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Models are proposed to describe the heart’s action potential. A system of stochastic differential equations is used to
recreate pathological behaviour in the heart such as atrioventricular nodal reentrant tachycardia (AVNRT) and also AVNRT
with conduction aberration. Part of the population has abnormal accessory pathways: fast and slow. An additional pathway
is not always induced, since the deterministic model is not proper due to a stochasticity in this process. Introduction of a
stochastic term allows modelling a pre-excitation perturbation (such as unexpected excitation by premature contractions in
atrium (PAC)) which triggers the mechanism of AVNRT. Also, a system of AVNRT with additional conduction aberration,
which is a rare type of arrhythmia, is considered. The aim of this work is to propose a mathematical model superior to
the deterministic one that recreates this disease better and allows understanding its mechanism and physical dependencies,
which may help to propose a new therapy of AVNRT. Results are illustrated with numerical solutions.
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1. Introduction

Heart diseases are one of the leading causes of death
worldwide, especially conduction diseases, which can
lead to heart failure, such as supraventricular tachycardia.
In the face of the coronavirus epidemic, patients with
heart failure are at high risk. The data show that the
highest risk of death among COVID-19 patients who
have other conditions exists in the group of people with
cardiovascular diseases (Downing et al., 2022). This
is why early diagnosis and appropriate treatment of
cardiovascular diseases is so important. However, in
the case of arrhythmias, such as atrioventricular nodal
reentrant tachycardia (AVNRT), this is difficult. Although
AVNRT is the most common regular arrhythmia, affecting
25/1000 adults and accounting for 50–60% of all regular
arrhythmias of the heart (Małaczyńska-Rajpold et al.,
2012), it is not fully understood. For almost 60 years we
have known that the atrioventricular node has complex
structure where we have more conductivity pathways
which can be classified as fast or slow; see Fig. 1.

The first pathway is built of α fibers characterized

by slow conduction and a short refractory period, and
the second pathway is built of the β fiber, with faster
conduction and a longer refractory period. Such a system
makes it possible to develop AVNRT. Necessary for its
establishment is the trigger, which is usually premature
atrial excitation. Electrophysiological evidence for the
existence of two pathways with different conduction
and refractive times is the presence of the features of
two pathways through the AV node. It is present
in the cardiac electrophysiology study (EP study) as a
jump in the stimulation of the AV conduction curve
(Małaczyńska-Rajpold et al., 2012).

Although we try to understand the mechanism of
this arrhythmia using an invasive method of therapy,
we do not know the exact anatomy and physiology of
this structure. What do we know? This arrhythmia is
caused by reentry. It is a type of a supraventricular
tachycardia (SVT) and appears above a His bundle (an
element conducting an impulse from the atrioventricular
node to the interventricular septum and further to the
ventricular muscle). This tachycardia is paroxysmal and
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Fig. 1. Sketch of a typical location of slow/fast AVNRT (a), un-
common form of AVNRT: slow/slow (b).

rarely occurs for a long time. But when it lasts longer it
can lead to heart failure.

We can distinguish different forms of AVNRT:

• typical (common form, called slow/fast)—about
77% of all AVNRT,

• atypical (uncommon form, also called
fast/slow)—about 12% all of AVNRT,

• other forms of AV nodal reentrant arrhythmias
(slow/slow type)—11%; we have three types of
slow/slow AVNRT depending on where the slow
pathway is located, which is reflected by the
descending branch of the reentry loop, or more than
two reentry waves, etc. (Mani and Pavri, 2014;
Katrisis and Josephson, 2016; Kaneko et al., 2020).

These types depend on the location of the atrial
deflection between consecutive QRS complexes. For
simplicity we employ the combination of the Q, R
and S waves (QRS complex) that represents ventricular
depolarization. The form of AVNRT depends on
the multilevel architecture of the atrioventricular node.
The AVNRT circuit involves larger areas including the
atrioventricular junction, adjacent atrial structures and,
in particular, so-called atrial inputs, including at least
anterior-superior and postero-inferior entries, sometimes
also the left atrial entry.

