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The evaluation of system performance plays an increasingly important role in the reliability analysis of cyber-physical sys-
tems. Factors of external instability affect the evaluation results in complex systems. Taking the running gear in high-speed
trains as an example, its complex operating environment is the most critical factor affecting the performance evaluation
design. In order to optimize the evaluation while improving accuracy, this paper develops a performance evaluation method
based on slow feature analysis and a hidden Markov model (SFA-HMM). The utilization of SFA can screen out the slowest
features as HMM inputs, based on which a new HMM is established for performance evaluation of running gear systems. In
addition to directly classical performance evaluation for running gear systems of high-speed trains, the slow feature statistic
is proposed to detect the difference in the system state through test data, and then eliminate the error evaluation of the HMM
in the stable state. In addition, indicator planning and status classification of the data are performed through historical in-
formation and expert knowledge. Finally, a case study of the running gear system in high-speed trains is discussed. After
comparison, the result shows that the proposed method can enhance evaluation performance.

Keywords: slow feature analysis (SFA), performance evaluation, hidden Markov model (HMM), running gear systems.

1. Introduction

For complex cyber-physical systems, the safety and
reliability of high-speed trains are the first factor be
considered in operation (Song et al., 2021; 2020).
Also, as the running time increases, the damage to
high-speed trains is aggravated by the harsh environment
and overload (Chen and Jiang, 2020). It is necessary
to accurately capture the health status of systems. The
running gear system is the crucial part in high-speed
trains, and its reflected states have an important impact
on the whole performance. The performance evaluation

∗Corresponding author

of running gear systems in high-speed trains is studied in
this paper.

Performance evaluation plays a central role in
performance degradation or failures that may occur in the
process of real-time monitoring and diagnosis. Current
performance evaluation has developed from the initial
control loop to the process level or an even larger
scale, and the specific evaluation procedure is more
complex (Kaczorek and Ruszewski, 2022). There are
many quantitative and qualitative methods proposed for
the performance evaluation of systems (Zhang et al.,
2021; Salazar et al., 2020). The qualitative empirical
method uses incomplete prior knowledge to describe the
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functional structure of systems to obtain a qualitative
model. Its structure includes empirical reasoning and
qualitative behavior prediction and comparison. By
comparing the predicted system behavior with the actual
behavior, we can determine whether a failure occurs (Yan
et al., 2017; Zheng et al., 2019). Moreover, the empirical
method obtains the information of target cases based on
case-based pattern classification or causal relationships
between variables (Cheng et al., 2021). High-speed
train control systems are indispensable for ensuring
operation safety, but qualitative empirical methods are
gradually unable to meet the accuracy requirements for
evaluation. Data-driven methods began to be the core
in the field of performance evaluation (Chen et al.,
2022; Luo et al., 2018; 2020). According to different
data-processing modes, data-driven methods are divided
into several categories. Quantitative methods include
artificial intelligence methods (Kiranyaz et al., 2018; Yuan
et al., 2020), signal processing methods (Li et al., 2018)
and statistical analysis methods (Wang et al., 2020).
Artificial intelligence methods include artificial neural
networks, fuzzy mathematics, genetic algorithms, etc.
Signal processing methods mainly cover empirical mode
decomposition. In addition, statistical analysis methods
include principal component analysis (PCA) and Bayesian
theory, etc.

Relying on incomplete experience, empirical
modeling techniques still cannot achieve the stringent
accuracy requirements for performance evaluation. In
recent years, the performance evaluation of systems has
focused on classification and statistical methods, which
take mathematical statistical analysis or a historical
empirical training model as the main structure, such
as the HMM, the support vector machine (SVM), and
PCA (Deng et al., 2018). Due to the shortcomings in
the physical meaning of the traditional PCA assessment
results, Liu et al. (2013b) proposed a performance
grade classification and identification method based
on data modeling. PCA is developed to improve the
identification and yield the best performance level. Zou
and Zhao (2019) proposed a performance evaluation
method based on hierarchical cointegration analysis.
By adjusting the stationarity and non-stationarity of
data evaluation, a global model is built for evaluation.
Similarly, for systems in high-speed trains, the availability
and reliability of the system can be determined by the
calculation of model parameters or relevant-variable
selection (Liu et al., 2013a; Yun et al., 2017; Jiang
et al., 2020). Also, Markov modeling ideas are proposed
to be used in the performance evaluation of train systems
(Molaei et al., 2007). Sun et al. (2020) used wavelet
decomposition to obtain attitude monitoring index
vectors. Combined with the application of the HMM
and genetic algorithms, the method converged to a
local optimal value, thereby improving performance

