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In some applications, there are signals with a piecewise structure to be recovered. In this paper, we propose a piecewise
sparse approximation model and a piecewise proximal gradient method (JPGA) which aim to approximate piecewise sig-
nals. We also make an analysis of the JPGA based on differential equations, which provides another perspective on the
convergence rate of the JPGA. In addition, we show that the problem of sparse representation of the fitting surface to the
given scattered data can be considered as a piecewise sparse approximation. Numerical experimental results show that the
JPGA can not only effectively fit the surface, but also protect the piecewise sparsity of the representation coefficient.
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1. Introduction
In this paper, we consider recovering a sparse signal x∗ ∈
R

n from its noisy linear measurements

b = Ax∗ + e, (1)

where b ∈ R
m is a measurement vector, A ∈ R

m×n is
a measurement matrix, and e ∈ N(0, σ2In) is Gaussian
noise. The sparse vector x∗ has s ≤ m < n nonzero
entries.

In some applications such as signal processing and
machine learning, the signal possesses some structure,
i.e., “piecewise sparse”. For example, consider the
decomposition of an image into texture and cartoon parts
by Starck and Donoho (2005), i.e., b = Anxn +
Atxt where n and t represent the cartoon and texture,
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respectively. It is assumed that both the parts can be
represented in some given dictionaries, thus, xn and xt

are two sparse vectors. The coefficient vector x =
(xT

n ,x
T
t )

T is a “piecewise” sparse vector. Actually, the
decomposition problem can be also seen as a demixing
problem (McCoy and Tropp, 2014) which aims at
extracting two constituents from the mixture b.

Another example is sparse approximation of a fitting
surface from scattered data (Hao et al., 2018). Consider
the approximation in space H =

⋃N
i=1 Hj , where Hj ⊆

Hj+1 are principal shift invariant (PSI) spaces generated
by a single compactly supported function; the fitting
surface is g =

∑N
i=1 gi, gi ∈ Hi with gi =

∑ni

j=1 c
i
jφ

i
j .

The coefficients c = (c1, c2, . . . , cN )T (by N pieces
ci = (ci1, . . . , c

i
ni
)T ) form a vector to be determined. Due

to some inherent properties of PSI spaces, the coefficients
are “piecewise” sparse structured, i.e., each ci ∈ R

ni is a
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sparse vector in Hi.
To be general, for a given vector we have

x = (x1, . . . , xd1︸ ︷︷ ︸
xT
1

, xd1+1, . . . , xd1+d2︸ ︷︷ ︸
xT
2

, . . . ,

xn−dN+1, . . . , xn
︸ ︷︷ ︸

xT
N

)T ,

where n =
∑N

i=1 di, and si = ‖xi‖0, i = 1, . . . , N . In
general, there are three types of sparsity for describing the
distribution of nonzero entries in x:

• global sparsity: x is called s-sparse if x contains
‖x‖0 ≤ s nonzero elements;

• block sparsity: x is called s-block sparse if x
contains ‖x‖2,0 =

∑N
i=1 I(‖xi‖2) ≤ s blocks with

nonzero entries;

• piecewise sparsity: see Definition 1.

Definition 1. (Piecewise sparsity (Zhong and Li
2020)) Suppose that an m-sample vector b is a linear
superposition of N components with some additive noise,

b =

N∑

i=1

bi + e. (2)

Furthermore, assume that each bi can be sparsely
represented in a basis Ai, i.e,

bi = Aixi, i = 1, . . . , N,

where xi is a sparse vector. We define the vector x =
(xT

1 , . . . ,x
T
N )T as a piecewise sparse vector.

Piecewise sparsity is a type of sparsity which
describes a scattered distribution of nonzero elements in
vectors. A brief description of the difference between
block sparsity and piecewise sparsity can be found in
(Zhong and Li, 2020).

According to the piecewise structure of the signal
x, the measurement matrix A is also structured as A =
[A1, . . . , AN ] where Ai ∈ R

m×ni . Then the linear
measurements (1) can be rewritten as

b =
N∑

i=1

Aix
∗
i + e.