In this paper, the research on modeling the pathology
of AVNRT is presented. We consider the atrioventricular
node (AV) as pacemaker centres made of special cells
similar to embryonic cells (Konturek, 2001). For years,
the most popular models of action potentials which occur
in the heart have consisted of differential equations such
as the van der Pol model. A syndrome of AVNRT is
usually short-lived and the rhythm returns quite quickly
to the heart’s sine rhythm. Our model of the typical type
of AVNRT and for the situation where we have additional
pathways should consider randomness in generating
paroxysmal arrhythmia of AVNRT. Deterministic models,

even though numerically very effective, are not very
suitable for studying the behaviour of such a system.

In this paper we propose a stochastic model of chosen
types of AVNRT. The van der Pol model for description of
the AVNRT pathology is considered (Jackowska-Zduniak
and Foryś, 2016; 2018). It is a phenomenological
model but without randomness. Jackowska-Zduniak and
Foryś (2018) obtained interesting results for various types
of AVNRT, but a given type of AVNRT is modelled
using only an exact description of the existing pathology
and there is no triggered source regarding physiological
behaviour.

To begin further research we must understand also
the sources of this problem and not only the behaviour
observed while the arrhythmias last. We try to find the
beginning of these symptoms, which has a stochastic
character. We know that AVNRT has a sudden paroxysmal
character so we need to add a stochastic term in our
model. The coexistence of AVNRT with other conduction
disorders is considered because then the clinical picture is
not obvious and the disorders are often paroxysmal. When
we understand complex physics of these pathologies,
this will make it possible to propose a correct treatment
of these types of AVNRT, based not only on invasive
methods but also pharmacotherapy.

2. Mathematical model

Deterministic models offer very good representations
of naturally occurring phenomena (the double-fire
phenomenon in the heart, tumor growth,
hypothalamus-pituitary axis, etc.), but they do not
represent everything. Stochastic representation takes into
account randomness that is included in all real world
events and thus represents more then its deterministic
counterpart. Some additional random excitation can cause
serious arrhythmias that may be even life threatening.
We know that, in the conductivity system of the heart,
there are a lot of chaotic behaviours; also physiological
behaviour of our heart has some arrhythmias which are
not a syndrome of a disease.

The first model of action potential in the heart
appeared in early 1920s; see the articles by Mobitz (1924)
as well as van der Pol and van der Mark (1928). In the
early 1950s, when experimental methods became more
advanced, Hodgkin and Huxley (1952) proposed a model
(HH model) of action potential based on experimental
results regarding the giant squid axon. The HH model
took into account the presence of channels in the cell
membrane and described in detail the formation of action
potential. The results of that research were awarded
a Nobel Prize in physiology and medicine in 1963.
Jackowska-Zduniak and Foryś (2018) proposed a system
of ordinary differential equations which is based on
the Hodgkin–Huxley model and allows reconstructing
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pathological behaviours in the heart conducting system,
such as AVNRT. In this work, Hodgkin–Huxley type
models with couplings and delays were considered.
Semi-phenomenological ionic models were modified to
cardiac action potential (AP) models in fundamental
investigations accomplished by D. Noble (Di Francesco
and Noble, 1985; Henggui et al., 2009). The Di
Francesco–Noble model consists of voltage-gated ionic
currents, ion pumps and exchangers, Ca2C-sequestration
and Ca2C-induced Ca2C-release which can describe a
Purkinje fiber (PF).

Tusscher and Panfilov (2006) proposed a new
model based on resent experimental restitution data and
developed dynamics of the Ca+ionic channel. The model
is used to recreate a phenomenon of alternations in a
single cell. Electrical alternans can be observed during
narrow atrioventricular junctional reentry tachycardia
with an additional pathway (e.g., Wolf–Parkinson–White
syndrome). But we should underline that the list of default
model parameter settings consists of 53 items. A large
number of equations and a large space of parameters in
HH-type models make us look for simplified models. This
is how the FitzHugh model arose, further developed by
Nagumo et al. (1962). The FitzHugh–Nagumo model is
a simplified 2D version of the Hodgkin–Huxley model
which models dynamics of action potential. This model
contains the van der Pol oscillator as a special case, so it
is also a relaxation oscillator. In literature, a mathematical
model of pathological behaviour in the cardiac system is
known, e.g., AVNRT.

