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To solve the mismatch between the supply and demand of shared electric vehicles (SEVs) caused by the uneven distribution
of SEVs in space and time, an SEV relocating optimization model is designed based on a reward mechanism. The aim of
the model is to achieve a cost-minimized rebalancing of the SEV system. Users are guided to attend the relocating SEVs
by a reward mechanism, and employees can continuously relocate multiple SEVs before returning to the supply site. The
optimization problem is solved by a heuristic column generation algorithm, in which the driving routes of employees are
added into a pool by column generation iteratively. In the pricing subproblem of column generation, the Shuffled Complex
Evolution–University of Arizona (SCE–UA) is designed to generate a driving route. The proposed model is verified with
the actual data of the Dalian city. The results show that our model can reduce the total cost of relocating and improve the
service efficiency.
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1. Introduction
In order to alleviate the low efficiency of urban road
networks and the aggravation of energy consumption
caused by the large number of automobiles, a more
efficient mode of transportation has been explored
constantly. Due to the popularization of shared
electric vehicles (SEVs) in recent years, many scientists
have thoroughly explored this new way of travel.
The research on SEV operation mainly includes two
layers: a strategic planning layer and an operation
planning layer. The former refers to the medium- and
long-term decision-making problems faced by the SEV
operation enterprises, mainly including site selection and
infrastructure layout (Fassi et al., 2012; Brandstatter et al.,
2017; Bruglieri et al., 2017; Cao et al., 2022). The latter
refers to the short-term decision problem faced by the
SEV operation enterprises, that is, the problems faced by
the enterprises in daily service management (Ciari et al.,
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2013; Jorge and Correia, 2013; Kaspi et al., 2014; Boyaci
et al., 2015; Weikl and Bogenberger, 2015; Deng and
Cardin, 2018).

For SEV operators, the main challenge is to
rebalance the system before a decrease in customer
satisfaction and a shortage of available vehicles. This
is also the core of SEV relocation (Jorge and Correia,
2013). Currently, most SEV operation systems have low
vehicle turnover and uneven supplies and demands of
vehicles between stations, which results in high operation
costs and low customer satisfaction. According to
various participants, there are two ways to optimize the
relocation of SEVs. One is that the enterprise hires the
corresponding employee to arrange the vehicles, which
is the method adopted by most enterprises at present
(Almeida and Pais, 2012; Bruglieri et al., 2014). The other
is to provide users with incentives (such as discounts,
coupons, etc.) to guide them to participate in the
relocation of SEVs, so as to reduce the employment
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and management costs of employees (Di Febbraro et al.,
2019; Wang et al., 2019). The relocating method based
on employees needs to pay a lot of manpower costs,
and the relocation is relatively lagging behind. The
relocating method based on users is developed under this
background.

At present, these optimization methods aim at a
single participator, and seldom consider the impact of
users’ travel behavior when users’ satisfaction is not
high, and the actual operation is not flexible and low
cost. Users travel with the tide, which also led to the
sharing of electric vehicles in the space-time distribution
imbalance (Di Febbraro et al., 2019). For operators, the
mismatch between station vehicle supply and demand or
the number of unreasonable inventory range will lead to
lower customer satisfaction, a decline in system service
levels and so on (Tian et al., 2021). At the same time,
the emergence of new energy vehicles put forward new
requirements for vehicle relocation. Unlike traditional
vehicles, the relocation of SEVs should consider the
impact of battery power (Boyaci et al., 2015).

An SEV user reward mechanism is established.
An effective user reward mechanism can maximize the
probability of user participation, so as to guide them
to voluntarily choose to participate in the scheduling
of SEVs. By confirming the consistency between
the disaggregation model based on utility maximization
theory and the target user’s mental state, this paper draws
the conclusion that the former can describe the residents’
travel choice behavior efficiently and the latter can be
used to analyze the users’ choice behavior. Based on the
assumption that the user is a rational person and the results
of the user choice behavior analysis, this paper completes
the formulation of the user reward mechanism. The
optimization model of the rewarded user and employee
relocation of SEV is constructed.

On the premise of satisfying the constraints of the
time window, battery power and the departure station,
according to the corresponding incentive rules, the user
is guided to adjust the original travel plan so that
the employee can complete the vehicle relocation task
together, so as to achieve the goal of minimizing the
total scheduling cost including the user incentive cost, the
operator cost, the vehicle power consumption cost and the
penalty cost for incomplete orders. The Shuffled Complex
Evolution–University of Arizona (SCE–UA) is a global
optimization algorithm, which combines the advantages
of stochastic search algorithms, the simplex method,
cluster analysis and biological competitive evolution. This
method can optimize several parameters of the model
at the same time, and it is an effective method for
parameter optimization. Considering the characteristics
of the research problem and the model, the SCE–UA is
used to solve the problem.