and obtaining a higher average recognition rate. The
above-mentioned methods lack analysis of the system
mechanism and status, and in order to make the research
on the influencing factors and evaluation indicators of
characteristic data clear, the proposed method considered
the quantitative part. For the quantitative mathematical
model with a precise process, performance evaluation
can be carried out by constructing physical models
and mathematical model analysis. Yan et al. (2015)
combined the intrinsic mode function energy entropy
with the relevant dimensions of chaos theory. By utilizing
the function energy entropy and relevant dimensions,
dynamic changes with different metrics are reflected.

Compared with the previous algorithm, the accuracy
of evaluation has been increased, but this kind of model
lacks a combination of actual physical meaning when
targeting specific industrial processes. Similarly, recent
efforts in performance evaluation pay more attention to
the amelioration and fusion of traditional methods (Chen
et al., 2018; Zhang et al., 2018). For instance, Bui
et al. (2016) used the information gain ratio of feature
selection to compare various state evaluation methods.
Then they pointed out that there are still deficiencies
in the evaluation of support vector machines. To
improve the accuracy of classification, a semi-supervised
support vector machine method is proposed. By using
the k-means technique to label data clusters, a specific
differentiable surrogate of the loss function is developed
to achieve the optimization effect (Wang et al., 2017).
Don and Khan (2019) proposed to use a hybrid system
consisting of a hidden Markov model a Bayesian network
to detect the abnormal in-process data while evaluating
the log-likelihood. With the combination of statistical
analysis and a classification evaluation model, better
results are obtained (Zhang and Zhao, 2019; Wu et al.,
2017; Chen et al., 2021). Shang et al. (2015) proposed a
new process monitoring strategy based on SFA to monitor
process dynamic abnormalities, where the s2 statistic
of SFA shows the potential changes of system states.
Since the slow function of latent variables can describe
the dynamics of slow changes, interpretability has been
improved. In view of the fact that the proposed statistic
can detect the health status of the system process, this
paper proposes a health performance evaluation model
based on SFA and difference optimization in the state.
It is of great importance for the performance level of a
complex system. Thus, the accuracy of the evaluation can
be improved by controlling the influence of disturbance
factors.

In this paper, a health assessment method based on
SFA and state transition optimization is developed as
well as applied to running gear systems in high-speed
trains. Through the extraction of slow features in the data,
the method analyzed probability transitions and adjusted
expectations. With the parameter identification, a detailed
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performance assessment is provided. The paper combines
SFA with the HMM, and makes an in-depth analysis
of feature variables in running gear systems. Thus, it
can reflect the evaluation performance of running gear
systems in high-speed trains.

The rest of this paper is organized as follows.
Section 2 briefly reviews the HMM and SFA methods.
Section 3 introduces the proposed model and the
optimization scheme of slow feature entropy analysis for
evaluation performance. Based on this, the mechanism
analysis and problem description of high-speed train
running gear systems are carried out. In Section 4,
the method is applied in the running gear system, and
the simulation analysis proves its feasibility. Moreover,
it is compared with other methods to illustrate the
effectiveness. Finally, Section 5 contains a summary of
this paper.

2. Preliminaries

Based on the SFA-HMM method using state difference
optimization, this paper studies the performance
evaluation for running gear systems. In the initial part of
the proposed method, the fusion of SFA and the HMM
is mainly used for feature extraction and preliminary
evaluation. This section briefly characterizes SFA and the
HMM.

2.1. Slow feature analysis. For high-speed trains,
multiple features need to be reduced dimensionally, which
can increase the accuracy of the evaluation. Data
reflecting the change trend of the high-speed train running
gear system are characterized by random noise and
interference, which seriously affects the accuracy of the
assessment results. SFA is the most effective way to
reduce noise and interference. In this part, SFA is used
to analyze the slowness of data in achieving the purpose
of dimensionality reduction.