Gamilov et al. (2019) proposed a mathematical
model of coronary circulation, which is suitable for
reconstruction of the myocardial blood flow change
during cardiac pacing and tachycardia. This model
is based on an unsteady viscous incompressible
fluid flow through the 1-dimensional elastic tube
network. Jackowska-Zduniak and Foryś (2018) described
atrioventricular nodal reentrant tachycardia using
modified coupled van der Pol models with delay. These
models reconstruct exactly mechanisms of existence of
AVNRT but not a source that triggers this pathology, while
it is important to propose a therapy for such a problem.
The results of numerical simulations show a physical side
of this pathology and help to better understand differences
and dependencies between different types of AVNRT.
The results of these works are in agreement with further
clinical experiments. Also in this paper mathematical
analysis of proposed model is made.

A new trend of adding a stochastic term to ordinary
differential equations can be observed in many papers.
The difficulty of modelling and treating heart diseases
arises with their complexity. The heart is regulated by
many biological factors (e.g., AVNRT is triggered by
stress or nicotine or unexpected premature contractions
(PAC)), at various scales, and an abnormal electrical

activity is a phenomenon emerging from dynamic
instability. Also unexpected excitations by premature
contractions such as PAC (in atrium) or PVC (in
ventriculum) contribute to arrhythmias. The question
doctors and researchers are asking is what is in PVC that
often leads to death. We do not know when it will occur,
it appears accidentally, it is unpredictable. This is where
we see room for our stochastic component.

Qu et al. (2014) considered nonlinearity and
stochasticity in a mathematical model of the heart. The
HH model considered is used to describe a cardiac
myocyte. Stochastic ion channel openings and closings
are modelled using Markov transitions. The proposed
complex model dynamics are dominated by microscopic
random fluctuations. Zheng et al. (2013) analyzed RR
intervals to the developed 1D model with stochastic
parameters which can jump to another deterministic
system within the same parameter family. The model
complies with the 2D embedding of angles from heart rate
data.

In many research works (e.g., Ghorbanian et al.,
2015; Kussela, 2004) authors consider a stochastic
modified van der Pol model to describe biological
problems. Ghorbanian et al. (2015) proposed a new
phenomenological model of the EEG. The model is based
on stochastic coupled Duffing–van der Pol equations.
Model parameters were optimized with respect to EEG
data. The results showed that this model can reconstruct
the frequency and entropy content of the EEG signal.
Also, Kussela (2004) applies a stochastic model in
biomedicine, to model the heart-rate fluctuations in
a time scale from minutes to hours. In the paper,
a one-dimensional Langevin-type stochastic differential
equation with a Gaussian white noise is considered.
Direct simulations of the stochastic model for normal
and pathologic cases can produce statistical parameters
similar to those of a real case. Leung (1998), Li et
al. (2019a; 2019b) and Shenghong et al. (2018) make a
mathematical analysis of a stochastic van der Pol model
(stochastic bifurcations, asymptotic stability). We did
not find a paper with a stochastic model to describe
tachycardia.

2.1. Model construction. We start describing a van
der Pol system which is used to recreate action potentials
in our model. The van der Pol equation was constructed
in the 1920s by the physicist Balthasar van der Pol as
a description of nonlinear oscillations in a triode circuit
(van der Pol, 1926). Relaxation is one of the most
important features of this equation. It is the ability to
adjust the frequency to that of the external inducement
system. This feature makes relaxation oscillators suitable
for modelling systems in which it is important to generate
a response to stimulation, with a matching frequency and a
constant amplitude. This property is important in creation
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of action potential in the conductivity system of the heart.
The van der Pol (vdP) equation has the form

d2x

dt2
+ x− μ(1− x2)

dx

dt
= 0, (1)

where 1
2μ(x

2 − 1) = α is a dumping constant, which is
a function of x, α is negative for |x| < 1 and positive
for |x| > 1 (on the assumption that μ > 0). The
model requires modifications to reflect the real properties
of action potential. Postnov et al. (1999) introduced a
nonlinear cubic term (Duffing term) into the equation
in place of the harmonic force term, thus obtaining
the expected phase space structure. The structure of
the phase space preserves features of the neural model:
saddle, node and focus. To make it easier to regulate
the frequency, a pair of independent parameters was
introduced instead of one parameter in the Duffing term,
(Grudziński, 2007). Thanks to this change, we are able to
separately manipulate the shape of the pulse and the times
of the pulses, which was impossible in the case of the vdP
oscillator, and it was not possible to enter the parameter in
the modified van der Pol model (Jackowska-Zduniak and
Foryś, 2018).

