical EM algorithm, known
as FEM (Denœux, 2011)) and available in EM.Fuzzy
package (Parchami, 2018) implemented in R. In this study,
only small (n = 10) samples were considered because
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Table 4. Comparison of the estimators for F(N,E,U).

Type simple antithetic RSS jack+std jack+anti

X −0.0074 −0.0120 −0.0114 −0.0133 −0.0095
S 1.4164 1.3087 1.3889 1.4694 1.3493
S2 2.1746 1.8514 2.0144 2.1697 1.8253
W 1.5125 1.5220 NA NA NA

SE(X) 0.2467 0.1730 0.1502 0.2441 0.1737
SE(S) 0.2639 0.1982 NA 0.2857 0.2118
SE(S2) 0.7897 0.5514 NA 0.7948 0.5423
AcSE(S2) 0.9868 0.9148 0.8762 0.9770 0.8744
AcSE(W ) 0.8583 0.8516 NA NA NA

MSE(X) 0.1514 0.1494 0.1442 0.1497 0.1446
MSE(S) 0.2582 0.1827 0.2389 0.3222 0.2201
MSE(S2) 2.1899 1.4426 1.8220 2.2758 1.4007
MSE(W ) 0.8831 0.9071 NA NA NA

Table 5. Comparison of the estimators for F(β,Ucond,1).

Type simple antithetic RSS jack+std jack+anti

X 0.4976 0.4977 0.4977 0.4977 0.4974
S 0.2227 0.2185 0.2133 0.2282 0.2231
S2 0.0515 0.0495 0.0469 0.0517 0.0494
W 0.0475 0.0476 NA NA NA

SE(X) 0.0193 0.0133 0.0138 0.0191 0.0131
SE(S) 0.0183 0.0130 NA 0.0187 0.0131
SE(S2) 0.0081 0.0056 NA 0.0081 0.0056
AcSE(S2) 0.0179 0.0178 0.0160 0.0178 0.0179
AcSE(W ) 0.0180 0.0179 NA NA NA

MSE(X) 0.0048 0.0048 0.0048 0.0048 0.0048
MSE(S) 0.0015 0.0016 0.0014 0.0015 0.0015
MSE(S2) 0.0003 0.0003 0.0002 0.0003 0.0003
MSE(W ) 0.0003 0.0003 NA NA NA

EM.Fuzzy package is intended for such samples. As
in previous experiments we set B = 10 and m =
1000. The default accuracy ε = 0.001 of the FEM
algorithm was applied (Parchami, 2018). In general, our
resampling methods provided better results than the FEM.
Sometimes the FEM produced strange outputs, e.g., the
MSE of the variance estimator in F(N,U,U,2) was more
than 10 times greater than the MSE of estimators based
on our resampling methods. Moreover, since the FEM
algorithm is a parametric method, it requires knowledge
of the population distribution which is not that common
in the case of fuzzy data. In this context methods
suggested in this paper have an important advantage of
their distribution-free nature.

6. Epistemic bootstrap in hypothesis testing

The bootstrap methods considered in this contribution
were also applied in hypotheses testing based on epistemic

fuzzy data.

SupposeX1, . . . , Xn are i.i.d. random variables from
the normal distribution N(μ, σ) with the unknown mean
μ and known standard deviation σ. Let us consider the
null hypothesis H0 : μ ≤ μ0 against the alternative
H1 : μ > μ0 on the significance level 0.05. To
solve the given problem, we used various resampling
methods (including the simple epistemic bootstrap and
its modification, i.e., the antithetic approach, as well
as the usual jackknife and jackknife combined with the
antithetic approach) followed by the classical one-sided
Z-test for the mean. This method was compared with
two well-known approaches: the fuzzy test based on
fuzzy confidence intervals (Grzegorzewski, 2000) and the
test utilizing the inner and outer approximations of the
confidence interval (Couso and Sánchez, 2011). Finally,
the power analysis of all resampling methods considered
is given.
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Fig. 4. Simulated power curves for the small sample size n =
10 and fuzzy data from F(N,U,U,1).

The test proposed by Grzegorzewski (2000) does
not produce a binary answer (i.e., to reject or accept
H0, as we are used to) but it provides a degree of
rejection and acceptance of the null hypothesis under
study. A method to communicate and interpret results
of a fuzzy test in a user-friendly manner is proposed
by Grzegorzewski and Hryniewicz (2002). If the crisp
decision is required, one has to combine this fuzzy test
with an appropriate defuzzification method, like those
indicated by Grzegorzewski (2001). In our simulation
study two defuzzification operators were considered: the
maximum value, denoted further on as “max”, and the
randomized operator, denoted as “rand.”

The testing procedure based on the double intervals
(Couso and Sánchez, 2011) gives the possibility of
acceptance of the null hypothesis (which is related to the
outer region) and the possibility of its rejection (based
on the inner region), which results in two power curves
(denoted further as “outReg” and “innReg,” respectively).
It is worth noting that the applied defuzzification rule
mimics the “rand” operator (one can imagine this as
an asymmetric coin toss to receive a decision when the
probability of rejecting H0 is equal to its possibility).

Some results of the extended simulation study are
given in Table 6 and Fig. 4 (for the small n = 10 sample
size) and in Fig. 5 (for the moderaten = 100 sample size).
Each numerical experiment was repeated 10000 times.

Firstly, we noticed that the power curves obtained
for the applied resampling methods did not differ
significantly. One can see in Table 6 that the estimated
sizes of the corresponding four tests are close to the
set significance level (i.e., 0.05), as well as the power
for some values of the shift in mean are very similar.
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Fig. 5. Power curves for the moderate sample size n = 100 and
fuzzy data from F(N,U,U,1).