This paper provides the following two contributions.

Fig. 1. Description of the optimization problem of SEV relocat-
ing.

First of all, through the investigation and analysis of the
relevant factors that affect the user travel path choice
behavior, this paper developed a corresponding reward
mechanism. Secondly, based on certain assumptions,
this paper establishes a two-agent relocation optimization
model of SEVs under an incentive mechanism, and uses
the SCE–UA algorithm for solution. The user-based
vehicle relocation method and the employee-based vehicle
relocation method are combined to establish a dual agent
relocation strategy for SEVs.

The reminder of the paper is organized as follows:
In Section 2, the problem of SEV relocating is described
and Section 3 constructs a SEVs relocating optimization
model. A column generation-based heuristic algorithm is
introduced in Section 4. Then, Section 5 proposes a case
study and the conclusions are discussed in Section 6.

2. Problem description
The employee-based SEV relocating optimization method
requires a large amount of labor cost, while the user-based
relocating scheme is less flexible. Here, we will
combine the advantages of the two modes to design an
SEV relocating optimization method in which both the
employee and the user are involved. At the same time,
on the basis of the research on the reward mechanism
of SEVs, this paper formulates a corresponding reward
mechanism to guide users to voluntarily accept the
relocating travel scheme, and complete the inventory
rebalancing of SEVs with employees.

In this paper, the SEV scheduling problem is
regarded as a special vehicle routing problem with
pickup-delivery and time windows. In Fig. 1, U is the
required time for the user, D is the time window of pickup
location, and P is the time window of parking location.
In the SEV operating system, sites with inventory levels
higher than the upper limit of the threshold are the supply
points for SEV scheduling, and sites below the lower
limit of the threshold are the SEV demand points. The
absolute value of the difference between the existing SEV
inventory of each site and the corresponding threshold
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is the number of SEVs participating in the relocating
process. At the same time, each station has a time window,
and a certain number of employees are configured to
wait to receive tasks. After the employees complete
the relocating work, they would use other vehicles such
as electric bicycles to return to the departure station.
Therefore, there is no relocating center in the operation
system. The SEVs participating in the relocating are
homogeneous, the remaining power in the initial state is
known, and the residual value of the power after reaching
the demand point should meet the basic requirements for
power consumption in the next trip. In addition, the
order information of APP users is available, that is, the
pick-up/parking point, pick-up time and final destination
are known, but the user may change his or her initial
parking point according to the SEV scheduling to receive
the reward incentives.

Under the above conditions, the questions of how to
determine the travel routes and departure time of SEVs,
and to minimize the sum of user incentive costs, staff
costs, SEV operation costs, and penalty costs for failed
orders are the main topics addressed in this paper.

3. Model development
3.1. Model hypothesis and premises. To further
simplify the relocating and optimization problem of
SEVs, this article makes the following assumptions based
on relevant literature, professional common sense, and the
results of questionnaire samples:

Scheduling tasks. This paper assumes that the
current relocating requirements are known, including
the proposed relocating SEV set V , SEV transfer to
a site set D, and SEV transfer away for a site set
O. Since there may be multiple SEVs that need to be
transferred to or from some sites, in order to simplify the
one-point-multi-vehicle problem, each SEV or each pair
of relocating starting points are regarded as two virtual
points, that is, if site 1 has three SEVs needed to be
transferred out, then the physical site 1 is regarded as
three SEVs being transferred out from the virtual site;
thus, the one-point-multi-vehicle problem is transformed
into a one-point-one-vehicle relocating problem. To solve
the problem by an exchange mutation operator of the
genetic algorithm, the virtual site pairs for mutation must
be generated according to certain probability. At this time,
the relocating task set is V , and the SEV transfer into the
virtual site set is D′. The set of SEVs transferred away
from the virtual station is O′.

For users and employees. Knowing that there are K
travel orders, the user has a certain probability Pk to
choose whether or not to participate in SEV relocating.
This probability is affected by ak, the discount on the
travel plan, w disk the walking distance after getting

off the SEV, and feek, the travel cost. If the user
participates in the relocating, the enterprise needs to pay
the corresponding incentive cost, and the user leaves
the system after completing a task. Among them, ak
is determined through the statistical analysis of stated
preference survey (SP survey) results of the logit model
and travel plans based on the random utility multinomial
logit (MNL) model to select the incentive mechanism

ai =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

0.21821

(
0.69− 0.38 (Xi11 −Xi21)

−2.57 (Xi12 −Xi22)
)
,

ddis ≤ 10 km,

1

0.19603

(
0.69− 0.48 (Xi11 −Xi21)

−2.77 (Xi12 −Xi22)
)
,

10 km < ddis ≤ 20 km,

1

0.14692

(
0.69− 0.38 (Xi11 −Xi21)

−3.22 (Xi12 −Xi22)
)
,

ddis > 20 km.