The modified van der Pol (mvdP) model takes the
following form:

ẋ = y, (2)

ẏ = −a(x2 − μ)y − fx(x + d)(x+ e),

where we have control parameters and x is the description
of action potential while y is the description of the
current which is connected with the potential. The main
property of the modified relaxation oscillator is the mutual
interaction of a limit cycle which is presented around an
unstable focus with a saddle and a stable node. This
allows reproducing correctly the refraction period and
non-linear phase sensitivity of the action potential of node
cells (Grudziński, 2007).

The model above can be treated as an SA node or
an AV node model. The reference values of parameters
are given as μ = 1, a = 5, d = 3, e = 7, f = 3
(Grudziński, 2007). Parameter values for the van der Pol
model were chosen such that the oscillation’s frequency
corresponds to a real frequency of sinoatrial (SA) and
atrioventricular (AV) nodes. The parameter a belongs to
the interval [0.5, 6], the parameter e is in the range [4, 12]
and the parameter f may change in the range [2.5, 3].
Parameter a influences time intervals between pulses. The
parameters e and d play a major role in the validation
process of the model; they regulate the location of steady
states in the phase space. The independent coefficient
f corresponds to a harmonic oscillator frequency. The
selection of appropriate parameters was done after a
verification of the model by Grudziński (2007).

2.2. First model construction. The first model
consists of two coupled modified van der Pol models
(it recreates slow/fast AVNRT), which were proposed by
Jackowska-Zduniak and Foryś (2018), and an additional
modified van der Pol model excited by some external
excitation. For the slow/fast type of AVNRT, we model
the fast pathway as the first modified van der Pol system
and the slow pathway as a second one. The difference
between these systems is related to the length of the period
of oscillations. The slow pathway is modelled as slower,
so we fit parameter e so as to be equal to 4.5 (three steady
states of the type described above exist). In the first system
all parameters are the same as the reference values; see
(P0) in the sequel.

We introduce a feedback and time delay in order
to reproduce the slow/fast type of AVNRT. Introducing
feedback loops entails the creation of waves which can
correspond to re-entry waves, which is presented in Fig. 1.
The feedback is introduced to the third equation because
the re-entry wave is from the slow pathway to the fast one.
Moreover, small delay is observed in this type of AVNRT.
The time when a wave goes along uncontrolled in order
to return to the node is reflected by the delay added to the
feedback part, which is presented by Jackowska-Zduniak
and Foryś (2018). But to this model we add also one
more modified van der Pol model which recreates the sine
rhythm (such as the fast rhythm in the first equation of
our model) but with additional external stimulation (noise,
external period pulses).

We add this external stimulation because AVNRT is
usually caused by premature excitations of atrial origin
(PAC). PAC is not a guiding rhythm, but paroxysmal
excitation of the system. The discharge interrupts the
sine rhythm and eventually leads to tachycardia. In the
literature (Brugada et al., 2019), three external excitations
are needed to set off tachycardia. In this paroxysmal
excitation or noise (two versions of external excitation)
we have our random term which leads to stochastic
differential equations.

Stochastic differential equations are not coupled
with the AVNRT model because we trigger our AVNRT
syndrome by performing switching when the period of our
sine rhythm is significantly different from a reference one,
which is T ≈ 1.37. The trigger is realized in a computer
code (Matlab) where the condition which compares the
currently measured period with the reference one is used.
If the obtained value is less or greater than the reference
one, the system is switched.