As a popular unsupervised method, SFA can extract
slowly changing latent variables (LVs) from data. For
a multi-dimensional input signal, the goal of SFA is to
find an input-output mapping function in which the output
signal changes as slowly as possible. LVs of output signals
will carry the major information if the time structure is
shown in the input data (Shang et al., 2015).

Mathematically, the SFA optimization problem is
defined as follows:

s =Wx. (1)

In SFA, the main purpose is to find a matrix W =[
w1 w2 · · · wm

]
to represent the coefficient vector

under the following conditions:

〈sj〉t = 0, (2)

〈s2j 〉t = 1, (3)

∀i �= j : 〈sisj〉t = 0. (4)

The variance and correlation are processed above, in
which {sj(t) = wj(x(t))}mj , x(t) = [x1(t), . . . , xm(t)],
and 〈·〉t denotes temporal averaging.

After singular value decomposition (SVD), the
matrix can be described by

〈xxT 〉t = UΛUT (5)

and then the whitening transformation is obtained after
preprocessing

z = Λ− 1
2UTx = Qx, (6)

where Q = Λ− 1
2UT . Note that

〈zzT 〉t = Q〈xxT 〉tQT = I. (7)

The acquisition of the coefficient vector-matrix translates
into finding the matrix P in

S = Pz = PQx, P =WQ−1. (8)

The second SVD of the matrix 〈żżT 〉t is expressed
as

〈żżT 〉t = PTΩP. (9)

Therefore, the optimal solution can be regarded as
singular values in the ascending order of the matrix
Ω. Based on the coefficient matrix, one can obtain the
variables with slow features. For getting the best option to
reflect the essential characteristics, this paper selects two
columns of data in the slowest change.

2.2. Hidden Markov model. As a statistical model,
the HMM describes Markov processes with implicit
unknown parameters, and one is suitable for the evaluation
part of this paper. By using the theory of probability
distributions, this method completes the training and
evaluation of the feature data.

The HMM is represented by a triple as λ =
(π,A,B), where π is the initial probability distribution
vector,A is the state transition probability matrix,B is the
observation probability matrix, N is the number of states
in the model; M is the maximum number of observations
corresponding to each state, ot represents the observed
value at the time t, otε{V1, V2, . . . , VM} .

In the following, two general assumptions are used:

A1. Markov property hypothesis: At any time t, the
state of a hidden Markov chain depends only on the
previous state. However, it has nothing to do with the
state or observations at any other moment.
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A2. Observation independence hypothesis: The
observation at any time depends on the status
of the Markov chain at that time. Conversely, it has
nothing to do with other observations or states.

First, the method needs to obtain the output
probability P (O|λ) under some conditions. For the
solution of the output probability, the forward initial
variable and the backward initial variable are denoted
respectively as αt(i) and βt(i). If the model is λ, αt(i)
is the probability of the observation O until the time t,
βt(i) is the probability of the observationO from the time
t + 1. Setting the state at the time t as Hi, according
to the forward and backward probabilities, the observed
sequence probability is written as

P (O|λ) =
N∑

i=1

N∑

j=1

αt(i)aijbj(Ot+1)βt+1(j),

t = 1, 2, . . . , T − 1.

(10)

The Viterbi algorithm is a progressive search
algorithm that is applied to find an optimal state sequence
in the HMM. For the given model parameters and
observation sequence, the Viterbi algorithm can obtain
the target state sequence. The recurrence relationship and
auxiliary variables are defined in (11)–(15).

The optimal state sequence for a given partial
observation sequence q1, . . . , qt, δt(i) is defined as

δt(i) = max
q1,...,qt−1

P (q1, . . . , qt, qt = Hi, o|λ). (11)

The initialization of δt(i) is defined as follows:

δ1(i) = πbi(O1). (12)

After simple derivations, the result is

δt+1(i) = max
N≥j≥1

[δt−1(j)aji]bi(Ot+1). (13)

The optimal path can be calculated with

P ∗ = max
1≤j≤N

δT (i), (14)

q∗ = arg max
1≤j≤N

δT (i). (15)

One can get variables when the function is
maximized (the optimal path).