(1)

Here Xi11,Xi12, Xi22 are the attribute variables of
the utility function corresponding to the MNL model,
where the travel costs, the walking distance after
disembarkation, and the discounts are represented.

The investigation is conducted to find out the
selection of the original travel plan and a scheduling
travel plan by the users of SEVs. The experimental
situation is not experienced by the respondents, and the
information of the relevant stations and routes in the
questionnaire needs to be hypothesized, which belongs to
the SP investigation. Survey statistics of users regarding
gender, age, education, work, income and car ownership
are available. In addition, according to the survey,
in contrast to shared bicycle operation companies, the
current SEV companies will relocate a varying number of
maintainers at different sites or regions, instead of setting
up a relocating center. Therefore, in order to be more in
line with the actual situation, this paper sets an unlimited
number of employees participating in the relocating, and
there are corresponding employees waiting to accept
tasks at each SEV site. After receiving the instruction,
the employees of the designated site will immediately
drive the SEV to the corresponding demand site, and
then return to the site or area under their jurisdiction
by riding an electric bicycle. At this time, the cost of
employees’ participating in relocating is represented by
the SEV compound cost per unit distance, which includes
electric bicycle power consumption, employee wages, and
a potential loss of income.

System site. According to the operation conditions of
SEVs, this paper considers the influence of the station
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service time window
[
the

n, thln
]
, n ∈ O′ ∪ D′ on the

choice of the SEV driving routes. For an SEV transferred
from station i and an SEV transferred to station j, if the
user’s arrival time T k

n or the employee’s arrival time tzn is
earlier than the service time window, there might be no car
available because the previous order has not been closed;
if the arrival time is later than this threshold range, it may
affect the next phase of user orders, and finally cause the
loss of order revenue.

SEV. In fact, the power consumption of SEVs has a
certain relationship with factors such as travel distance,
driving conditions, temperature, accumulated battery
usage time, battery internal electrical structure and SOC
characteristics. Here, in order to simplify this model,
it is assumed that the battery power consumption is
linearly related to electric power consumption, and the
SEV participating in the relocating are all of the same
type, the battery power is set to G when fully charged, and
the power consumption per unit distance is the same, set
to g. All SEVs run at the same constant speed denoted
by s. The remaining power e of the SEV represents
the remaining driving range of the SEV, and also affects
whether it can participate in the relocating task of a user
or an employee. When the SEV is at O′, that is n ∈ O′,
en represents the remaining power of the SEV at time
the

n; taking into account the use of the SEV in the next
relocating cycle, when the SEV is at D′, that is n ∈ D′,
en represents the minimum remaining power of the SEV
at the time thl

n. Each SEV can start charging immediately
after arriving at the station with the same charging pile
equipment and the charging efficiency per unit time is h.
When it is used or the battery is fully charged, the charging
ends. In addition, the car is fully charged at the beginning
of daily operation and cannot be charged during driving.

3.2. Model symbol description. This problem is
defined in an undirected network with a set of physical
sites N , N = O ∪ D. At the same time, each physical
site is transformed into a corresponding number of virtual
sites; then the set of virtual sites can be expressed as
N0 = {0, 1, 2, . . . , n }, n ∈ N0, where site 0 represents a
virtual distribution center. Other variables and parameters
involved in the model are shown in Table 1.

3.3. Model building. This paper establishes an
optimization model with the objective of minimizing
the total cost of enterprise relocating and the cost is
divided into three parts. One part is the cost invested
by the enterprise on users and employees, which is the
cost associated with people; the second part is the cost
of power consumption during the relocating process,
which is the cost associated with the SEVs; the third
part is the loss of user order cancellation due to the

uncompleted relocating task, which is the penalty cost of
the uncompleted relocating task.

User and employee related cost. The user-related cost is
the user incentive cost,

∑
ak, invested by the enterprise.

The cost is determined by the amount of user incentives
and the number of users participating in the relocating.
Whether or not user k participates in the relocating task
from site i to site j is represented by the decision variable
xk
ij , which is a binary variable. When the probability Pk

of a user with a scheduling scheme is greater than or equal
to the threshold 2/3, this can be interpreted that user k
agrees to participate in the relocating task from site i to
site j, where xk

ij is equal to 1. The corresponding user k’s
incentive cost is ak, otherwise it is equal to 0. The initial
site i at which user k participates in the relocating is any
point in the virtual site set converted from the physical site
where user is located, that is i ∈ rk , where rk is the virtual
initial site set of the user k. The cost associated with
the employee is equal to the product of his or her travel
time involved in relocating and the SEV compound cost
coefficient pz . Whether or not the employee z participates
in the relocating task from site i to site j is represented
by a decision variable yzij , which is a 0-1 variable, and the
initial site i at which the employee z participates in the
relocating is the virtual initial site for the transformation
of the site under its jurisdiction.

