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A method is proposed which aims at reducing the number of LUTs in the circuits of FPGA-based Mealy finite state
machines (FSMs) with transformation of collections of outputs into state codes. The reduction is achieved due to the use
of two-component state codes. Such an approach allows reducing the number of state variables compared with FSMs
based on extended codes. There are exactly three levels of LUTs in the resulting FSM circuit. Each partial function is
represented by a single-LUT circuit. The proposed method is illustrated with an example of synthesis. The experiments
were conducted using standard benchmarks. They show that the proposed method produces FSM circuits with significantly
smaller LUT counts compared with those produced by other investigated methods (Auto and One-hot of Vivado, JEDI, and
transformation of output collection codes into extended state codes). The LUT count is decreased by, on average, from
9.86% to 59.64%. The improvement of the LUT count is accompanied by a slightly improved performance. The maximum
operating frequency is increased, on average, from 2.74% to 12.93%. The advantages of the proposed method become more
pronounced with increasing values of FSM inputs and state variables.
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1. Introduction

A lot of various sequential blocks can be found in modern
digital systems (Marwedel, 2018; Sklyarov et al., 2014;
Borowczak and Vemuri, 2013). Very often, these blocks
are represented using the model of a Mealy finite state
machine (FSM) (Baranov, 1994; Micheli, 1994). In
this paper, we discuss a case when Mealy FSM circuits
are implemented using look-up table (LUT) elements of
field-programmable gate arrays (FPGAs) (Altera, 2021;
Xilinx, 2021). Nowadays, a huge number is of various
digital systems are implemented on the base of FPGAs
(Ruiz-Rosero et al., 2019). Due to that, the development
of effective implementation methods is of great scientific
and practical interest.

One of the central problems associated with
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LUT-based FSM synthesis is the issue of reducing the
chip area occupied by an FSM circuit (Kubica and
Kania, 2017; Barkalov et al., 2018). In scientific papers,
the chip area of LUT-based circuits is estimated as
the LUT count (Islam et al., 2020). As a rule, area
reduction also reduces power consumption (Barkalov
et al., 2021b). At the same time, it is important that
area reduction leads to the smallest possible increase in
the delay of the signal propagation time (Barkalov and
Barkalov Jr., 2005; Maxfield, 2008; Sklyarov et al., 2014;
Tiwari and Tomko, 2004). In this paper, we propose a
method of LUT count reduction which does not reduce
the maximum operating frequency. We discuss a case
where an FPGA-based FSM circuit is implemented using
slices consisting of LUTs, programmable flip-flops and
multiplexers (Trimberg, 2015; Machado and Cortadella,
2020).

mailto:{a.barkalov, l.titarenko}@imei.uz.zgora.pl
mailto:m.mazurkiewicz@issi.uz.zgora.pl


480 A. Barkalov et al.

To be a flexible design tool, modern LUTs have
a very limited number of inputs (Altera, 2021; Atmel,
2021; Xilinx, 2021). However, this flexibility also has
a gloomy side, namely, the need for decomposition of
functions representing an FSM logic circuit (Scholl, 2001;
Solovjev and Czyzy, 1999). The circuit based on the
functional decomposition has a lot of logic levels and
very complex systems of spaghetti-type interconnections
(Barkalov et al., 2020a). Accordingly, it is very important
to develop FSM design methods with a minimum negative
impact of a limited number of LUT inputs. This
can be done using methods of structural decomposition
(Barkalov et al., 2021b; 2021a).

The main contribution of this paper is a novel method
of reducing LUT counts in logic circuits of FPGA-based
Mealy FSMs. The method is based on a transformation
of collections of FSM outputs into two-component state
codes proposed in this paper. It can be viewed as an
improvement of the approach of Barkalov et al. (2020a),
where the collections of outputs are transformed into
extended state codes. This transformation requires a
special block consuming some chip resources. The
proposed method is based on creating a partition of states
such that a partial function for each block is represented
by a single-LUT circuit (Barkalov, et al., 2018; 2020b).
The main difference between our method and the known
FSM synthesis techniques is the development of a new
approach for representing state codes.

The experiments conducted using standard
benchmarks show that the proposed method allows
improving LUT counts in Mealy FSM circuits compared
with the circuits produced by other investigated methods.
Two-component state codes have practically the same
number of state variables as maximum binary state codes.
This leads to a decrease in the number of feedback signals
compared with equivalent FSMs based on extended state
codes. Due to that, our approach leads to a minor increase
in the FSM performance.

The rest of the paper is organized as follows.
Section 2 includes the basic information connected with
LUT-based design of Mealy FSM circuits. A brief
analysis of the related works is provided in Section 3.
Section 4 is a central part of the paper, where the proposed
method is discussed. An example of synthesis is shown in
Section 5. Section 6 includes results of experiments with
standard benchmarks. The paper is ended with a short
conclusion.

2. Background of LUT-based FSMs

A Mealy FSM is represented by a vector having six
components. These components include: (1) a set of
inputs X = {x1, . . . , xL}, (2) a set of outputs Y =
{y1, . . . , yN}, (3) a set of states A = {a1, . . . , aM}, (4)
a function of transitions, (5) a function of output, (6) an
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Fig. 1. State transition graph of Mealy FSM Ao.

initial state a1 ∈ A. An FSM can be defined using a lot
of tools. For example, it can be represented with state
transition tables (Micheli, 1994; Minns and Elliot, 2008),
binary decision diagrams (Kubica et al., 2017; 2019),
and-inverter graphs (Brayton and Mishchenko, 2010), or
graph schemes of algorithms (Baranov, 2008). In this
article, we use state transition graphs (STGs) to represent
Mealy FSMs. An example of the STG representing a
Mealy FSM Ao is shown in Fig. 1.

The FSM states are represented by the nodes of the
STG. For example, there are M = 8 states in the FSM
Ao. The initial state a1 ∈ A is clearly highlighted on the
STG. The arcs of the STG represent interstate transitions.
There are H = 15 arcs in the discussed example. An
arc is directed from a current state am ∈ A to a state
of transition as ∈ A. The h-th arc is marked with a
two-component pair. The first component is an input
signal Xh causing the corresponding transition. An input
signal Xh is a conjunction of some inputs xl ∈ X (or their
compliments). The second component is a collection of
outputs (CO) Yh ⊆ Y generated during the h-th transition.
The outputs of a particular FSM are combined into Q
different COs.