In the next step, the algorithm can find the
appropriate model parameters to maximize P (O|λ). The
maximum likelihood estimation solution is as follows:
concerning the target log-likelihood function P , the EM
algorithm is used for the function

Q(λ, λ̃) =
∑

logP (O, I|λ)p(O, I|λ̃) (16)

and then model parameters are obtained by the Lagrange
solution.

In the part of HMM re-evaluation, by maximizing
the output probability P (O|λ), the model λ is trained and
defined as

ξt(i, j) = P (qt = Hi, qt+1 = Hj |O, λ), (17)

rt(i) = P (qt = Hi|O, λ), (18)

H(λ, λ̄) =
∑

Q

logP (O,O|λ̄)P (Q,O|λ). (19)

With the analysis of the relationship between αt(i)
and βt(i), the initial model parameters are adjusted
according to the training rules. By constructing the
auxiliary function to get π̄i, ᾱij , β̄j(k), λ̄ is re-derived as
an optimal solution. The whole process completes the
procedure of training and evaluating the feature data.

3. Health state assessment model based on
optimization of state difference

Concerning the robustness and accuracy of the evaluation
model, the health evaluation model can be achieved
based on the following four steps: data extraction
and dimensionality reduction, feature extraction, health
evaluation, and optimization. Figure 1 shows the block
diagram of the evaluation system proposed in this article.

3.1. SFMEA (slow feature maximum entropy
analysis)–HMM. Based on the dynamic characteristic

Data matrix of running gears

Data normalization

Slow featureSFA

HMM

Health assessment

slow feature maximum
entropy analysis

,1 ,, ,obs obs obs mx x x� �� � ���m, ��obs mx

( ) obsobsx j xx
�
�

�

s Wx� 1, , js s, j, j
2S index

Feature analysis and
extraction

feature1

feature2

Fig. 1. Health assessment model.
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of SFA, the stability of the data and the operating
conditions are analyzed. At the same time, combined with
the analysis of potential anomalies in dynamics, the paper
finds that the stability deviation can infer the differences
between system states and further optimize the evaluation
model. To reduce the error of the evaluation result, this
subsection uses the slow feature to process the data and
design the monitoring optimization module. Then, the
HMM is used to evaluate and analyze the state difference
reflected in the slow feature detection.

After the basic calculation of SFA, slow features can
be obtained in the form of

s = [s1, . . . , sm(d+1)] = [sTd , s
T
e ], (20)

where sd is the principal part and se is the residual part.
To get potential abnormalities in process dynamics,

the control limit is set as

s2 = ṡTd Ω
−1
d ṡd, (21)

s2 ∼ gFM,N−M−1, (22)

where

g =
M(N2 − 2N)

(N − 1)(N −M − 1)
, (23)

in which, ṡ represents the first derivative of LV with
respect to time.

SFA processes the monitoring data preliminarily
based on a statistical threshold, and above the thresholds
are sieved to reduce interference items. Further, the
effective range of change is selected as the final goal
of entropy analysis to mitigate misjudgments. After
comparing the simulation results, this paper selects three
adjacent values sequentially as sub-arrays (sub-array:
ci = [si, si+1, si+2], i = 1, . . . , n− 2) and calculated
their average value. By arranging the obtained means
in descending order, the algorithm retains the position
information and performs the entropy analysis in the next
step.

Based on the influence of data perturbation, invalid
destabilizations and undetermined disturbance are two

Algorithm 1. Solving for sub-arrays.

Input: feature (slow features); S2−index (threshold of
test statistics).
Output: Y (the array in descending order); I (located
information of C).
Step 1. Process the measurement data. Set i = 1; If
feature(i) > S2 − index, set data(i) = feature(i);
otherwise data(i) = 0, set i = i + 1 and go back to
Step 1.

Step 2. Define sub-array C and obtain the means.

Step 3. Sort the obtained means in descending order.

kinds of disturbances in the S2 process monitoring, in
which the former cannot reflect changes in the running
status, and the latter has an impact on state changes
but does not belong to the effective range of changes.
To optimize the state evaluation, this paper uses the
maximum entropy model to analyze the probability
characteristics of the results. In this part, the effective
range that can show that the state transition is obtained.
The specific steps are described in Algorithm 2.