The structured information of the matrix A can be
exploited to improve the sufficient conditions for
successfully piecewise sparse recovery and the reliability
of the greedy algorithms and BP algorithms (Li and
Zhong, 2019). Moreover, the piecewise sparse structure
of the signal inspires one to design a piecewise version of
classical algorithm for sparse recovery in order to avoid

selecting redundant false small-scaled elements (Zhong
and Li, 2020).

In this paper, we study a generic piecewise sparse
approximation which can be described as

min
(x1,...,xN )

1

2
‖A1x1 + · · ·+ANxN − b‖22 (3a)

subject to
Ri(xi) ≤ Ri(x

∗
i ), i = 1, . . . , N, (3b)

where b ∈ R
m is a given data vector and A1, . . . , AN

are frames or bases. The goal is to decompose a given
data vector b into a sum of components bi, each of which
being sparsely represented in some frame Ai; in other
words, each of which is ‘small’ in a sense described by the
term Ri. Each function Ri aims at preserving the sparsity
of sub-vector xi.

For piecewise sparse approximation, we note that
the theory of Lagrange multipliers indicates that solving
the constrained program (3) is essentially equivalent to
solving the regularized problem

min
(x1,...,xN )

1

2
‖A1x1 + · · ·+ANxN − b‖22

+

N∑

i=1

λiRi(xi) (4)

with the best choice of regularization parameters λi.
Actually, (4) has strictly more optimal points than (3)
(Rockafellar, 1970). In this paper, we do not restrict
ourselves to specific choices of parameters λi; we study
the design of an efficient algorithm to approximate the
sub-vectors xi by (3). In particular, (4) returns to basis
pursuit denoising (BPDN) when λ1 = · · · = λN and
Ri(·) = ‖ · ‖1. The successive approximation bounds
can be improved due to the piecewise sparse structure (see
Fig.1) (Li and Zhong, 2019).

It is noted that Fig. 1 differs from the phase transition
diagrams of the sparse approximation algorithm, which
shows the empirical probability of successful recovery
or approximation of algorithm. Figure 1 displays the
theoretical performance guarantee for BPDN and (4) with
λ1 = · · · = λN and Ri(·) = ‖ · ‖1. The upper left curve
shows that the piecewise structured information of both
vector x and matrix A results in improved bounds, i.e.,
the upper bounds on the number of nonzero entries (4)
can be recovered.

It is to be noted that the piecewise sparse vector
x is also a global s-sparse vector. Large amounts of
literature on approximating global sparse signals have
been produced (Beck and Teboulle, 2009; Cai et al., 2009;
Zhang et al., 2011; Pięta and Szmuc, 2021). Though
algorithms for global sparse approximation can be used
directly for solving (3), they may fail to preserve the
piecewise sparse structure defined by Ri (see Example 4.1



A proximal-based algorithm for piecewise sparse approximation . . . 673

������ ���	�
 ����


��
�
���
 ���	�
 ����


�����

� � � � � �
�

�

�

�

�

�

Fig. 1. Performance guarantee for BPDN with global sparsity
and piecewise sparsity: the x- and y-axes represent the
sparsities of x1 and x2, respectively, or the piecewise
sparsity (s1, s2) of x = (xT

1 ,x
T
2 )

T .

of Zhong and Li (2020)). The majority of the algorithms
for solving (3) are distributed algorithms, such as lots of
extensions of the Bregman iteration (Sun et al., 2015; Wei
et al., 2017; Wang et al., 2018; Zhang and Luo, 2020).
Indeed, a number of the well-known algorithms (e.g.,
iterative thresholding, projected Landweber, projected
gradient, alternating projections, ADMM, and algorithms
mentioned above) can be considered as proximal-based
algorithms. As described by Parikh and Boyd (2014),
proximal methods sit at a higher level of abstraction
than classical optimization algorithms like Newton’s
method. Proximal-based algorithms enjoy the merits of
easy computing by solving small convex optimization
problems.