Therefore, to simplify the plots, only the results for the
simple bootstrap approach are presented in Figs. 4 and 5
(depicted in black line and circles).

Secondly, it can be seen immediately that the power
of the test based on the simple epistemic bootstrap
dominates significantly over power curves corresponding
to the Grzegorzewski test (depicted by rectangles for the
“max” operator and by bullets for the “rand” rule) and the
test related to the outer approximation of the confidence
interval (depicted by triangles point-up). One might think
that the test based on the inner approximation of the
confidence interval (depicted by diamonds) is the winner
due to the fact that its graph is located well above the
others. However, both Table 6 and Figs. 4–5 show that
this effect is ostensible since that this test does not hold the
assumed significance level (it is bigger than 0.4 for n = 10
and 0.97 for n = 100 whereas the assumed significance
level is equal to 0.05). Therefore, the test based on the
inner approximation of the confidence interval is simply
so conservative that it makes it practically useless.

To sum up, numerical experiments show that the
proposed bootstrap for epistemic fuzzy data followed by
some classical tests provides better results than fuzzy
tests.

7. Final remarks, conclusions and further
research

Fuzzy data appear in many real-life situations to
model imprecision, vagueness, and some other data
weakness which makes standard modeling difficult or
even impossible. When fuzzy numbers are used
for modeling imprecise perceptions of the real-valued
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Table 6. Comparison of power values for n = 10 and fuzzy data from F(N,U,U,1).

Shift 0 0.1 0.2 0.3 0.4 0.5
simple 0.0537 0.0962 0.1610 0.2507 0.3549 0.4800
antithetic 0.0555 0.0978 0.1612 0.2522 0.3585 0.4810
jackknife+std 0.0546 0.0965 0.1592 0.2490 0.3576 0.4801
jackknife+anti 0.0542 0.0954 0.1592 0.2503 0.3568 0.4785
max 0.0014 0.0041 0.0082 0.0200 0.0377 0.0711
rand 0.0023 0.0050 0.0109 0.0264 0.0466 0.0828
outReg 0.0022 0.0065 0.0101 0.0290 0.0454 0.0825
innReg 0.4268 0.5393 0.6543 0.7491 0.8295 0.8967

observations, we deal with the so-called epistemic fuzzy
data. Since such data often cause problems in statistical
reasoning, a new bootstrap technique was suggested.

Simulation results show that the proposed bootstrap
method may be useful in different fields of statistical
inference. Moreover, besides the simple epistemic
bootstrap, we have developed several of its refinements
aimed at improving certain properties, like the variance
reduction. In addition to theoretical investigations and
discussion of the results, comments and tips are provided
that should prove useful to practitioners.

The main goal of this contribution is to suggests a
general methodology of the epistemic bootstrap and to
indicate some of its applications in statistical reasoning
with fuzzy data. Obviously, this contribution does not
end discussion on the epistemic bootstrap. In particular,
it would be interesting to find new application areas for
the introduced methodology and to deal with the problems
that may arise there.

In further considerations, one may ask for theoretical
justifications of the proposed approach, like conditions
to be met to ensure the consistency of the particular
bootstrap procedures. When considering statistical
consistency in the fuzzy environment, one should realize
that this problem does not only concern the proposed
methodology but is primarily dependent on the data
structure. Here we mean both the shape of membership
functions describing fuzzy data and their relative location.
To make it easier to imagine, assume that our fuzzy
sample consists of rectangular fuzzy numbers that are
isomorphic with interval data. Then both computability
and statistical properties of the procedures considered
depend on whether available intervals are wide (“puffy”)
or narrow (“skinny”) as well as if these intervals are
disjoint or they have a few intersections only or have
arbitrarily many intersections. It is also important if they
are of the same precision or not, if they are nesting or not,
etc. For a list of possible cases related to imprecise data
and their taxonomy, see the works of Ferson et al. (2007)
or Nguyen et al. (2012).

Returning to consistency, consider, e.g., a sample

from the beta distribution and suppose that all imprecise
observations are modeled as identical unit intervals. Then
the empirical distribution obtained with the epistemic
bootstrap, obviously, cannot be a consistent estimator of
the actual distribution function. On the other hand, if the
sample consists of intervals having no intersections, then
the epistemic bootstrap provides the consistent estimator.
Naturally, both situations are in some sense extreme and
hence the conclusions are trivial, whereas in practical
situations a more subtle analysis is necessary.

When moving from interval data to non-rectangular
fuzzy numbers, we may distinguish much more possible
situations, e.g., for some α-cuts we may have no
intersections at all while they may appear for other α-cuts.
Therefore, it seems that a comprehensive analysis of all
possible fuzzy data structures in the context of resolving
the issue would require a separate article, if such a
resolution was possible at all. Even if we restrict our
considerations to main data structures, this would require
a separate discussion for each type of inference. Here,
some general techniques for proving the consistency of the
bootstrap given by Shao and Tu (1995) might be helpful,
as well as the results developed for generalized random
elements by Giné and Zinn (1990) or Gil et al. (2006).

Anyway, wherever we use bootstrap, we should
always remember that this technique is not a recipe for
all possible problems. Indeed, “bootstrap methods are
intended to help avoid tedious calculations based on
questionable assumptions, and this they do. But they
cannot replace clear critical thought about the problem,
appropriate design of the investigation and data analysis,
and incisive presentation of conclusions” (Davison and
Hinkley, 1997).
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S. and Gil, M.A. (2016). Hypothesis testing for means in
connection with fuzzy rating scale-based data: Algorithms
and applications, European Journal of Operational Re-
search 251(3): 918–929.

Lubiano, M.A., Salas, A., Carleos, C., de la Rosa de Sáa, S. and
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