The first of the proposed models has the following
form:

ẋ0 = y0 + ‘external_excitation’,

ẏ0 = −a(x2
0 − 1)y0 − fx0(x0 + d)(x0 + e1), (3a)

mvdP submodel
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ẋ1 = y1 − k1x2,

ẏ1 = −a(x2
1 − 1)y1 − fx1(x1 + d)(x1 + e1),

ẋ2 = y2 − k2(x2 − x2(t− τ)), (3b)

ẏ2 = −a(x2
2 − 1)y2 − fx2(x2 + d)(x2 + e2),

slow/fast AVNRT submodel

where k1 and k2 denote coupling coefficients (describing
interaction between nodes in the heart), and τ is time
delay. The values of parameters are given as k1 = 0.75,
k2 = 0.2, a = 5, d = 3, e1 = 7, e2 = 4.5, f = 3;
we shall refer to this setting as (P0). Noise and external
excitation are added only in the first equation because x0

and y0 are related to the voltage and current, respectively,
which have a constant relationship for the given circuit.

Let ϕx2 and ϕy2 be arbitrary continuous functions
defined on the interval [−τ, 0]. Then there exists a unique
solution of Eqns. (3b) (part of the model with delay)
defined on [0,+∞). For the proof, see the work of
Zduniak et al. (2014).

External excitation is defined as follows:

1. Gaussian pulses:

G(t) =
A√
2πσ

e
−(t−tp)−

(
L((t−tp)+ 1

2σ2 ncycle
ncycle

)2

, (4)

where A is the amplitude of the pulse, tp is the time
of the first pulse, σ is the width of the pulse, ncycle is
the period between pulses. The reason to choose this
form is that we need to start with a pulse which has a
fixed spectral width. It is connected with the fact that
regular excitation may evoke a regular answer. We
know that the van der Pol system is phase sensitive,
and that, depending on the phase, excitation may
change the potential period length. This knowledge
is our starting point in using external excitation.

We consider a function of Gaussian pulses (see
Fig. 2) with given parameters: A = 5, tp = 10,
σ = 0.2, ncycle = 15; we shall refer to this setting
as (P1).

2. Noise:
The Ornstein–Uhlenbeck process turns out to be
central to the mathematical description of both white
noise and Brownian motion.

(a) Gaussian white noise.
The most common is white noise. The most
natural and simple generalization of Gaussian
white noise is provided by exponentially
correlated Gaussian noise, as generated by a
stationary Ornstein–Uhlenbeck process. We
assume that η(t) is a stationary process obeying

∂η

∂t
= −η

θ
+

GWN(t)

θ
,

θ > 0, where GWN(t) denotes Gaussian
white noise with 〈GWN(t)〉 = 0 and
〈GWN(t)GWN(t′)〉 = δ(t − t′). In the limit
of θ → 0, the case of Gaussian white noise is
recovered.

Gaussian white noise is presented in Fig. 3.

(b) Brownian motion.
The Wiener process (standard 1D Brownian
motion) of a random variable W (t) is a real
process and satisfies the following conditions:
(i) W (0) = 0; (ii) the process W (t)
has stationary and independent increments on
non-overlapping intervals; (iii) W (t) is a
Gaussian process with zero mean and variance
of increments,

〈[W (t2)−W (t1)]
2〉 = 2D(t2 − t1),

where t2 > t1, D is a diffusion coefficient.
In stochastic differential equations (SDEs) we
use a random perturbation which is presented
by dWt with a small positive value (ε) in
front of the perturbation term. The stochastic
differential equation has the following form:

dX(t) = f(X(t)) dt+ g(X(t)) dW (t), (5)

where f is a drift function and g is a diffusion
function (constant in our case).

A sample of Brownian motion is presented in
Fig. 4.

2.3. Second model construction. The second model
consisting of two coupled modified van der Pol models
(it reflects slow/fast AVNRT), which is proposed by
Jackowska-Zduniak and Foryś (2018), and the first
equation of this model is excited by external excitation.
Now we add this external stimulation PAC to model
slow/fast AVNRT. We have neither additional equations
nor switching, but we have our additional source of trigger
and we want to compare these results with the model with
switching.