Electricity consumption cost of SEV. The cost is related
to the mileage of SEVs. The mileage includes the mileage
of users using the SEVs and the mileage of the SEVs
relocated by employees.

Penalty costs for unfinished relocating tasks. Reasons
such as low user participation or the number of
participating relocated SEV being less than the demand
may result in some relocating tasks not being completed,
so that there might be no SEV available at the demand site
in the future, resulting in a potential loss of order revenue.
Therefore, the model should meet the known relocating
requirements as much as possible and introduce penalty
costs pm caused by uncompleted tasks.

With reference to the above assumptions and
requirements, the following objective function is
established:

min

K∑

k=1

∑

j∈D′

∑

∈rk

akx
k
ij

+
pz
s

Z∑

z=1

∑

j∈D′

∑

i∈O′
yzijdij

+ pe

Z∑

z=1

K∑

k=1

∑

j∈D′

∑

i∈O′

(
xk
ij + yzij

)
dij

+ pm

[

v −
Z∑

z=1

K∑

k=1

∑

j∈D′

∑

i∈O′

(
xk
ij + yzij

)
]

(2)
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Table 1. Notation.
Parameter Definition

pz compound cost coefficient of enterprises
pe power consumption cost per unit distance
pm punishment costs for incomplete unit orders
G battery capacity at full charge
g power consumption per unit distance
h unit time charge efficiency
en remaining power of the SEV at station n
then the earliest starting moment of Shared EV Site Service
thln the latest ending moment of Shared EV Site Service
s average speed of the SEV
λ an infinitely large positive number
v the number of SEVs required or relocated
dij distance between site i and site j
N physical site collection, N = O ∪D
N0 virtual site collection, N0 = O′ ∪D′ ∪O
O SEV transferred from the physical site collection
D SEV transferred to the physical site collection
O′ SEV transferred from the virtual site collection
D′ SEV transferred to the virtual site collection
V relocating task set or participating SEV relocating set
rk virtual SEV off site collection converted by user k’s physical site, rk ∈ O′

K collection of users accessing SEV relocating points, k ∈ K
Z collection of employees who govern SEV departures, z ∈ Z
xk
ij user k is 1 when participating in site i to site j SEV scheduling, otherwise equal to 0

yzij employee z participates in site i to site j SEV scheduling at 1, otherwise equal to 0
T k
n time when user k arrived at site n
tzn the time that employees z arrives at site n
ak user k participates in SEV scheduling and gets a discount

subject to the constraints

ak = f ′
(
2

3
,w disk1,w disk2, feek1, feek2

)

,

∀k ∈ {1, 2, . . . ,K} ,
(3)

∑

j∈D′

∑

i∈O′
xk
ij ≤ 1, ∀k ∈ {1, 2, . . . ,K} , (4)

∑

j∈D′

∑

i∈O′
yzij ≤ 1, ∀z ∈ {1, 2, . . . , Z} , (5)

∑

j∈D′

∑

i∈{ i|i∈O′,i/∈rk}
xk
ij = 0, ∀k ∈ {1, 2, . . . ,K} ,

(6)

K∑

k=1

∑

j∈D′
xk
ij +

Z∑

z=1

∑

j∈D′
yzij ≤ 1, ∀i ∈ O′, (7)

K∑

k=1

∑

i∈O′
xk
ij +

Z∑

z=1

∑

i∈O′
yzij ≤ 1, ∀j ∈ D′, (8)

yzijdijg ≤ L, ∀z ∈ {1, 2 . . . Z} ,
∀i ∈ D′, ∀j ∈ O′, (9)

the
n ≤ T k

n ≤ thl
n,

∀k ∈ {1, 2, . . . ,K} , ∀n ∈ N0, (10)

the
n ≤ tzn ≤ thl

n,

∀z ∈ {1, 2, . . . , Z} , ∀n ∈ N0, (11)

T k
i +

dij
s
xk
ij − λ

(
1− xk

ij

) ≤ T k
j ,

∀k ∈ {1, 2, . . . ,K} , ∀i ∈ O′, ∀j ∈ D′, (12)
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tzi +
dij
s
yzij − λ