The analysis of the STG (Fig. 1) gives the following
sets: X = {x1, x2, x3}, Y = {y1, . . . , y6}, and A =
{a1, . . . , a8}. Thus, we have L = 3, N = 6, and M = 8.

To design an FSM circuit starting from an STG, it is
necessary to transform the STG into systems of Boolean
functions (SBFs) representing the circuit. To get these
SBFs, we should execute state assignment. During this
step, states am ⊆ A are represented by binary codes
K(am) having R bits. The minimum value of R is
determined as

R = �log2 M�. (1)

The formula (1) determines the so-called maximum
binary state codes (Sutter et al., 2002; Das and
Panchanathan, 2018).

The r-th state code bit corresponds to a variable
Tr ⊆ T , where T = {T1, . . . , TR} is a set of state
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variables. A special register, RG, keeps state codes. There
are R flip-flops in the RG. Each flip-flop has inputs D
(informational inputs), Start and Clock. The pulse Start
loads the code K(a1) of the initial state into the RG
(Skliarova et al., 2012). Each transition is reduced to
replacing the RG contents. A transition from am ∈ A
into as ∈ A is associated with the replacement of K(am)
by K(as). This can be done using the synchronization
pulse Clock and input memory functions (IMFs) creating
the set Φ = {D1, . . . , DR}.

The FSM logic circuit is represented by the following
SBFs:

Φ = Φ(T,X), (2)

Y = Y (T,X). (3)

The SBF (2) represents the function of transitions, the
SBF (3) is the function of output. The systems (2)–(3)
determine the structural diagram of the P Mealy FSM
shown in Fig. 2.

There are two blocks in the P Mealy FSM. The block
of functions (BF) implements the SBFs (2) and (3). The
register, RG, keeps state codes. The RG is controlled by
the pulses Start and Clock. In this paper, we discuss a case
where configurable logic blocks (CLBs) of the FPGA are
used for implementing an FSM circuit. To design a circuit,
we use CLBs including LUTs, programmable flip-flops,
and multiplexers. The flip-flops form a distributed state
code register RG (Sklyarov et al., 2014).

An LUT has SL inputs and a single output (Xilinx,
2021). Thus, a LUT can implement an arbitrary Boolean
function having up to SL arguments. The value of this
function can be registered using the internal flip-flop. The
CLBs form slices. The largest manufacturer of FPGA
chips is the Xilinx company (Xilinx, 2021). Because
of this, our current research focuses on the Virtex-7
family by Xilinx (Xilinx, 2021). A slice of Virtex-7
(Xilinx, 2021) includes four 6-LUTs, eight flip-flops and
a lot of multiplexers. Three of these multiplexers are used
for creating either two 7-LUTs or a single 8-LUT. Such
an approach allows getting 7-LUTs and 8-LUT as fast as
the initial 6-LUTs (Chapman, 2014). If it is necessary
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Fig. 2. Structural diagram of the P Mealy FSM.

to create a LUT having more than eight inputs, then
resources of several CLBs should be used.

For average FSMs (Baranov, 1994), the SBFs (2)
and (3) can include around 50–70 literals (Machado and
Cortadella, 2020). Because a LUT has not enough
inputs, it is necessary to transform these SBFs. The
transformation is associated with using various methods
of functional decomposition (FD) (Kubica et al., 2021).
Using FD-based methods results in obtaining FSM
circuits with a lot of logic levels and “spaghetti-type”
interconnections (Barkalov et al., 2021b). In this case,
FSM circuits are rather slow because several CLBs are
used to implement some of the functions (2) and (3)
(Sasao and Mishchenko, 2009).

The LUT-based synthesis assumes solving some
optimization problems (Kubica and Kania, 2017). It
is highly desirable that the FSM circuit consists of the
minimum possible number of LUTs, has the maximum
operating frequency and provides the minimum power
consumption. As the level of integration increases, the
influence of the interconnect system on the characteristics
of the circuit increases. As mentioned by Feng et al.
(2018), now the interconnection delay dominates the logic
delay. Also, it is known that the interconnections are
responsible for consuming up to 70% of power (Amano,
2018).

To optimize the system of interconnections, it
is necessary to minimize the number of literals in
sum-of-products (SOPs) of functions representing an
FSM circuit (Barkalov et al., 2021b). This can be done
using various methods of state assignment (Kubica et al.,
2021) or structural decomposition (Barkalov et al., 2020c;
2021b). A method proposed in this paper belongs to the
second group.

3. Related work

Structural decomposition (SD) is associated with a
transformation of the structural diagram (Fig. 2)
(Barkalov et al., 2021b; 2021a; Senhadji-Navaro et al.,
2015). This means that the P FSM is represented by some
composition of several interrelated logic blocks (Barkalov
et al., 2021a). Each block has its unique system of input
and output variables. The outputs of blocks are inputs
of other blocks. Each of these blocks is represented by
an SOP having significantly fewer literals than SOPs of
SBFs (2)–(3). As shown by Barkalov et al. (2021b), SD
produces FSM circuits with fewer LUT counts compared
with equivalent P FSMs.

One of SD-based methods is a transformation of
collections of outputs (COs) Yq ⊆ Y into FSM states
(Barkalov et al., 2020c; 2021b). This approach leads to
the so-called PY Y FSMs (Barkalov et al., 2020c). The
subscript “Y ” means that COs are transformed into states.
The capital “Y ” means that COs are transformed into
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Table 1. State transition table of FSM Ao.
am as Xh Yh h Yq Δj

a1

a3 x1 y1y2 1 Y2 Δ3

a5 x̄1x2 y3 2 Y3 Δ5

a7 x̄1x̄2 y6 3 Y4 Δ7

a2 a4 1 y4 4 Y5 Δ8

a3
a7 x1 y6 5 Y4 Δ7

a2 x̄1 y1y2 6 Y2 Δ2

a4 a6 1 y6 7 Y4 Δ6

a5

a3 x1 y1y2 8 Y2 Δ3

a2 x̄1x2 y3y5 9 Y6 Δ10

a8 x̄1x̄2 y4 10 Y5 Δ9

a6 a8 1 y3y5 11 Y6 Δ10

a7
a1 x3 – 12 Y1 Δ1

a3 x̄3 y3 13 Y3 Δ4

a8
a7 x1 y6 14 Y4 Δ7

a6 x̄1 y3y4 15 Y7 Δ12

outputs yn ∈ Y .
To explain this method, we transform the STG

(Fig. 1) into a state transition table (STT). An STT is a list
of transitions 〈am, as〉 for a given STG (Micheli, 1994).
An STT has the following columns (Micheli, 1994): am,
as, Xh, Yh, h. Accordingly, each row shows (i) the current
state am from which the h-th arc comes out, (ii) the state
of transition as which the h-th arc enters, (iii) the input
signal Xh written above the arc, (iv) the CO Yh ⊆ Y
written above the arc. There are H rows in an STT. For
example, the STT of FSM Ao (Table 1) has H = 15 rows.