The second model has the following form:

ẋ1 = y1 − k1x2 + ‘external_excitation’,

ẏ1 = −a(x2
1 − 1)y1 − fx1(x1 + d)(x1 + e1), (6)

ẋ2 = y2 − k2(x2 − x2(t− τ)),

ẏ2 = −a(x2
2 − 1)y2 − fx2(x2 + d)(x2 + e2),

where parameters and external excitation are defined as in
the first constructed model.
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Fig. 2. Gaussian pulses (4) for parameter setting (P1).
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Fig. 3. Gaussian white noise.
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Fig. 4. Sample of Brownian motion.

3. Numerical analysis

In the first step we recall the behaviour of the reference
van der Pol model without delay and couplings. We
present a plot of time series which shows a periodic
behaviour of our system; cf. Fig. 5. Figure 6 shows
a phase portrait, which presents a very rich structure of
the van der Pol oscillator—a limit cycle appearing in the
phase space. In this system, there are three steady states:
x1 = 0 (an unstable focus), x2 = −d (a saddle) and
x3 = −e (a stable node). The period of our reference
case is about 1.37, which is confirmed in Fig. 7.

The next model which we analyze is a slow/fast
van der Pol model, but without external excitation and
without switching. Now we observe only the behaviour
of the main part of our models (submodels). We
compare periodicity and also the behaviour of the phase
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Fig. 5. Dynamics of action potential for the reference mvdP
model, where the parameters are a = 5, d = 3, f = 3,
e = 7.
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Fig. 6. Phase portrait of the reference vdP model, where the pa-
rameters are given as in Fig. 5.
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Fig. 7. Period length for the reference case.

portrait under delay and coupling in the van der Pol
model. Also the main features of slow/fast AVNRT can
be observed. This submodel consists two conductivity
pathways (slow/fast) that coexist during tachycardia.

Numerical solutions of the slow/fast AVNRT
submodel are in agreement with theory of the slow/fast
type of AVNRT (Małaczyńska-Rajpold et al., 2012). The
length of the period (T = 1.05), after the initial time
in which we can observe a temporary transient state, is
about 35% shorter than the reference one (sine rhythm)
and also variation in the action potential cycle length
does not exceed 15% of the tachycardia cycle length,
which is in Fig. 8. In a new report on tachycardia these
guidelines are included in the diagnosis of this type of
tachycardia (Brugada et al., 2019). Also, we can observe
in Fig. 9 a jump, which is a characteristic feature before
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Fig. 8. Period length for a slow/fast AVNRT model.
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Fig. 9. Dynamics of action potential for the reference slow/fast
AVNRT model, The arrow in a square shows a charac-
teristic jump observed in this type of tachycardia as the
first symptom of pathology.

the appearance of tachycardia (Małaczyńska-Rajpold
et al., 2012). A typical jump was defined as a sudden
prolongation of an interval. After the jump the length of
the period is stabilized in the phase portrait; cf. Fig. 10.

Now we consider the first proposed model which
is given by Eqn. (3) and parameter setting (P0). Here
external excitation is given as Gaussian pulses. There
is no stochasticity, but in the beginning we compare the
perturbation which is regular and observe the behaviour
of our reference modified van der Pol model. Periodic
excitation should trigger a regular response. Changes in
the period in our first submodel of Eqn. (3) depend on the
switching to a slow/fast AVNRT submodel. We expect
three significant changes in the length (which reconstructs
three PACs) of the reference period (T ≈ 1.37) for the
function to switch to the next submodel (slow/fast AVNRT
submodel).

In Figs. 11–13 we can observe a bi-periodical
behaviour of mvdP with Gaussian pulses. A second
rhythm is forced by external excitation but after the
excitation the system tries to return to the previous state.
The length of the basic period fluctuates within T = 1.37
and the second length of the period is between 0.8 and 0.9.
In this case the system is stable and returns to the periodic
behaviour.
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Fig. 10. Solution in the (x1, y1) plane for a slow/fast AVNRT
model.
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Fig. 11. Time series for a modified van der Pol model excited
by Gaussian pulses.

The problem of the system given by Eqn. (3) with
the excitation (4) is shown in Fig. 14. A switching
between two submodels takes place when the period is
dramatically shorter so T is less than 1.