(
1− yzij

) ≤ tzj ,

∀z ∈ {1, 2, . . . , Z} , ∀i ∈ O′, ∀j ∈ D′, (13)

tzi +
dij
u

yzij − λ
(
1− yzij

) ≤ tzj ,

∀z ∈ {1, 2, . . . , Z} , ∀i ∈ D′, ∀j ∈ O′, (14)

xk
ijdijg ≤ ei + h

(
T k
i − thei

) ≤ G,

∀k ∈ {1, 2, . . . ,K} , ∀i ∈ rk, ∀j ∈ D′, (15)

yzijdijg ≤ ei + h (tzi − thei ) ≤ G,

∀z ∈ {1, 2, . . . , Z} , ∀i ∈ O′, ∀j ∈ D′, (16)

0 ≤ en ≤ G, ∀n ∈ N0, (17)

ej − h
(

thl
j − T k

j

)
− λ

(
1− xk

ij

)

≤ ei + h
(
T k
i − the

i

)− xk
ijdijg

∀k ∈ {1, 2, . . . ,K} , ∀i ∈ rk, ∀j ∈ D′, (18)

ej − h
(

thl
j − tzj

)
− λ

(
1− yzij

)

≤ ei + h (tzi − the
i )− yzijdijg

∀z ∈ {1, 2, . . . , Z} , ∀i ∈ O′, ∀j ∈ D′, (19)

xk
ij ∈ {0, 1} , ∀k ∈ {1, 2, . . . ,K} , (20)

yzij ∈ {0, 1} , ∀z ∈ {1, 2, . . . , Z} , (21)

ak ≥ 1.5, ∀k ∈ {1, 2, . . . ,K} . (22)

Constraint (3) is the calculation formula of incentive
cost derived from the user reward mechanism. Constraints
(4), (5) and (6) indicate that any relocating personnel starts
from the virtual relocating center and only participates
in the relocating of only one car; at the same time, for
users participating in the relocating, the subsequent sites
of the relocating center only belong to the virtual point
collection derived from the actual site where the user is
located. Constraints (7) and (8) indicate that any site

can only be visited once. Constraints (9) indicate that
the power consumption of electric bicycle routes cannot
exceed the battery capacity. Constraints (10) and (11) are
arrival time constraints. They indicate that the time for
any relocating personnel to arrive at a site must be within
the time window of the site. Constraints (12) and (13)
establish a functional relationship between the departure
time and the arrival time of the user and the employee.
Constraints (14) construct the relationship between the
departure time of the last employee’s scheduling route
and the arrival time of the next employee’s scheduling
route. Constraints (15)–(17) are the power constraints of
the SEV to ensure that the car can drive the corresponding
distance; taking into account the use of the next stage
of the car after the relocating is completed, Eqns. (18)
and (19) define constraints on the residual value of the
power after the shared car arrives at the SEV demand site.
Constraints (20) and (21) represent that xk

ij and yzij are 0-1
decision variables. Constraints (22) indicate that the user
incentive price (that is, the incentive cost) should be a real
number no less than 1.5.

4. Column generation-based heuristic
algorithm

The above-mentioned model is not practical to solve
by a business solver such as ILOG CPLEX directly,
even for a moderate size instance. A Dantzig–Wolfe
decomposition of this model is used to obtain a master
problem and a pricing subproblem. The cardinality of the
variables in the master problem is extremely large, thus a
column generation-based heuristic algorithm (Desrosiers
and Lübbecke, 2005) is proposed.

4.1. Column generation framework. This paper
transforms the above-mentioned formulation into a sets
partitioning formulation (Feillet et al., 2007), which is
regarded as the master problem. Let ΩE and ΩU be the
sets of users driving routes and employees driving routes,
respectively. Cr is the cost of driving route r. The
parameter αi

r is equal to 1 if the driving route r visits node
i, otherwise it is 0. The decision variables θr is equal to
1 if the driving route r is selected, otherwise it is 0. The
decision variables ηi is equal to 1 if node i is not served,
otherwise 0. The master problem can be formulated as
follows:

min
∑

r∈ΩE∪ΩU

Crθr +
∑

i∈D′
pmηi (23)

subject to the constraints

∑

r∈ΩE∪ΩU

αi
rθr + ηi ≥ 1, ∀i ∈ D′, (24)
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∑

r∈ΩE

θr ≤ K, (25)

θr ∈ {0, 1} , ∀r ∈ ΩE ∪ ΩU , (26)

ηi ∈ {0, 1} , ∀i ∈ D′. (27)

The objective function (23) to be minimized
expresses the total cost including the transportation cost
and the penalty cost. Constraints (24) mean that each
virtual site should be visited at least once. Constraints
(25) limit the number of available employees. Constraints
(26) and (27) clarify the domain of decision variables.