We add two additional columns in Table 1. We will
explain their meaning a bit later.

There are Q = 7 different COs in Table 1. They
are the following: Y1 = ∅, Y2 = {y1, y2}, Y3 = {y3},
Y4 = {y6}, Y5 = {y4}, Y6 = {y3, y5} and Y7 = {y2, y4}.
The symbols Yq for COs are shown in the column Yq .

As follows from row 12, if Yh = Y1, then as = a1.
But COs Yq ⊆ Y do not always uniquely identify the
states of transition. For example, the CO Y2 is generated
during the transitions into states a2 (row 6) and a3 (row 1).
Therefore, an additional identifier is needed to select a
specific state of transition based on a CO Yq . These
identifiers form a set I = {I1, . . . , IG}.

To find the value of G, we should create sets A(Yq).
A set A(Yq) ⊆ A includes states of transition for the arcs
marked by Yq ⊆ Y . There are Mq elements in the set
A(Yq) (q ∈ {1, . . . , Q}). The value of G is determined as

G = max(M1, . . . ,MQ). (4)

For FSM Ao, we have the sets A(Y1) = {a1},
A(Y2) = {a2, a3}, A(Y3) = {a3, a5}, A(Y4) = {a6, a7},
A(Y5) = {a4, a8}, A(Y6) = {a2, a8}, and A(Y7) =
{a6}. Using (4) gives G = 2 and I = {I1, I2}. A
pair Δj = 〈Yq, Ig〉 determines a state as ∈ A. There

are J = 12 pairs shown in the column Δj of Table 1. All
these pairs are shown it Table 2.

Table 2 uses information from Table 1. The
identifiers are distributed in the following order: the
smaller the state number for a given pair, the smaller the
number of the identifier.

To design the circuit of PY Y FSM, it is necessary
to encode states, COs and identifiers (Barkalov et al.,
2020c). Each CO Yq ⊆ Y is encoded by binary code
K(Yq) having

RY = �log2 Q� (5)

bits. Identifier codes K(Ig) have RI bits, where

RI = �log2 G�. (6)

The variables zr ∈ Z encode the COs, where |Z| = RY .
The variables vr ∈ V encode the identifiers, where |V | =
RI .

The following SBFs represent a PY Y FSM:

Z = Z(T,X), (7)

V = V (T,X), (8)

Y = Y (Z), (9)

Φ = Φ(Z, V ). (10)

The structural diagram of PY Y FSM is shown in Fig. 3.
In the PY Y FSM, the block of functions (BF)

implements the SBFs (7) and (8). The block of
outputs (BO) implements the SBF (9), the block of input
memory functions (BIMF) implements the SBF (10). In
LUT-based PY Y FSMs, the RG is distributed among
LUTs of the BIMF.

Denote by NA(fi) the number of arguments for a
function fi. If the condition

NA(fi) ≤ SL (11)

holds for functions fi ∈ Z ∪V ∪Φ, then a circuit of PY Y
FSM includes fewer LUTs compared with an equivalentP
FSM (Barkalov et al., 2020c). If this condition is violated,
then either the BF or BIMF or both are represented by
multi-level LUT-based circuits.

BF

BO

Start
Clock

BIMF

Y

Φ RG
V
Z

X

T

Fig. 3. Structural diagram of PY Y Mealy FSM.



Improving the LUT count for Mealy FSMs with transformation of output collections 483

Table 2. Table of transformations of COs for PY Y FSM Ao.
Yq Y1 Y2 Y3 Y4 Y5 Y6 Y7

am a1 a2 a3 a3 a5 a6 a7 a4 a8 a2 a8 a6
Ig I1 I1 I2 I1 I2 I1 I2 I1 I2 I1 I2 I1
Δj Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 Δ8 Δ9 Δ10 Δ11 Δ12

If (11) is violated, then the number of logic levels can
be reduced using the approach of Barkalov et al. (2020a).
It is based on extended state codes (ESCs).

To use this approach, it is necessary to form a
partition ΠA = {A1, . . . , AK} for the set A. Each class
Ak ∈ ΠA determines sets Xk ⊆ X , Zk ⊆ Z and V k ⊆
V . The set Xk includes Lk inputs xl ∈ X determining
transitions from states am ∈ Ak. The sets Zk ⊆ Z and
V k ⊆ V include additional variables generated during the
transitions from states am ∈ Ak.

If |Ak| = Mk, then Rk variables encode states am ∈
Ak by codes C(am), where

Rk = �log2(Mk + 1)�. (12)

In the work of Barkalov et al. (2018), an algorithm is
proposed which allows finding the partition ΠA with the
minimum number of classes, K . The following condition
holds for each class Ak ∈ ΠA:

Rk + Lk ≤ SL. (13)

Codes K(am) are represented as concatenations of
K(Yq) and K(Ig). These codes are transformed into
extended state codes. States am ∈ Ak are encoded by
state variables τr ∈ T k, where |T k| = Rk. There are RE

variables in ESCs:

RE = R1 +R2 + · · ·+RK . (14)

These variables form a set T = T 1 ∪ T 2 ∪ · · · ∪ TK .
In the work of Barkalov et al. (2020a), a structural

diagram of PY EY Mealy FSM (Fig. 4) is proposed. It
consists of K blocks of partial functions (BPF), a BF, a
BO and a block of ESC (BESC).