Now we consider the same excitation which is given
by (4) for the model given by (6). Numerical results for
this case are presented in Fig. 15. The change in the
length of the period is shown in Fig. 16. We observe a
bi-periodic behaviour during which T ≈ 1. It is a shorter
period typical for tachycardia, but after each Gaussian
pulse we observe one longer period between 1.3 and 1.4.
After this the system returns to the previous state. It is
true that the human heart rhythm with feedback on the
AV node is low-variable and it is difficult to throw it out
of balance. In this case we observe additional periods
which are results of our external excitation, and this is not
observed in clinical tachycardia. We should keep in mind
that this is a phenomenological model, so the results are
accurate as far as possible.

Deterministic theories assume that, in the case of
perturbations, such as Gaussian noise added to the
system, solutions of differential equations will leave the
neighbourhood of a stable limit cycle. In practice, for
some types of relaxation oscillators, it can be observed
that stochastic trajectories remain in the neighborhood of
a stable limit cycle (Dieci et al., 2016), which can be seen
in Fig. 17.
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Fig. 12. Phase portrait of a modified van der Pol model excited
by external excitation (Gaussian pulses).
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Fig. 13. Periods of a modified van der Pol model excited by a
Gaussian function.
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Fig. 14. Switching of an excited mvdP system to a slow/fast
AVNRT system.

We observe a reference modified van der Pol model
excited by white noise; there are three realization of
trajectories. The period is shorter than the reference
mvdP, but the behaviour is bi-periodical, and we have
some longer period. Around the local minimum of
x1(t) for each path we can observe that there appear
characteristic steps for additional excitation from SA.
This is in agreement with our assumption that we have
pre-excitation and it influences a modified van der Pol
submodel. Switching this submodel to an s/f AVNRT one
is possible if three longer periods appear; it is calculated
for the chosen path (cf. Fig. 18). The mean value and
variance function of x1 of time over 200 realizations
are shown in Figs. 19 and 20. In Fig. 19, we can
observe global oscillations and also a regular shape. Also
we observe a fluctuation of amplitudes in a stochastic
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Fig. 15. Time series for a slow/fast AVNRT model excited by
Gaussian pulses.
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Fig. 16. Period length for slow/fast AVNRT with Gaussian
pulses.
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Fig. 17. Time series of an mvdP model excited by Gaussian
white noise; three realizations of the trajectory.

waveform. Changes in the values of the amplitude are
not essential. The key is the preservation of system
vibrations and the change in the period length in relation
to the reference period. In Fig. 20, we can observe
strength synchronization of all paths but only at the
beginning of the stochastic waveform and their subsequent
desynchronization. This confirms the tendency of the
system to stay around the stable limit cycle and an
oscillatory character. The frequency of the peaks is similar
from one realization to another, so the time of switching
is similar for different paths of this model.

Now we analyze the model which is given by (6) with
the same noise as given above.

There are oscillations around the stable point,
but they are irregular for each path (see Figs. 21
and 22). There is a jump characteristic for tachycardia
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Fig. 18. Time series for the switching of a noisy mvdP system
to a slow/fast AVNRT system.
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Fig. 19. Mean value of a noisy mvdP system for 200 paths.
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Fig. 20. Variance function of a noisy mvdP system for 200
paths.

at the beginning of this arrhythmia cf. Fig. 23. In
this case arrhythmia depends on the presence of a
conduction aberration, and then the fragment responsible
for depolarization lengthens; thus the tachycardia period
becomes unnaturally lengthened, as described by Brugada
et al. (2019). It happens that tachycardia overlaps with
the already existing agitation, which disturbs its clinical
picture. At the same time, white noise added to the fast
path included in the reentry acts more as an additional
stimulus than a trigger.

The mean value of Eqn. (6) excited by GWN over
200 realizations is similar to that for modified van der
Pol with GWN but the frequency of the peaks is bigger,
while the variance function plots are very similar for both
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Fig. 21. Time series of slow/fast AVNRT with GWN for three
paths.
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Fig. 22. Period length for slow/fast AVNRT with GWN.
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Fig. 23. Time series of slow/fast AVNRT with GWN; the arrow
shows a jump.

models excited by Gaussian white noise.