Given a dual solution to the master problem, the
pricing subproblem is to find a master problem variable
that has the least reduced cost. Solving the pricing
subproblem is essentially equivalent to enumerating all
feasible driving routes. Let πi and ρ be the dual variables
of constraints (24) and (25), respectively. The reduced
cost of a driving route r is given by

C̄r = Cr −
∑

i∈D′
αi
rπi − ρ. (28)

The pricing subproblem is essentially an elementary
shortest path problem with resource constraints
(ESPPRC). The framework of the column generation
algorithm is shown in Fig. 2. Since the ESPPRC is
an NP-hard problem (Desaulniers et al., 2008), it will
consume most computing time in the process of column
generation. In the next section, we propose the SCE–UA
algorithm for solving the pricing subproblem.

4.2. SCE–UA algorithm. Duan (1991) proposed the
SCE–UA, a global optimization algorithm based on a
natural evolution process. The SCE–UA is designed
with a synthesis of four concepts: (i) combination
of deterministic and probabilistic methodologies; (ii)
systematic evolution of a complex of points spanning the
parameter space, in the direction of a global improvement;
(iii) competitive evolution; (iv) complex shuffling. The
SCE–UA uses a population composed of sample points.
The population is partitioned into several complexes, each
of which is permitted to evolve independently of the
others. After a specified number of generations, the
complexes are forced to mix, forming new complexes
through a shuffling process. This procedure enhances
survivability by sharing the information that is gained
independently by each complex (Duan et al., 1993). So
far, the SCE–UA algorithm has been successfully applied
to deal with optimal problems in research areas related
to hydrology (Yapo et al., 1996; 1998; Freedman et al.,
1998; Van Griensven and Bauwens, 2003; Yu et al., 2020).

This paper attempts to solve our relocating
optimization problem by the SCE–UA algorithm.
SCE–UA combines some advantages from several
existing methods, including random search, the genetic
algorithm and the complex method. The basic idea of
the SCE–UA algorithm consists in integrating the search
technology with the evolution principle of competition in
nature.

Thyer et al. (1999) compared the SCE–UA algorithm
with the MSX algorithm and the genetic algorithm to
test the performance of these algorithms for conceptual
rainfall-runoff models. The calculation results indicated
that the SCE–UA algorithm provided a better performance
on robustness and convergence than the others. Thus, the
SCE–UA algorithm is selected for solving the proposed
problem formulation.

The calculation process of the SCE–UA can be
shown as follows:

Step 1. Initialization. Firstly, the problem is assumed in
n dimensions. Generate v (v ≥ 1) complexes which
participate in the evolution and m (m ≥ n + 1)
samples. Accordingly, the number of points can be
calculated as s = vm.

Step 2. Generate a sample. Generate randomly s sample
points in the feasible space.

Step 3. Rank points. Evaluate the function at each point
and rank these points according to the function value.

Step 4. Partition into complexes. Partition v complexes
such that the first complex contains every
(v (j − 1) + 1)-th ranked point, the h complex
contains every (v (j − 1) + h)-th ranked point,
where j = 1, 2, . . . ,m, and h = 1, 2, . . . , v.

Step 5. Evolve complexes. The competitive complex
evolution (CCE) algorithm is the key component of
the SCE–UA algorithm. In the CCE algorithm, every
point of a complex is a potential parent which can
participate in the process of reproducing offspring
(Duan et al., 1994). Evolve each complex according
to the CCE algorithm which is introduced below.

(a) Initialization. Set z, λ, β, where 2 ≤ z ≤ m, λ ≥ 1,
β ≥ 1.

(b) Construct a subcomplex. Construct a subcomplex
by randomly selecting z points from the complex
according to the trapezoidal probability distribution
which makes the best point chosen with the
maximum probability.

(c) Rank points. Evaluate the function at each point in
the subcomplex and rank these points according to
the function value. Then mark the worst point in the
subcomplex and calculate the centroid of other z − 1
points except the worst point.
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Fig. 2. Framework of column generation.

(d) Reflection step. Reflect the worst point through the
centroid. If the newly generated point is outside
the feasible space, randomly generate a point in the
feasible space to replace the worst point. Then go to
Step 6. Otherwise, if the reflected point is better than
the worst point, then replace the worst point with the
reflected point, go to Step 6.

(e) Check convergence. Generate the contracted point by
computing a point halfway between the worst point
and the centroid. If the contracted point is better
than the worst point, replace the worst point with
the contracted point. Otherwise, randomly generate a
point in the feasible space to replace the worst point,
go to (f).

(f) Repeat (b)–(e) λ times, λ ≥ 1, where λ is the
number of consecutive offspring generated by the
subcomplex.

(g) Repeat (a)–(f) β times, β ≥ 1, where β is the number

of evolution steps of each complex.

Step 6. Shuffle complexes. Reconsolidate the points in
the evolved complexes and form a new sample set.