A block BPFk implements SBFs,

Zk = Zk(T k, Xk), (15)

V k = V k(T k, Xk). (16)

The BF implements functions,

Z = Z(Z1, . . . , ZK), (17)

V = V (V 1, . . . , V K). (18)

The BESC implements an SBF,

T = T (Z, V ). (19)

The experimental results of Barkalov et al. (2020a)
show that PY EY FSM circuits include, on average, 8.84%

more LUTs than the equivalent PY Y FSM. But the
approach (Barkalov et al., 2020a) allows increasing the
maximum operating frequency by 12.57%, on average. In
consequence, compared with PY Y FSM, the approach of
Barkalov et al. (2020a) has both strong and weak sides.

In our opinion, the increase in the LUT count is due
to two factors. Firstly, because of the relation R � RE ,
the BESC consist of a significantly larger number of LUTs
than the BIMF. Secondly, due to (12), each class Ak ∈ ΠA

has less than the maximum possible number of states.
This number is equal to 2Rk states. If each class included
2Rk states, then the number of classes (K) could be
reduced. In turn, this would lead to a decrease in the
number of LUTs in circuits of BPF1–BPFK . Such an
approach is proposed in the current paper.

4. Main idea of the proposed method

In (12), the value of Mk is incremented to take into
account the relation am /∈ Ak. As a result, only a
single block BPFk is active; all other blocks have zeros
at their outputs. This allows representing the functions
(17) and (18) as disjunctions of eponymous outputs of
BPF1–BPFK. We propose to eliminate 1 from (12). This

BPF1 . . .

BF

BESCBO
Start
Clock

X1

�

�1

BPFK

XK �K

Z1 V1 ZK VK

VZ

Y

Fig. 4. Structural diagram of PY EY Mealy FSM.
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BPF1 . . .

BF

BTCCBO
Start
Clock

X1

T

TS

BPFK1

XK1

Z1 V1 ZK VK1

VZ

Y

TS

TC

Fig. 5. Structural diagram of PY CY Mealy FSM.

can be done due to the following approach.
Let us form the partition ΠB = {B1, . . . , BK1}

for a set A. Each class includes Mk states. Each class
determines a set Xk having Lk elements. We propose to
encode the states am ∈ Bk by codes CS(am) having NRk

bits, where
NRk = �log2(Mk)�. (20)

The following relation should take place:

NRk + Lk ≤ SL. (21)

To select a particular class Bk ∈ ΠB , we encode the
classes by binary codes K(Bk). These codes have RC

bits:
RC = �log2 K1�. (22)

Now, a state am ∈ A is represented by a
two-component code (TCC) TC(am):

TC(am) = K(Bk) ∗ CS(am). (23)

In (23), we assume that am ∈ Bk. The symbol “*” stands
for the concatenation of codes.

To encode states, the variables Tr ∈ T are used,
where T = TC ∪ TS . The first RC elements of T form
a set TC used for encoding of the classes. The last RS

elements form a set TS used for encoding the states. The
value of RS is determined as

RS = max(NR1, . . . ,NRK1). (24)

Using TCCs allows transforming a PY EY FSM into
a PY CY FSM (Fig. 5).

In the PY CY FSM, block BPFk (k = 1,K1)
implements SBFs,

Zk = Zk(TS , X
k), (25)

V k = V k(TS , X
k). (26)

To chose a particular partial function, a multiplexer should
be used. These multiplexers create the BF implementing
SBFs,

Z = Z(TC , Z
1, . . . , ZK1), (27)

V = V (TC , V
1, . . . , V K1). (28)

The BO implements the SBF (9). The block of TCC
(BTCC) implements an SBF,

T = T (Z, V ). (29)

This block includes a distributed RG having

RTC = RC +RS (30)

flip-flops.
Hardware reduction compared with PY EY FSMs is

possible if the following relations take places:

K1 < K, (31)

RTC < RE . (32)

Our analysis of the library LGSynth93 (1993) shows that
the relations (31) and (32) hold for the vast majority of
benchmarks.

In this article, we propose a synthesis method for
PY CY Mealy FSMs. The synthesis starts from an STG. It
includes the following steps:

1. Creating an STT of a P Mealy FSM.

2. Representing states am ∈ A by pairs 〈Yq, Ig〉.
3. Encoding of COs Yq ⊆ Y in a way optimising the

SBF (9).

4. Encoding of identifiers Ig ∈ I .

5. Forming the partition ΠB .

6. Encoding states am ∈ Bk and classes Bk ∈ ΠB .

7. Creating a direct structure table of PY CY FSM.

8. Creating the SBFs (25) and (26).

9. Creating the table of BF and deriving the SBFs (27)
and (28).

10. Creating the table of the BTCC.

11. Implementing an FSM circuit with resources of a
particular FPGA chip.

To explain this method, we discuss an example of
synthesis for PY CY FSM Ao. We use LUTs with SL = 4
to implement the FSM circuit.
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5. Example of synthesis

For FSM Ao, the STT is already created. It is given in
Table 1. There are Q = 9 COs in the discussed case. They
are discussed in Section 3. There are J = 12 pairs and
G = 2 identifiers shown in Table 2. These pairs are the
following: Δ1 = 〈Y1, I1〉, Δ2 = 〈Y2, I1〉, Δ3 = 〈Y2, I2〉,
Δ4 = 〈Y3, I1〉, Δ5 = 〈Y3, I2〉, Δ5 = 〈Y4, I1〉, Δ7 =
〈Y4, I2〉, Δ8 = 〈Y5, I1〉, Δ9 = 〈Y5, I2〉, Δ10 = 〈Y6, I1〉,
Δ11 = 〈Y6, I2〉, and Δ12 = 〈Y7, I1〉. These pairs are used
to form the table of the BTCC.

Using (5) gives RY = 3 and Z = {z1, z2, z3}. To
optimize the FSM circuit, it is necessary to minimize the
number of literals in the SBF (9). It can be done using
the method of Achasova (1987). There is an outcome of
encoding shown in Fig. 6.

Using contents of COs and the codes (Fig. 6), we can
get the following SBF:

y1 = Y2 = z̄1z2z̄3, y4 = Y5 ∨ Y7 = z̄1z3,

y2 = Y2 ∨ Y7 = z̄1z2, y5 = Y6 = z1z3, (33)

y3 = Y3 ∨ Y6 = z1z̄2, y6 = Y4 = z1z2.