In this paper, we use a parallel and distributed
extension of a proximal gradient algorithm (a Jacobi-type
PGA) to solve (3). The piecewise version of the PGA (or
the Jacobi-type PGA) is designed to approximate each
sub-vector xi from (3) separately and simultaneously.
We show that solving (3) by the JPGA is in fact
computationally easier and preserves better piecewise
sparsity than classical algorithms, e.g., can be applied
to approximation problems with a piecewise structure.
Moreover, we show that the JPGA inherits a merit of the
proximal algorithm, i.e., the O(1/k) convergence rate,
from a perspective of a differential equation.

In particular, we apply the JPGA to obtain a
piecewise sparse representation of scattered data
fitting. In fact, only a few papers have considered
sparse approximation of scattered data fitting as

a piecewise sparse problem. Large amounts of
literature have made significant progress in solving
interpolation and approximation problems by using
multilevel B-splines, such as the quasi-interpolation
algorithm based on hierarchical B-splines (Kraft, 1997),
multilevel B-splines for scattered data interpolation (Lee
et al., 1997), multilevel regularization of wavelet based
fitting of scattered data (Castaño and Kunoth, 2005),
PHT-splines (polynomial splines over hierarchical
T-meshes) (Deng et al., 2008), which can be seen as a
generalization of B-splines over hierarchical T-meshes,
THB-splines (the truncated basis for hierarchical splines)
(Giannelli et al., 2012), hierarchical MK splines (Cai et
al., 2016), a modified multilevel B-spline approximation
method (Moon and Ko, 2018), modified PHT-splines (Ni
et al., 2019), and other applications in control theory
(Bingi et al., 2019). We focus on a piecewise sparse
approximation approach using uniform B-splines as
basis functions for scattered data fitting. We mention
that the use of B-splines as basis functions is not new,
and we mainly show the piecewise sparse perspective to
solve approximation problems. We try to make a link
between the sparse representation in the PSI space and
structured sparsity, which will provide interesting insights
into the application of sparse techniques in function
approximation.

The remaining part of the paper proceeds as follows:
Preliminaries on proximal gradient algorithms are shown
in Section 2. Section 3 is concerned with the methodology
used for this study. We examine our method in Section 4.

2. Preliminaries

Definition 2. (Proximal operator) The proximal operator
of a function f is defined by (Parikh and Boyd, 2014)

proxf (v) = argmin
x

(f(x) +
1

2
‖x− v‖22), (5)

where ‖ · ‖2 is the Euclidean norm.
For a convex optimization problem

min
x

F (x) = f(x) + g(x),

where f(·) is differentiable and g(·) is convex (possibly
nondifferentiable), the proximal gradient algorithm
iterates by

xk+1 = proxαkg(x
k − αk∇f(xk)) (6)

where αk > 0 is a step size. It is known that when ∇f
is Lipschitz continuous with constant L, this iteration (6)
with a fixed step size αk = α ∈ (0, 1/L] converges with
rate O(1/k) (Parikh and Boyd, 2014).
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3. Piecewise proximal gradient method
In an attempt to solve (3), we use the l1 norm to keep
the piecewise sparse structure, i.e., Ri = ‖xi‖1. We
use a parallel and distributed extension to the proximal
gradient algorithm, which is a Jacobi-type algorithm: for
each “piece,” we approximate subvector xi by solving
minimization using the iteration

xk+1
i

= argmin
xi

‖xi‖1 + 1

2
‖Aixi +

∑

j �=i

Ajx
k
j − bσ‖22, (7)

where xk
j is the k-th update of subvector xj . Observe

that (7) is similar to LASSO. However, in contrast to
the traditional LASSO, we do not use the regularization
parameter λ to balance the residual and regularization
terms. The minimization (7) is not a standard LASSO
since

∑
j �=i Ajx

k
j is fixed based on the previous iteration

and we do not seek a balance between ‖xi‖1 and ‖Aixi+
(
∑

j �=i

Ajx
k
j − bσ)‖2. Actually, there are two “balances” in

the JPGA:

• The balance between the residual term
‖∑i=1 Aixi − bσ‖2 and ‖xi‖1: we want to make
the residual norm small enough in order to obtain an
appropriate fitting with sparse representation (small
l1 norm). Thus a regularization parameter
λ (λ‖xi‖1 + 1

2‖Aixi +
∑

j �=i Ajx
k
j − bσ‖22)

does not yield the balance we need. Actually,
the iteration in parallel (i = 1, . . . , N ) with a
stopping rule on the residual norm automatically
approximates the balance.