The entropy analysis of conditional probability is
described in

min
P∈C

H(P ) = Σx,yP̃ (x)P (y|x) log P (y|x) (24)

subject to

EP (fi)− EP̃ (fi) = 0, (25)
∑

y

P (y|x) = 1, (26)

where C is the set of models satisfying the constraints.
About the characteristic function, the expected value for
the empirical distribution is equal to the expected value
for P (Y |X).

In (26),EP̃ (f) is the expected value for the empirical
distribution, EP (f) is the expected value for P (Y |X).

Based on the Lagrange multiplier (ω0, ω1, . . . , ωn),
L(P, ω) is defined as

L(P, ω) = −H(P ) + ω0(1− ΣyP (y|x))

+

n∑

i=1

ωi(Ep(fi)− EP̃ (fi)).
(27)

The dual transformation of optimization is defined by
maxω minP∈C L(P, ω). For minimization problems, it is
solved via

∂L(P, ω)

∂P (y|x) = 0. (28)

The dual external maximization problem can be
solved as follows:

ω∗ = argmax
ω

ψ(ω). (29)

Algorithm 2. Optimization evaluation of SFMEA.
Input: feature (slow features); I (located information of
C).
Output: optimization of evaluation results.
Step 1. Define the constraint function of the maximum
entropy analysis model. Set part of the data to 1, and the
rest to 0.

Step 2. Train and obtain optimal results of the evaluation.

Step 3. Optimize the part of the stationary interval and
retain the undetermined disturbance.
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The definition of the feature function needs to
consider the health characteristics reflected by the slow
feature data.

3.2. Construction of running gear systems in a
high-speed train performance evaluation model. Due
to the high complexity of high-speed trains, the health
status of its subsystems must be grasped accurately to
protect the passengers’ personal and property safety (Chen
et al., 2020). As one of the key components of high-speed
trains, the running gear system exhibits a mechanical
performance that makes a direct impact on the overall fault
status detection.

3.2.1. Mechanism analysis in running gear systems.
The main task of the high-speed train running gear system
is to guide the vehicle to run flexibly, safely, and smoothly
along the rail under the action of traction power. Figure 2
shows the structure of the running gear. The running
gear system consists of wheelsets, bogies (side frames and
bolsters), spring damping devices, and braking devices.

Bogie technology’s structure and performance
directly affect the power, stability, and comfort of the
vehicle. The multi-component cooperation of the bogie
system has five operation statuses, i.e., traction, braking,
steering, load-bearing, and buffering. To ensure the
normal operation of the vehicle, the status assessment of
the running gear system is particularly important.

In view of the vibration and shock caused by various
reasons during the running of the rail vehicle, the vibration
damping device is composed of a shock absorber and a
spring. In the vibration damping device, the spring mainly
serves as a buffer to alleviate the impact and vibration of
the track. The function of the shock absorber is to reduce
vibration, and its force is always opposite to the direction
of motion, which plays a role in preventing vibration.

A performance characteristic is the representation of
the system state (Jiang and Yin, 2019). Based on the
factors affecting the status of the running gear system
in high-speed trains, this paper analyzes the working
principle of each component of the running gear. Then
it can be seen that temperature changes are accompanied
by changes in component performance. For spring
devices, the relationship between the hardness correction
coefficient and temperature (t) is shown in Fig. 3(a).
As the temperature increases, the hardness correction
coefficient decreases; as the temperature decreases, the
hardness correction coefficient increases. Regarding the
principle of the shock absorber operation, Fig. 3(b) shows
the relationship between resistance and vibration speed.
The performance of the shock absorber affects the control
and cushioning of the vibration and the impact in the
running gear system. Accordingly, this paper reasonably
concludes that changes in the health status will also have

different representations of temperature, vibration, and
impact data. Thus, the temperature, impact, and vibration
are selected as the data characteristics of performance
evaluation.