The SBF (33) represents the BO of PY CY FSM Ao.
We have G = 2. Using (6) gives RI = 1 and

V = {v1}. We propose to encode the identifiers in the
following way: K(I1) = 0 and K(I2) = 1.

Using the methods of Barkalov et al. (2018; 2020c)
gives the partition ΠB = {B1, B2} with B1 =
{a1, a3, a5, a8} and B2 = {a2, a4, a6, a7}. These classes
define the sets X1 = {x1, x2} and X2 = {x3}. We have
M1 = M2 = 4. Using (20) gives NR1 = NR2 = 2. From
(24) it follows that RS = 2.

Obviously, the condition (21) holds for SL = 4.
Thus, the model of the PY CY FSM can be used for FSM
Ao. The outcome of state assignment does not affect the
number of LUTs in BPF1–BPF2. The same is true for
codes K(Bk). Therefore, we encode states am ∈ Bk and
classes Bk ∈ ΠB in a trivial way.

We have K1 = 2. Using (22) gives RC = 1 and
TC = {T1}. Because RS = 2, we can get the sets TS =

Y1 Y2 Y4 Y3

Y6*Y7Y5

0100 1011

0

1

z1z2
z3

Fig. 6. Codes K(Yq) for FSM Ao.

{T2, T3} and T = {T1, T2, T3}. The codes CS(am) and
K(Bk) are shown in Fig. 7.

Using Fig. 7 gives two-component state codes. For
example, we get TC(a3) = K(B1) ∗ CS(a3) = 001.

A DST represents blocks BPF1–BPFK1. It is based
on the initial STT and contents of pairs Δj . This table
includes columns am, Xh, h of the initial STT. Also, it
includes the columns CS(am), Zh, Vh. In the discussed
case, it is Table 3.

We have Δ3 = 〈Y2, I2〉 in the first row of Table 1.
From Fig. 6, we have K(Y2) = 010. Also, we have
K(I2) = 1. Consequently, we have z12 in the column
Zh and v11 in the column Vh in the first row of Table 3.
This row contains CS(a1) = 00 in the column CS(am).
All other rows of Table 3 are filled in the same order. If
am ∈ Bk, then all functions in the columns Zh, Vh have
the superscript k (k ∈ {1, . . . ,K1}).

Using Table 3 gives the SBFs (25) and (26). For
example, the following SOPs can be derived from Table 3
(after minimization):

z11 = T̄2T̄3x̄1 ∨ T̄2T3x1 ∨ T2T̄3x̄1x2 ∨ T2T̄3∨
∨ T2T3x1, (34)

v11 = T̄2T̄3 ∨ T̄2T3x1 ∨ T2T̄3x2 ∨ T2T̄3x̄2 ∨ T2T3x1.

The table of BF includes the columns Function,
BPF1, . . . , BPFK1. If some function is generated
by BPFk, then we have 1 at the intersection of the
corresponding row and the column BPFk. In the discussed
case, this is Table 4.

The following SBFs are derived from Table 4:

z1 = T̄1z
1
1 ∨ T1z

2
1 ,

z2 = T̄1z
1
2 ∨ T1z

2
2 , (35)

z3 = T̄1z
1
3 ∨ T1z

2
3 ,

v1 = T̄1v
1
1 . (36)

The SBFs (35) and (36) correspond to the SBFs (27)
and (28), respectively. They represent multiplexers with

a1 a3 a8 a5

a6a7a4a2

0100 1011

0

1

T2T3
T1

K(B1)

K(B2)

Fig. 7. Two-component state codes of Mealy PY CY FSM Ao.
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Table 3. Direct structure table of PY CY FSM Ao.
am CS(am) Xh Zh Vh h

a1 00
x1 z12 v11 1

x̄1x2 z11 v11 2
x̄1x̄2 z11z

1
2 v11 3

a2 00 1 z23 – 4

a3 01
x1 z11z

1
2 v11 5

x̄1 z12 – 6
a4 01 1 z21z

2
2 – 7

a5 10
x1 z12 v11 8

x̄1x2 z11z
1
3 – 9

x̄1x̄2 z13 v11 10
a6 10 1 z21z

2
3 – 11

a7 11
x3 – – 12
x̄3 z21 – 13

a8 11
x1 z11z

1
2 v11 14

x̄1 z12z
1
2 – 15

Table 4. Table of BF for PY CY FSM Ao.
Function BPF1 BPF2

z1 1 1
z2 1 1
z3 1 1
v1 1 0

control inputs connected with T1 ∈ TC . Using a single
slice of Virtex-7, we can get fast multiplexers having up
to four inputs (Chapman, 2014).

The table of the BTCC represents the SBF (28). This
table has the following columns: j (the number of a pair
Δj), K(Yq), K(Ig) (codes of a CO Yq and identifier
Ig ∈ I from the pair Δj), am (a state represented by Δj),
TC(am), Φj (IMFs generated for loading TC(am) into
the RG). In the discussed case, the BTCC is represented
by Table 5.

For example, the following SBF can be derived from
Table 5 (after minimization):

D1 = z1v̄1 ∨ z1z2 ∨ z3v1. (37)

To get the SBF (37), we used “don’t” care assignments
1110 and 1111.

The last step of the proposed method is technology
mapping (Wolf, 2004; Barkalov et al., 2021b). It is
executed using various CAD tools such as Vivado by
Xilinx (Vivado, 2021). We do not discuss this step. We
only estimate the LUT count for the circuit of PY CY
Mealy FSM Ao.

As follows from Table 4, there are four LUTs in the
circuit of BPF1 and three LUTs in BPF2. So, there are
2RY + RI = 7 LUTs on the first level of logic.

As follows from (35), there are RY +RI = 4 LUTs
in the circuit of BF. These LUTs form the second level of
logic.

As follows from (33), there are N = 6 LUTs in
the circuit of BO. From Table 5 it can be deduced that
there are RTC = 3 LUTs in the circuit of the BTCC. In
consequence, there are nine LUTs on the third level of
logic.