• The balance among ‖xi‖1 for i = 1, . . . , N : we need
a piecewise sparse structure of the determined vector
x. We obtain this balance by setting a proper iteration
step and step size.

Write Ri(·) = ‖ · ‖1 and f(·) = 1
2‖A · −bσ‖22. We

propose a piecewise proximal gradient algorithm which
is essentially a Jacobi-type algorithm, cf. Algorithm 1.
Notice that in the JPGA, we have

∇xif(x
k) = AT

i (

N∑

i=1

Aix
k
i − bσ).

3.1. JPGA as a continuous dynamical system.
Consider the JPGA iteration

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1
1 = proxαk

1R1
(xk

1 − αk
1∇x1f(x

k)),

...

xk+1
N = proxαk

NRN
(xk

N − αk
N∇xN f(x

k))

Algorithm 1. JPGA for piecewise sparse approximation.
Require: matrix A = [A1, . . . , AN ], noisy observation

function bσ;
Ensure: piecewise sparse vector x = (xT

1 , . . . ,x
T
N )T ;

1: Given αk
i (i = 1, . . . , N)

2: Let αk
i = αi

3: i = 1, . . . , N repeat solve zi = proxαk
i Ri

(xk
i −

αk
i∇xif(x

k))
4: break if stopping rule holds
5: return αk+1

i = αi, xk+1
i = zi

which solves the following optimization problems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk+1
1 = argmin

x1

{
‖x1‖1

+
L1

2
‖x1 − (xk

1 − 1

L1
∇x1f(x

k))‖22
}
,

...

xk+1
N = argmin

xN

{
‖xN‖1

+
LN

2
‖xN − (xk

N − 1

LN
∇xN f(xk))‖22

}
,

(8)
where Li (i = 1, . . . , N ) are Lipschitz constants with
respect to ∇xif(x). The first-order optimality condition
of (8) asserts that there exist pk+1

i ∈ ∂‖xk+1
i ‖1 that

satisfy

⎧
⎪⎪⎨

⎪⎪⎩

−pk+1
1 = L1(x

k+1
1 − xk

1) +AT
1 h,

...

−pk+1
N = LN (xk+1

N − xk
N ) +AT

Nh,

(9)

where

h =

N∑

i=1

Aix
k
i − bσ.

Consider xk
i = xi(t) and xk+1

i = xi(t+δ) for δ > 0
small enough. By the mean value theorem, xi(t + δ) =
xi(t)+δẋi(t+λδ) with λ ∈ (0, 1); thenLi(x

k+1
i −xk

i ) →
ẋi(t) as δ → 0 and

lim
δ→0

xk+1
i − xk

i

δ
= lim

δ→0

xi(t+ λδ)− xi(t)

δ
= ẋi(t)

while setting Li = 1/δ (i = 1, . . . , N ). Moreover, the
variables pk+1

i = pi(t + δ) → pi(t) as δ → 0. Thus
we obtain the continuous dynamical systems of (9) with
δ → 0:

⎛

⎜
⎝

ẋ1(t)
...

ẋN (t)

⎞

⎟
⎠+

⎛

⎜
⎝

〈A1,h(t)〉
...

〈AN ,h(t)〉

⎞

⎟
⎠+

⎛

⎜
⎝

p1(t)
...

pN (t)

⎞

⎟
⎠ = 0, (10)
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where

h(t) =

N∑

i=1

Aixi(t)− bσ.

Write

V (xi) =
1

2
‖Aixi +

∑

j �=i

Ajx
k
j − bσ‖22 + ‖xi‖1

X(t) =

⎛

⎜
⎝

x1(t)
...

xN (t)

⎞

⎟
⎠ .