Step 7. Check convergence. If all the convergence
conditions are met, then stop; otherwise, go to Step 3.

5. Case studies
Consider the car-sharing service project in the Dalian
High-tech Park in the Liaoning Province as an example.
The operating model of the project is a single-program
leasing based on the site, and the charging adopts the form
of “actual mileage + actual travel time,” which is facing
the problem of imbalance between the supply and demand
of SEVs among the outlets.

5.1. Data collection and pre-processing. After
computing preliminary statistics and screening, we
selected 284 historical order data on June 20, 2018 in the



A coordinated optimization of rewarded users and employees . . . 531

Fig. 3. Car-sharing service project in the Dalian High-tech Park.

system. In order to prevent invalid or wrong information
in the original order data from affecting the results, first
pre-process these historical data, and then the following
specific steps are executed:

1. Delete the order data with only reservation
information, which regard invalid orders because
such orders do not actually take place in any trips.

2. Delete the order data with multiple duplicate records.

3. Delete the order data whose actual travel times are
less than two minutes, and generally such orders do
not actually have normal travel.

4. Delete the order data with actual travel mileages of
more than 150 km.

5. Delete the order data lacking important information.

6. Delete different user orders at the departure station
and the departure station where the relocating order
is placed, and these users cannot participate in the
SEV relocating and do not belong to the user set in
this model.

7. Delete the orders whose pick-up or return stations are
not located in Dalian.

After data cleaning, the scheduling period was
set to 3 hours, and the order data were limited to
the period of 15:00–18:00 p.m. on June 20, 2018,
including 23 scheduling order data and 49 user order data.
Further, the orders of the users whose pickup site is the
above-mentioned SEV transfer site were filtered out to
form a set of users participating in the relocating task.
After sorting out, the above relocating orders involve a
total of 10 SEV sites. The settings of other unknown
parameters in the model are shown in Table 2.

Table 2. Model related parameter settings.
Parameter name Numeric value

pz 1.05 RMB/min
pe 0.21 RMB//km
pm 39.20 RMB/order
G 25.5 kWh
g 0.17 kWh/km
h 0.07 kWh/min
s 30 km/h

5.2. Solution results and analysis. The column
generation based heuristic SCE–UA algorithm is used to
solve the dual-agent SEV relocating optimization problem
based on the reward mechanism.

In the proposed algorithm, we can generate at
most 5000 driving routes before solving an integer
programming problem. According to the actual data, the
relevant parameters of the SCE–UA algorithm are set as
follows: Generate 4 complexes which participate in the
evolution and 20 samples. Accordingly, the number of
points is 80. The values of the parameters z, λ and β are
set as 10, 1 and 20, respectively.

The analysis of the optimization results of the
relocating of SEV under the incentive mechanism can be
summarized as the following steps:

(i) Preferential discounts have some influence on the
user’s travel plan selection, especially in areas with
a high coverage of the network, and the effect of the
reward amount on users is very obvious when there
is less difference in walking distance after getting off
the SEV.

(ii) The user cannot completely replace the employee
to complete all SEV scheduling tasks, and can only
relieve the pressure of the imbalance between the
supply and demand of SEVs at some sites in the
operating system.

(iii) The participation of SEV users lowers the number of
staff relocating trips, which further reduces overall
relocating costs and SEV wear and tear. The
calculation results can be seen in Table 3 and Fig. 4.

It can be seen from Table 3 that there are 17 and
16 users participating in SEV relocating in the gradual
travel route. However, we can find that the final total
cost is the same (both are 205.62 RMB). Furthermore,
the average cost per relocated SEV is 8.5 RMB. The
reason for the result is that the third user at the departure
station No. 5 adjusted the parking point from station
9 to station 10. Thus, it resulted in the third user at
station No. 1 willing to participate in SEV relocating and
adjusting the return point to station 9. At this time, the
added value of the preferential discount for rewarding
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Table 3. Computational results.

No.
Relocating

agent O′ D′ No.
Relocating

agent O′ D′ No.
Relocating

agent O′ D′ No.
Relocating

agent O′ D′

1 0.0 9 6 1 0.0 9 6 1 0.0 9 6 1 0.0 9 6
2 2.3 15 32 2 2.3 15 32 2 2.3 15 32 2 2.3 15 32
3 4.5 33 22 3 4.5 33 22 3 4.5 33 22 3 4.5 33 22
4 0.0 29 30 4 0.0 29 30 4 0.0 29 30 4 0.0 29 30
5 4.3 37 26 5 4.3 37 26 5 4.3 37 26 5 4.3 37 26
6 5.3 41 46 6 5.3 41 42 6 5.3 41 42 6 5.3 41 46
7 0.0 3 10 7 0.0 3 10 7 0.0 3 10 7 0.0 3 10
8 5.1 39 44 8 5.1 39 44 8 5.1 39 44 8 5.1 39 44
9 0.0 17 8 9 0.0 17 8 9 0.0 17 8 9 0.0 17 8