That means that the circuit of PY CY FSM Ao

includes 3RY +2RI+N+RTC = 20 LUTs with SL = 4.
In the case of PY EY FSM Ao, we get K = 3. The blocks
BO and BF have the same amount of LUTs (10) as is the
case with PY CY FSM Ao. But there are six LUTs in
BESC and 11 LUTs in blocks BPF1–BPF3. As a result,
there are 27 LUTs in the circuit of PY EY FSM Ao.

In the discussed case, the replacement of PY EY
model by PY CY FSM gives 35% of gain in LUTs. As
our experiments show, such a replacement gives the gain
practically for 78.8% of benchmarks (LGSynth93, 1993).

6. Experimental results

In this section, we compare the proposed approach
(PY CY Mealy FSMs) with some known methods
including PY EY FSMs. In the experiments, we use the
library of standard benchmarks LGSynth93 (LGSynth93,
1993). This library includes 48 benchmarks of different
complexness (different numbers of inputs, outputs and
states). These benchmarks are used very often by different
researchers to compare the basic characteristics of FSM
circuits obtained with different design methods. The
known format KISS2 is used to represent the benchmarks.
The characteristics of benchmarks (numbers of inputs,
outputs, states, state variables and interstate transitions)
are shown in Table 6. We will discuss the meaning of the
column “Class” further on.

As follows from Table 6, benchmarks have a wide
range of different quantitative characteristics. The number
of states varies from 5 to 172, the number of inputs is in
the range from 1 to 19 (the same is true for outputs), the
number of transitions is in the range from 11 to 370. As
noted in LGSynth93 (1993), most of these benchmarks are
taken from practice, that is, they correspond to real FSMs.

To conduct the experiments, as in our previous works
(Barkalov et al., 2020a; 2021a; 2021b), we use a personal
computer having the following characteristics: CPU:
Intel Core i7 6700K 4.2@4.4 GHz, memory: 16 GB
RAM 2400 MHz CL15. For implementing LUT-based
FSM circuits, the Virtex-7 VC709 Evaluation Platform
(xc7vx690tffg1761-2) (Xilinx, 2020) is used. The FPGA
chip of this platform includes slices having four LUTs
with six inputs. The internal multiplexers of the slices
can be used for implementing fast multiplexers from 4:1
to 16:1.

The step of circuit implementation was executed by
the CAD tool Vivado v2019.1 (64-bit) (Vivado, 2021).
To compare equivalent Mealy FSMs, we used the values
of LUT counts and maximum operating frequencies.
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Table 5. Table of the BTCC of PY CY FSM Ao.

j
K(Yq) K(Ig) am

TC(am)
Φjz1 z2 z3 V1 T1 T2 T3

1 0 0 0 0 a1 0 0 0 –
2 0 1 0 0 a2 1 0 0 D1

3 0 1 0 1 a3 1 0 1 D3

4 1 0 0 0 a3 0 0 1 D3

5 1 0 0 1 a5 0 1 0 D2

6 1 1 0 0 a6 1 1 0 D1D2

7 1 1 0 1 a7 1 1 1 D1D2

8 0 0 1 0 a4 1 0 1 D1D3

9 0 0 1 1 a8 0 1 1 D2D3

10 1 0 1 0 a2 1 0 0 D1

11 1 0 1 1 a8 0 1 1 D2D3

12 0 1 1 0 a6 1 1 0 D1D2

These values were taken from the reports of Vivado.
VHDL-based FSM models were used as input data for
Vivado. To execute the transformation of KISS2-based
files into VHDL-based FSM models, we used our CAD
tool K2F (Barkalov et al., 2020c).

We compared the area and time characteristics of
PY CY Mealy FSMs with the characteristics of circuits
obtained with four other approaches. Three of them are
P . Mealy FSMs based on the following state assignment
methods: (i) Auto of Vivado (it uses binary state codes),
(ii) One-hot of Vivado, (iii) JEDI. It is not known on which
heuristics the state assignment methods used in the Vivado
system are based. The algorithm JEDI was proposed
by scientists at the University of California, Berkeley.
This algorithm is quite well described in its technical
documentation. Thus, we can say that we compare our
results with those based on algorithms proposed by both
UC Berkeley and Xilinx scientists. Also, we compared
our approach with PY EY FSMs proposed by Barkalov
et al. (2020a).

Our previous research (Barkalov et al., 2021b;2020a)
shows that both the LUT count and the maximum
operating frequency depend strongly on the relation
between the value of L + R, on the one hand, and the
number of inputs SL, on the other. Consequently, we
divided the benchmarks into five classes. They belong to
the class of trivial FSMs (Class 0) if R + L ≤ 6. The
benchmarks from the class of simple FSMs (Class 1) are
characterized by R + L ≤ 12. The benchmarks create
the class of average FSMs (Class 2) if R + L ≤ 18. The
class of big FSMs (Class 3) consists of the benchmarks
with R + L ≤ 24. At last, the most complex class of
very big FSMs (Class 4) includes the benchmarks with
R + L > 24. As Barkalov et al. (2021b) show, the larger
the class number, the bigger the gain from using methods
of structural decomposition.

Using relations between L + R and SL leads to

the following classes of benchmarks. Class 0 consists
of the benchmarks bbtas, dk17, dk27, dk512, ex3, ex5,
lion, lion9, mc, modulo12, and shiftreg. Class 1 includes
the benchmarks bbara, bbsse, beecount, cse, dk14, dk15,
dk16, donfile, ex2, ex4, ex6, ex7, keyb, mark1, opus, s27,
s386, s840, and sse. Class 2 contains the benchmarks
ex1, kirkman, planet, planet1, pma, s1, s1488, s1494,
s1a, s208, styr, and tma. Class 3 is created by a single
benchmark sand. At last, benchmarks s420, s510, s820,
and s832 form Class 4. The class numbers are shown in
the column “Class” (Table 6).

The results of the experiments are shown in Tables 7
(LUT counts) and 8 (maximum operating frequency,
MHz). We organize these tables in the following
manner. The table columns are marked by the names
of investigated methods. The column “Class” shows
the class of a particular benchmark. The names of the
benchmarks are shown in the table rows. The benchmarks
in the tables are shown in ascending order of the class
number. There are results of summation of values from
columns in the row “Total”. The row “Percentage”
includes the percentage of summarized characteristics
of FSM circuits produced by other PY CY -based FSM
methods. We marked in bold the best results in Tables 7
and 8. Analysis of Tables 7 and 8 leads to the following
conclusions.