The system (10) can be written as

∇V (X(t)) + Ẋ(t) = 0. (11)

Note that the symbol ∇ in (11) represents the subgradient
of V (·) (there exist pi ∈ ∂‖xi‖1 that satisfy (10)).

Following the work of Franca et al. (2018), we
formulate the following theorems.

Theorem 1. Suppose X∗ is a local minimizer and an
isolated stationary point of function V (·), i.e., there exists
G ⊂ R

n such that X∗ ∈ G,∇V (X∗) = 0 and ∇V (X) �=
0 for ∀X ∈ G\X∗, and

V (X) > V (X∗), ∀X ∈ G\X∗.

Then X∗ is an asymptotically stable critical point of the
JPGA flow (11).

Theorem 2. Suppose that argminV �= ∅ and V ∗ =
minX V (X). Then there is a constant C > 0 and X(t)
in the JPGA flow (11) with initial condition X(t0) = x0

such that
V (X(t))− V ∗ ≤ C

t
. (12)

The proof of Theorems 1 and 2 can be found in
Appendix.

4. Experimental results
In this section, we test our algorithm on a scattered data
fitting simulation, which can be regarded as a special case
of (3).

4.1. Scattered data fitting in PSI space. The problem
of reconstructing a surface from scattered points is
described as follows: Given a set of unorganized points
X = {x1, . . . , xn} ⊂ Ω ⊂ R

d and corresponding
function values f |X = {f1, . . . , fn}, find a function
g ∈ H which fits the data {(xk, fk)}|nk=1 well. The
traditional smooth spline model for solving this problem
is

min

n∑

k=1

(g(xk)− fk)
2 + α|g|2Hm .

However, since the function g belongs to a Beppo
Levi space, the computation complexity rises with the
increasing scale of data sets. In the work of Johnson et al.
(2009), a space which is generated by a compact support
function (PSI space) is proposed to overcome the above
disadvantage. Moreover, it makes sparse representation of
data possible by connection with wavelets and B-splines.

Let

H =

N⋃

i=1

Hi

be the approximation space, where Hi(⊂ Hi+1) is a
PSI space generated by B-spline functions. Denote by
{φi

j}ni

j=1 the basis functions of Hi, 1 ≤ i ≤ N . Then
the approximation surface g = span{φi

j}N,ni

i,j=1 is given by

g =
N∑

i=1

gi, gi ∈ Hi, gi =
m∑

j=1

cijφ
i
j ,

where cij are the representation coefficients. Let φ be
a carefully chosen, compactly supported function, and
denote by h the scaling parameter of the PSI space. We
follow the definition by Hao et al. (2018) to define an
index set K as follows:

K = {k ∈ Z
2 : supp

(
φ
(2s·
h

− k
)) ∩Ω �= ∅}.

Then the matrix A = [A1, . . . , AN ] in (4) is the
observation matrix defined by φi

j ,

Ai(s, k) = φj

(2ixs

h
− k

)
, k ∈ K

and bσ represents {fi}. Then for given data sets {xk, yk}
and the corresponding observation data {f(xk, yk)}, we
expect to obtain g(x, y) which fits the unorganized
data set best and results in its sparse representation.
The approximation function g(x, y) is generated by a
tensor product B-spline basis function φi

j(x, y)(i =
1, . . . , N ; j = 1, . . . , ni), whereN is the number of layers
of the multi-level B-spline and the total number of basis
function is n = n1 + · · · + nN . Thus the undetermined
approximation surface is

g(x, y) =
N∑

i=1

nj∑

j=1

cijφ
i
j(x, y), (13)

where ci = (ci1, . . . , c
i
ni
) is a sparse vector. In this way,

the coefficient vector c = (c1, . . . , cN )T is a piecewise
sparse vector. Since the N multi-level B-spline basis
functions are linearly dependent, the scattered data fitting
problem can be seen as a piecewise sparse approximation
problem.
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4.2. Numerical comparison. In this part, we utilize
the JPGA solving scattered data reconstruction in PSI
space for comparison with traditional methods without
considering a piecewise structure: PGD (ISTA) (Beck and
Teboulle, 2009) and the Bregman iteration (ADMM) for
solving the following MLASSO minimization problem
(Hao et al., 2018):

min
(x1,...,xN )