10 0.0 31 40 10 0.0 31 40 10 0.0 31 40 10 0.0 31 40
11 3.2 25 28 11 3.2 25 28 11 3.2 25 28 11 3.2 25 28
12 1.2 7 12 12 1.2 7 12 12 1.2 7 12 12 1.2 7 12
13 0.0 21 4 13 2.7 21 16 13 0.0 21 4 13 2.7 21 16
14 2.11 11 34 14 2.11 11 34 14 2.11 11 34 14 2.11 11 34
15 2.2 13 14 15 2.2 13 14 15 2.2 13 14 15 2.2 13 14
16 4.1 35 38 16 4.1 35 38 16 4.1 35 38 16 4.1 35 38
17 0.0 5 42 17 1.5 5 46 17 1.5 5 46 17 0.0 5 42
18 5.8 45 36 18 5.8 45 36 18 5.8 45 36 18 5.8 45 36
19 1.10 1 20 19 1.10 1 20 19 1.10 1 20 19 1.10 1 20
20 5.4 43 24 20 5.4 43 24 20 5.4 43 24 20 5.4 43 24
21 2.7 23 16 21 0.0 23 4 21 2.7 23 16 21 0.0 23 4
22 2.15 19 18 22 2.15 19 18 22 2.15 19 18 22 2.15 19 18
23 3.5 27 2 23 3.5 27 2 23 3.5 27 2 23 3.5 27 2

users of site 5 is the same as the initial value of the
employee’s relocating cost, and the total cost remains
unchanged. In addition, the arrival time of user No. 7 at
the second site can simultaneously meet the time window
constraints of virtual sites 21 and 23. Therefore, in the
actual scheduling process, the travel paths of the user
and the designated employee can be interchanged. The
calculation results can also test the effectiveness of the
proposed model.

5.3. Comparison of optimization methods. In order
to verify the superiority of the dual-agent relocating
optimization method for SEVs under the reward
mechanism, we compared it with the employee-only SEV
relocating optimization methods for SEV users. The cost
structures in the input data and the objective function were
adjusted, and an optimization model for the relocating of
SEV related to SEV employees and users was established.
Then the SCE–UA was used to solve the problem. The
calculation results are shown in Table 4.

It can be seen from Table 4 that the user-based
SEV relocating optimization method cannot meet all
relocating requirements, incurring order penalty costs and
lower service levels in the system. At the same time,
the total cost under the employee-based SEV relocating
strategy is 345.46 RMB, which is 1.68 times higher
under this method. In summary, the dual-agent relocating

optimization method for SEV based on the reward
mechanism can not only effectively reduce the total
relocating cost, but also flexibly meet the SEV relocating
requirements in the system, and further improve the
service efficiency.

6. Conclusions
Based on the classification, analysis and investigation of
the factors influencing the user’s travel plan selection
behavior, the user reward mechanism is formulated
to guide users to cooperate with operator employees
to complete SEV relocating optimization. An SEV
relocating optimization model with the simultaneous
participation of two entities was constructed to achieve
the goal of minimizing the total cost of relocating. Due to
the complexity of the research problems and constraints,
a column generation based heuristic algorithm was used
to solve the dual-agent relocating optimization problem
for SEVs under the reward mechanism. We proposed the
SCE–UA to solve the pricing subproblem of this column
generation algorithm. Based on the historical order data
of the SEV operating system in the Dalian High-tech
Park, the application of this model shows that after some
incentive, users may change their original planned travel
paths and participate in the relocating of SEVs, but
taking into account the cost minimization target, users
cannot completely replace the employee to complete all
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Table 4. Comparison of solution results under three SEV relocating optimization methods.

Method
Total cost

(RMB) Task completion rate Number of users Number of employees

relocating optimization method
for SEV based on employees 345.46 100% – 23

relocating optimization method
for SEV based on users 371.19 83% 19 –

the dual-agent relocating optimization method
for SEV under the reward mechanism 205.62 100% 16/17 6/7
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Fig. 4. Results of computations.

relocating tasks.

The overall contribution of this paper is the
development of an SEV relocating optimization model
with the simultaneous participation of two entities. To
verify the superiority of this strategy, a comparison with
the dual-agent relocating optimization method based on
the reward mechanism was made in two versions. One
is the SEV relocating method based only on operator
employees and the other is the method only based on
users. Sensitivity analyses provide some managerial
insights for SEV operating service providers to help them
choose the best scheme.
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