As follows from Table 7, the circuits of PY CY -based
FSMs require the smallest number of LUTs compared
with the other investigated methods. There is the
following gain in the LUT counts: (i) 37.18% compared
with Auto-Based FSMs, (ii) 59.64% compared with
FSMs based on One-hot state assignment, (iii) 12.97%
compared with JEDI-based FSMs, (iv) 9.86% compared
with PY EY -based FSMs.

The analysis of LUT counts for different classes
of benchmarks shows the following. For Class 0,
our approach yields 1.83% of gain regarding equivalent
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Table 6. Characteristics of benchmarks used in the experiments.

Benchmark

Inputs, Outputs, State States/ Transitions,

Class
L variables state

N + inputs, variables, H
R+ L M/R

bbara 4 2 8 12/4 60 1
bbsse 7 7 12 26/5 56 1
bbtas 2 2 6 9/4 24 0

beecount 3 4 7 10/4 28 1
cse 7 7 12 32/5 91 1

dk14 3 5 8 26/5 56 1
dk15 3 5 8 17/5 32 1
dk16 2 3 9 75/7 108 1
dk17 2 3 6 16/4 32 0
dk27 1 2 5 10/4 14 0

dk512 1 3 6 24/5 15 0
donfile 2 1 7 24/5 96 1

ex1 9 19 16 80/7 138 2
ex2 2 2 7 25/5 72 1
ex3 2 2 6 14/4 36 0
ex4 6 9 11 18/5 21 1
ex5 2 2 6 16/4 32 0
ex6 5 8 9 14/4 34 1
ex7 2 2 12 17/5 36 1

keyb 7 7 12 22/5 170 1
kirkman 12 6 18 48/6 370 2

lion 2 1 5 5/3 11 0
lion9 2 1 6 11/4 25 0

mark1 5 16 10 22/5 22 1
mc 3 5 6 8/3 10 0

modulo12 1 1 5 12/4 24 0
opus 5 6 10 18/5 22 1

planet 7 19 14 86/7 115 2
planet1 7 19 14 86/7 115 2

pma 8 8 14 49/6 73 2
s1 8 7 14 54/6 106 2

s1488 8 19 15 112/7 251 2
s1494 8 19 15 118/7 250 2

s1a 8 6 15 86/7 107 2
s208 11 2 17 37/6 153 2
s27 4 1 8 11/4 34 1

s386 7 7 12 23/5 64 1
s420 19 2 27 137/8 137 4
s510 19 7 27 172/8 77 4

s8 4 1 8 15/4 20 1
s820 18 19 25 78/7 232 4
s832 18 19 25 76/7 245 4
sand 11 9 18 88/7 184 3

shiftreg 1 1 5 16/4 16 0
sse 7 7 12 26/5 56 1

styr 9 10 16 67/7 166 2
tma 7 9 13 63/6 44 2
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PY EY -based FSMs. At the same time, our approach loses
compared to all other models. This result can be explained
by the fact that, for Class 0, each function from the SBFs
(2) and (3) is represented by a circuit consisting of a single
LUT. Therefore, there is no point in using methods of
structural decomposition for FSMs of this class.

But starting from simple FSMs, our approach
provides better LUT counts regarding all investigated
models. Interestingly, for Classes 1–4, the gain related
to PY EY -based FSMs is almost the same. It is 11.31%
for simple FSMs, and 10.32% for other classes. We
think this is due to the difference in the length of the
state codes, for states from classes Ak ∈ ΠA and Bk ∈
ΠB . In the case of extended state codes the number
of state variables is determined by (12). In the case of
two-component state codes this number is determined by
(20). This follows from the comparison of the formulae
(12) and (20) that for equivalent FSMs the partition ΠB

includes fewer classes than the partition ΠA. We assume
that for different classes of FSMs (average, big, and
complex) there is approximately the same ratio between
the parameters K and K1. For equivalent PY CY and
PY EY this phenomenon determines approximately the
same difference in the number of LUTs.

Starting from simple FSMs, the gain from the
application of our method increases relatively to
equivalent Auto-, One-hot-, and JEDI-based FSMs. This
is connected with the following. We think that the
most important benchmark characteristic is the difference
between the number of LUT inputs (SL) and the total
number of FSM inputs (L) and the minimum number of
state variables (R) determined by Eqn. (1). The greater
the difference (L+R)−SL, the greater the gain that can be
expected from the application of our approach. Obviously,
the difference (L + R) − SL increases as the benchmark
class number increases. This explains the increase in gain
from the application of two-component state codes as the
complexity of benchmarks increases.

In addition to the total number of FSM inputs (L),
the LUT counts of FSM circuits are influenced by the
branching of the STG. There is a direct relationship
between H(am) and L(am), where H(am) is the number
of transitions from a state am ∈ A and L(am)t is the
number of inputs determining these transitions (Achasova,
1987): H(am) = L(am) + 1. Theoretically, a situation
is possible when the value of L(am) exceeds the number
of LUT inputs. In such a case, as follows from (21), our
approach cannot be used. However, Sklyarov (2000) notes
that for real FSMs the value of L(am) does not exceed 3.
A similar condition is met for benchmarks from the library
LGSynth93. Thus, starting from simple FSMs (Class 1),
our method allows improving LUT counts.

As follows from Table 8, our approach leads to the
fastest FSM circuits (circuits with the highest operating
frequency). There is the following gain in operating

frequency: (i) 12.22% compared with Auto-Based FSMs,
(ii) 12.93% compared with FSMs based on one-hot state
assignment, (iii) 5.83% compared with JEDI-based FSMs,
(iv) 2.74% compared with PY EY -based FSMs.

For all classes, our approach provides slightly better
time characteristics regarding equivalent PY EY -based
FSMs. It has a very small gain (0.57%) for FSMs
belonging to Class 0. For Class 1, there is a gain equal to
2.04%. For more complex FSMs, there is a gain equal to
4.09%. Therefore, the gain increases slightly as the value
of L +R increases. We think that this gain is mainly due
to a decrease in the number of interconnections, which is
a consequence of the fulfilment of the condition (32).