After a detailed analysis of running gear systems
in high-speed trains, this paper proposes a performance
evaluation model of running gear systems based on the
SFM-HMM. Given the data analysis of the running gear
system, the following four problems are solved:

(i) Combined with the mechanism analysis of the
high-speed train running gear, the characteristic
points that affect the high-speed train running
gear are analyzed to select the data measurement
point. To extract slow features from the rapidly
changing signal, this paper extracts tiny changes in
pre-analysis data. The slowest features are selected
after further dimensionality reduction.

(ii) For the extracted slow features, further processing
is performed for feature selection. According to
the function of refining features based on SFA, a
correlation fitting function is introduced to match the
original data with the slowest data to complete the
feature selection.

(iii) After performing the status classification of the
data through historical information and expert
experience, a hidden Markov health evaluation
model is established to evaluate the status of the
running gear system in high-speed trains.

(iv) SFMEA is proposed to analyze the data difference
in state changes, then further describe the evaluation
model and arrive at the optimization.

3.2.2. Data preprocessing. Aiming at the status
assessment of running gear systems in high-speed trains,
its particularity concerns mainly the need to consider the
horizontal characteristics and the longitudinal trend of the
operating data. The characteristics of the running gear
system are complex and diverse, so the data distribution
has a certain particularity. The data collected in the actual
operation of high-speed trains contains disturbances, so
the input data needs to be analyzed and pre-processed.

The running gear system possesses many sensors to
monitor the status of the running gear system. The sensors
are integrated with multiple sensor units to monitor
different physical quantities and collect various types of
data, such as temperature, vibrations, and impact.

To truly reflect the health status of high-speed
trains, the data collected by multi-source sensors are
preprocessed. This is called data normalization, including
two steps.
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(a) (b)

Fig. 2. Structure chart of high-speed train running gear systems: truck frame (a), wheel (b), brake (c), trailer axle (d), absorber (e).
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Fig. 3. Relationship between the correlation index and temperature vibration characteristics.

Step 1:

xobs,l =
1

N

N∑

j=1

(xobs,i(j)− xobs,l)
2. (30)

For measurement data from multiple sensors, the
m-dimensional process vector, which is denoted by x,
forms a measurement data matrix. Considering the change
in the average value of the measurement vector, this
paper adopts correlation-based preprocessing. Hence each
column of measured variables subtracts the corresponding
variable mean and divides the corresponding variable by
its standard deviation. Thus, a variable with unit variances
and zero means is obtained.

Step 2:

x(k) =

⎡

⎢
⎢
⎢⎢
⎢
⎣

xobs,i(j)− xobs,l

σobs,1
...

xobs,i(j)− xobs,l

σobs,m

⎤

⎥
⎥
⎥⎥
⎥
⎦
,

(X = [x(1), . . . , x(N)] ∈ R
m×N ). (31)

3.2.3. Problem description: Pre-defined indicators
and evaluation model construction. Based on a large
amount of historical data from high-speed trains, taking
into account expert knowledge, this case uses temperature,
vibration, and impact as the data characteristics to
estimate the state of the running gear system in high-speed
trains. Since actual data measurement is difficult, in this
paper data for the same train with the trend of increasing
mileage in nearly a month for analysis are selected.
To ensure the validity and accuracy of input data, the
multi-point sampling method is used for data collection.
According to the division of the sensor position in
the high-speed train running gear, six total types of
characteristic data are set at two sampling points, as well
as data denoising. Reference values are designed using
expert knowledge and actual conditions of a high-speed
train running gear, i.e., the reflection of vibration and
temperature variables on performance changes shows a
direct correlation with data fluctuations, the impact data
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makes an immediate influence on the data burst.
In traditional engineering, the health states of

systems are mainly divided into normal, sub-health, and
failure. Based on the existing form, this paper further
divides these into two parts: a sub-health status and an
under-fault status. When the temperature is no more than
20 degrees, the vibration is no more than 16, the data is in
a healthy state, the temperature is no less than 40 degrees,
and the vibration is no less than 25, the data is in a fault
state. Conveniently for the construction of the model, it
is necessary to establish a priority based on the historical
experience of the travel department system. Based on the
analysis of the historical fault information, by comparing
with the other two features, the impact priority is set
to the lowest level because it has little effect on the
change in the system performance state. To reflect the
actual working conditions as comprehensively as possible,
the approach function is set according to the existing
standards, and the preliminary classification settings are
performed in a recycle selection mode. Consequently, to
attain an optimal performance of the controlled running
gear system, the performance evaluation is divided into
the following states: health, sub-health, under-fault, and
fault. Their interpretations are as follows:

• health: the overall performance of the running gear
system is intact;

• sub-health: components are worn, which has a
slight impact on the performance of the running gear
system and the impact is still in the controllable
range;

• under fault: the components of the running gear
system are seriously worn, which moderately affects
the performance and needs to be handled in time;

• fault: the component is damaged or nearly damaged,
which seriously affects the train performance and
needs fault handling.

Because of the multiple features selected in this
article, it is necessary to reduce the dimension of original
data, and the slowest changes in the extracted are retained
for further feature selection.

The proposed method uses characteristics of the
evaluation status as evaluation criteria, and the HMM
is chosen to complete the training and evaluation of the
data. After feature selection, the training model can yield
preliminary evaluation results. Performing characteristic
analysis on the slow feature data, the evaluation model is
optimized according to the state difference characteristics
to obtain more accurate results.

The monitoring result of the threshold by SFA on the
test data of the running gear system is shown in Fig. 4. The
s2 evaluation standard indicates the potential abnormality
of the system state. When the system state changes, for

the four states defined in this paper, the detection results
may reveal obvious fluctuations.

In the part of SFMEA, the crucial information is
extracted according to the health state characteristics
reflected by SFs, and the maximum entropy feature
function is defined as

f(x, y) =

⎧
⎪⎨

⎪⎩

1 if the first 30 numbers are
in descending order,

0 otherwise.
(32)

Thus, the position sorting information is used to
select the first 30 data pieces to set the constraint
feature function of the maximum entropy. Then the
analysis of the maximum entropy estimation with each
sub-array as the center is obtained. In Fig. 5, at the
part of ME1, the algorithm selects the best three data
intervals for the analysis results, i.e., the optimized region
solution that removes redundancy. To achieve effective
optimization, the independent redundant point is set as the
undetermined disturbance (optimized blank processing)
in the ME2 section shown in the figure, and the state
evaluation result of the optimization interval is defined.
Through the functional assessment and the optimization
model, the proposed method is integrated with the
monitoring module. In the state of the obtained model,
the maintenance module further adjusts and repairs the
running gear system through the management personnel.

3.2.4. Feature selection. Six data sets based on
temperature, vibration, and impact need further feature
extraction. Different from PCA, the data processing
structure of SFA includes whitening and SVD on the time
derivative. The structure is complex and the main features
cannot be expressed through direct formula analysis.

This study uses the form of the fitting function to
analyze the slowest features of the two groups and make
the correlation test with original features. Figure 6 shows
the steps of the entire feature extraction procedure.

A smooth function is selected to obtain the two sets
of features through the highest correlation. Table 1 lists
the correlation between the original features and the two
groups of slowest features based on the analysis. Here,
sf2 and sf1 represent the slowest features of the two
groups. This paper takes the sum of squares due to error
(SSE), root mean squared error (RMSE), and R-square as
the standard correlation parameters. A larger R-square

Table 1. Related parameter results.
Goodness of fit xa, sf1 xb, sf1 xa, sf2 xb, sf2

SSE 735.7 648.4 2.034 10.36
R-square 0.0939 0.2015 0.9975 0.9872

Adjusted R-square 0.0666 0.1779 0.9974 0.9869
RMSE 0.9661 0.9067 0.0508 0.1146
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Fig. 5. Results of maximum entropy.

and a smaller SSE and RMSE indicate a higher correlation
degree. From this, analyzing the correlation with the
slowest features, two target features are found.

4. Case-study simulations and comparisons

Based on monitoring information on high-speed train
operation by CRRC Changchun Railway Vehicles Co.,
Ltd., a monitoring signal generated by sensors under a
set state of train operation is obtained. According to the
above principles, the resulting effective feature is selected
and extracted. The visualization of the modeling and
simulation analysis of the proposed method is completed
using the MATLAB simulation software.