The last type of excitation discussed in this section
is a Wiener process (Brownian motion). In the first step,
we consider a modified van der Pol submodel excited by a
Wiener process. In Fig. 24 we can observe a periodical
behaviour with a longer period T ≈ 1.75 than in the
reference model for two realizations of trajectories. One
path has no periodical behaviour, but intervals are also
longer than in the reference model, so the switching
is also present. Again, we can observe characteristic
steps around the local minimum of x1(t). The switching
between submodels is possible after three initial periods
because they are significantly longer than in the case of
the reference submodel. It is our trigger now. As in
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Fig. 24. Model mvdP perturbed by a Wiener process for three
paths.
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Fig. 25. Mean value of a noisy mvdP system for 200 paths.
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Fig. 26. Variance function of a noisy mvdP system for 200
paths.

the previous behaviour, we have a switching between
subsystems: the modified van der Pol model with the
Wiener process and a slow/fast atrioventricular model
with feedback and delay. In Fig. 25, the plot of the mean
has an oscillatory character with smaller frequency than
in the model with additional white noise, which we can
observe also in Fig. 27. The simulated variance is more
slowly varying than for the excitation by GW; see Fig. 26.
The oscillatory character of these realizations and similar
features allows us to obtain a trigger in the form of three
elongated or shortened pulses to induce tachycardia, i.e.,
to switch our model.

Now we consider Eqn. (6) with the noise given

above. For simplicity, in Eqn. (6) with Brownian motion
we assume that τ is zero. In Fig. 27, we observe a
multi-periodic behaviour for each path. But this periodical
behaviour is present all the time in the neighbourhood
limit cycle. Along with the stochastic disturbance of the
trajectory, the shape of the limit cycle slightly changes,
which we can see in Fig. 28 in the rectangle window (the
arrow indicates the alternation). This is related to getting
the trajectory closer to the saddle. Stable and unstable
manifolds of the saddle have influence on the shape of
the limit cycle, a recently slightly rounded spout is now
sharpened. This model can be interpreted as tachycardia
with an additional partial aberration of conduction. It
is caused by additional excitation with these coupled
models. As in the case of white noise, this excitation is
not a trigger but an additional perturbation which is known
in physiology and can be interpreted. Also for this case
the mean value and the variance function are similar as
in Figs. 25 and 26. A variability between realizations for
given stochastic noise is a valuable result, which shows
that even the feedback model is sensitive in each phase
to excitation, which tends to change the period, and to
pathological behaviour.

4. Conclusions

The analysis showed that the proposed switching model
is more suitable for modeling the AVNRT triggering
mechanism and tachycardia itself. Also, a stochastic
perturbation is more appropriate for modeling sudden
premature PAC excitation than a periodic one. Most of
the tachycardia features are reproduced in the proposed
model, starting with PAC excitations, and the jump
preceding the AVNRT arrhythmia phenomenon. It also
quantitatively correctly reproduces the range value of the
period length during tachycardia, which is 35% shorter
than the reference period (sine rhythm) and rhythm
variability during arrhythmia does not exceed 15%, as
confirmed in the medical literature (Brugada et al., 2019).

However, it is worth emphasizing that the model
given by Eqn. (6) recreates the actual conduction
aberrations that may coexist with tachycardia. The
model results are consistent with ECG traces where AV
dissociation occurs (quite rarely) but may do so neither
atria nor ventricles are part of the reentry (Brugada
et al., 2019). In this way, the additional stimulation
of the already coupled model modelled a more complex
arrhythmia phenomenon.

In further research a more effective algorithm to
calculate a stochastic problem as well as a therapy model
will be proposed. The author will consider also a
mathematical analysis of the proposed stochastic models.
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Fig. 27. Time series for a slow/fast AVNRT model (Eqn. (3b))
with noise (Brownian path); three paths.
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Fig. 28. Phase portrait for a slow/fast AVNRT model (Eqn. (3b))
with Brownian motion. Along with the stochastic dis-
turbance of the trajectory, the shape of the limit cycle
slightly changes; see the rectangle window (the arrow
indicates the alternation).
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