Also, we compared PY CY -based FSMs with PY Y
FSMs. As follows from the work of Barkalov et al.
(2020a), it is necessary for 1320 LUTs to implement the
circuits for all benchmarks (LGSynth93, 1993). Using
our approach, it is necessary to have 1318 LUTs.
Thus, the LUT-based circuits of PY CY -based FSMs
have practically the same LUT counts as equivalent
PY Y FSMs. There is 7873.36 MHz in the row
“Total” for PY Y FSMs (LGSynth93, 1993). There is
9258.84 MHz in the row “Total” for PY CY -based FSMs
(Table 8). Therefore, our approach yields a 15% increase
in frequency compared with equivalent PY Y FSMs.

The data shown in Tables 7 and 8 are obtained
when using the directive “Default” at the stage of project
optimization (opt design) by Vivado. In this case, Vivado
uses default settings during the logic design stage. But
we also compared the implementation results using the
directive “ExploreArea.” This led to a slight decrease
in the values of LUT counts in FSM circuits based on
the methods Auto, One-hot and JEDI (up to 2.8%). At
the same time, the use of this directive did not improve
LUT counts for the circuits of both PY CY and PY EY
FSMs. For Auto-, One-hot-, and JEDI-based FSMs,
the optimization of LUT counts led to a slight decrease
in performance (up to 4.6%). At the same time, the
performance did not change for the circuits of both PY CY
and PY EY FSMs. The main goal of the proposed
method is to reduce the number of LUTs in FSM circuits.
Consequently, we did not study the influence of other
Vivado modes on the FSM characteristics.

As follows from Tables 7 and 8, using
two-component state codes allows obtaining FSM
circuits with better area (LUT count) and time (maximum
operating frequency) characteristics compared with the
equivalent PY EY FSMs based on extended state codes.
Note that the proposed method makes it possible to reduce
the number of LUTs related to the equivalent PY EY
FSMs starting from the benchmarks of Class 1. Also, our
approach produces better results compared with results
obtained using various methods of state assignment
(Auto, One-hot, and JEDI) and functional decomposition
for P FSMs. If we compare our approach with PY Y
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Table 7. Results of the experiments (LUT count).

Benchmark P -Auto
P -One-

P -JEDI PY EY PY CY Class
hot

bbtas 5 5 5 9 9 0
dk17 5 12 5 10 10 0
dk27 3 5 4 9 9 0

dk512 10 10 9 14 12 0
ex3 9 9 9 14 14 0
ex5 9 9 9 12 12 0
lion 2 5 2 8 8 0

lion9 6 11 5 10 10 0
mc 4 7 4 8 8 0

modulo12 7 7 7 11 11 0
shiftreg 2 6 2 6 6 0

bbara 17 17 10 14 13 1
bbsse 33 37 24 29 26 1

beecount 19 19 14 16 15 1
cse 40 66 36 35 31 1

dk14 16 27 10 14 13 1
dk15 15 16 12 11 10 1
dk16 15 34 12 13 12 1

donfile 31 31 24 24 21 1
ex2 9 9 8 10 9 1
ex4 15 13 12 13 11 1
ex6 24 36 22 23 21 1
ex7 4 5 4 8 7 1

keyb 43 61 40 40 37 1
mark1 23 23 20 21 19 1

opus 28 28 22 23 21 1
s27 6 18 6 8 7 1

s386 26 39 22 22 19 1
s8 9 9 9 11 10 1

sse 33 37 30 29 25 1
ex1 70 74 53 44 39 2

kirkman 42 58 39 35 32 2
planet 131 131 88 82 76 2

planet1 131 131 88 82 76 2
pma 94 94 86 76 71 2

s1 65 99 61 58 52 2
s1488 124 131 108 93 88 2
s1494 126 132 110 94 89 2

s1a 49 81 43 42 36 2
s208 12 31 10 11 10 2
styr 93 120 81 78 68 2
tma 45 39 39 34 28 2

sand 132 132 114 103 94 3
s420 10 31 9 10 9 4
s510 48 48 32 23 19 4
s820 88 82 68 56 49 4
s832 80 79 62 52 46 4
Total 1808 2104 1489 1448 1318

Percentage 137,18 159,64 112,97 109,86 100,00
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FSMs, then both models require the same number of
LUTs. However, our approach allows obtaining FSM
circuits with significantly better performance. Therefore,
we think that our new approach can be used in CAD tools
targeting LUT-based FSM synthesis.

7. Conclusion

Nowadays, a wide variety of digital systems are
implemented using various FPGA chips. One of the
important problems associated with FPGA-based design
is that of reducing the chip area occupied by the digital
system circuit. At the same time, it is desirable
that the reduction in the area is not associated with a
sharp decrease in performance. This fully applies to
LUT-based synthesis of FSM circuits. To improve the
area, it is necessary to reduce the numbers of literals
in sum-of-products of Boolean functions representing an
FSM circuit. In many scientific works, the required chip
area for a given circuit is estimated as a LUT count (Islam
et al., 2020).

Structural decomposition (Barkalov et al., 2021b)
is one of the efficient ways to diminish LUT counts
in an FSM logic circuit. All methods of structural
decomposition lead to a change in the FSM structural
diagram compared with single-level P Mealy FSMs. Of
particular interest are methods of structural decomposition
that can simultaneously reduce the LUT count and
increase the maximum operating frequency. One of such
methods is proposed in this paper.

The method is aimed at improving the characteristics
of LUT-based PY EY Mealy FSMs with the
transformation of collections of outputs into extended
state codes. Our new approach is based on using
two-component state codes. One of the components is
a code of some class including a particular state. The
second part represents this state as the class element.
Due to this approach, we simplified the code transformer
used in PY EY Mealy FSMs. Also, the number of
state variables is significantly reduced compared with
equivalent PY EY Mealy FSMs. As a result, compared
with equivalent PY EY Mealy FSMs, our approach gives
an improvement in both the LUT count (on average, by
9.86%) and maximum operating frequency (on average,
by 2.74%).

The results of experiments show that the proposed
approach allows reducing LUT counts in FSM circuits.
Moreover, this improvement is associated with a slight
increase in FSM performance. Thus, the proposed method
improves two main characteristics of FSM circuits. We
think that it has a rather good potential to be used in
LUT-based FSM design.
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