4.1. Case-study analysis. Based on the necessity
and usefulness of the health assessment of running gear
systems in high-speed trains, a performance evaluation
model based on the SFA-HMM is proposed. To verify
the accuracy of the model, data from the running gear

system in high-speed trains are used. Figure 9 shows the
sensor position of the measured data. After analyzing
the performance of the running gear system, this paper
sets the index of the health evaluation. According to
performance indicators, Fig. 7 shows the trend of actual
monitored data. Due to the complexity of the real
environment and the limitation of acquisition conditions,
the data need to be denoised to reduce disturbances.
Figure 8 presents a trend chart after data normalization.

As for data collection, the measuring point position
of the running gear is shown in Fig. 9. To make the
collected data fully show the features’ state, data from
eight positions of sensors are extracted in the figure. After
stability and availability analysis of the data collected for
each point, the data for positions A and B are selected as
the input. To ensure the actual conditions, the monitoring
data whose speed is not zero are selected as the simulation
object from the original data.

In the next step, the data are processed through
SFA, and the slowest two sets of features are obtained
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Fig. 7. Raw data.

by estimating the covariance matrix. Further, through
the correlation analysis of slow features, the purpose
of feature selection is achieved, which prepares the
evaluation part.

4.2. Experimental analysis. The first 504 pieces of
operation data are selected from the high-speed train as
the training set of the HMM, and the training model meets
the evaluation requirements. The evaluation results of
the 309 test data are shown in Fig. 10, in which the
open disks signify the evaluation result, the line is the
correct status level; the second part of the figure shows
the selected two sets of slow features. After SFMEA and
optimization, the simulation results are shown in Fig. 11.
The RMSE is used as the verification index. The RMSE
of the proposed method model is measured and its value
is 0.0455. In addition, the RMSE value of the optimized
SFMEA method is 0.0130.
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Fig. 8. Data normalization.

Fig. 9. Position of sensors for data acquisition.

Table 2. Results of the comparison.
Deviation HMM SVM SFA-HMM SFMEA-HMM

RMSE 0.0714 0.2110 0.0455 0.0130

4.3. Comparative analysis. To further illustrate the
validity and accuracy of the model, two common health
assessment methods, the HMM and SVM, are compared
with the model method proposed in this article.

As shown in Fig. 12, the HMM is used for
comparison with the model, and the evaluation results
of the feature data are shown in the figure. After the
calculation of the RMSE, the error value is 0.0714.

The SVM is a statistical analysis-based classification
model like the HMM, and the researchers widely use it
as the main model and contrast of the fault diagnosis.
In a view of the SVM, the basic idea is to map the
input vector to a high-dimensional feature space by
nonlinear mappings. In the high-dimensional feature
space, a decision function is defined to construct an
optimal separation hyperplane. As shown in Fig. 13, the
SVM is used to analyze and evaluate the monitored data.
After calculation, the value of the RMSE is 0.2110. The
comparison clearly shows that the method proposed in this
paper is effective and relatively accurate. Table 2 shows
the comparison results of each method.
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Fig. 10. Feature data and simulation results of health assessment.
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Fig. 11. SFMA simulation results.

5. Conclusions

In this research, a performance evaluation method based
on the combination of SFMEA and a hidden Markov
probability distribution was proposed. In the context of
performance evaluation of the running gear system in
high-speed trains, the following tasks were carried out.
First, by analyzing the working principle, we selected
the feature points and screens out the slowest features
after dimensionality reduction. Then the feature selection
was completed to perform feature reverse matching by
correlation fitting. In the training part, the data were
classified in advance based on historical information and
experience. Next, the HMM completed model training
and state evaluation by SFMEA; further optimization was
achieved based on the analysis of monitoring statistics.
Finally, the simulation results were compared to verify the
effectiveness of the method.

This study made an in-depth analysis based on
effective deviations exhibited in statistics. Further

verification of the state transition showed that the
deviation performance of the slow feature had a strong
impact on the performance evaluation. It provides a
possibility for a subsequent study of the correlation
calculation between the deviation performance of slow
characteristics and state changes. However, there is still
room for improvements regarding the accuracy of the
evaluation and dealing with uncertain factors, and the
model needs to be further refined.
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