N∑

i=1

λi‖xi‖1 + 1

2
‖

N∑

i=1

Aixi − bσ‖22. (14)

We generate noisy data sets {((xk, yk), f(xk, yk)) : k =
1, . . . , 900} by adding Gaussian noise (εk ∼ N (0, δ)):

f = f(xk, yk) + εk, k = 1, . . . , 900.

For the numerical comparison, we employ the 2D
tensor product quadratic B-spline as the function φ. We
test the above three algorithms for N = 4 starting from
level 1 with 5 × 5 biquadratic B-spline functions. The
lengths of x1, x2, x3 and x4 are 25, 64, 196 and 625,
respectively. We have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x, y) = 0.75 exp(−(9x− 2)2/4− (9y − 2)2/4)

+ 0.75 exp(−(9x+ 1)2/49

− (9y + 1)2/10) + 0.5 exp(−(9x− 7)2/4

− (9y − 3)2/4)− 0.2 exp(−(9x− 4)2

− (9y − 7)2),

f2(x, y) =
10(4x− 2)

1 + 100(4x− 2)2
,

f3(x, y) = exp(−81(x− 0.5)2 − 81(y − 0.5)2)/4,

f4(x, y) = (x2 − 2x) exp(−x2 − y2 − xy).

Measurements. In this part, we use four measurements
to compare the results of our tests: (i) fitting error;
(ii) normalized RMS (root mean square) error; (iii) CPU
running time (sec.); (iv) piecewise sparsity. The fitting
error of the given scattered points {(xk, fk)}|nk=1 is
defined as follows:

error =

√
√
√
√ 1

n

n∑

k=1

(g(xk, yk)− f(xk, yk))2.

The difference between f and g is measured by the
normalized RMS error defined as follows:

RMS =

√
√
√
√ 1

M1N1

M1∑

i=1

N1∑

j=1

(g(x̃i, ỹj)− f(x̃i, ỹj))2,

where

x̃i = −1 +
2i

M1 − 1
, i = 0, 1, . . . ,M1 − 1,

ỹj = −1 +
2j

N1 − 1
, i = 0, 1, . . . , N1 − 1,

Table 1. Multiple regularization parameter setting in ADMM.
Function Parameter value((λ1, λ2, λ3, λ4))

f1 (0.05,0.01,0.02,0.05)
f2 (0.03,0.02,0.02,0.04)
f3 (0.03,0.02,0.02,0.03)
f4 (0.01,0.01,0.01,0.01)

and M1 = N1 = 50.
In particular, the piecewise sparsity refers to the

piecewise sparse structure of the vector x we obtained,
i.e., (s1, . . . , sN )-sparsity. We do not wish a too sparse
vector, but prefer a piecewise sparse vector with si small
but not all zeros.

Remark 1. The regularization parameters λi (i =
1, . . . , 4) in Table 1 are selected based on the rule by Hao
et al. (2018) (Section 2.3).

Figures 2 and 4 show the scattered data points and the
corresponding approximation surface of the test function
with JPGA, PGD and ADMM on noise levels σ = 0.05
and σ = 0.1, respectively. Figures 3 and 5 illustrate
the piecewise sparsity of the resulted representation, i.e.,
the distribution of the support of the B-spline functions
with nonzero entries. We use decreasing size rectangles
to show the support of the B-splines corresponding to
x1, x2, x3 and x4, respectively. In parallel, Tables 2 and
3 show the piecewise sparsity (the l0 norm of the resulting
xi), the fitting error, the RMS and the running time for
each test.

Comparisons in a noisy case: JPGA and PGD.
Compared with PGD, JPGA is more likely to perform well
in terms of piecewise sparsity and running time. Actually,
JPGA is a piecewise version of PGD; the piecewise design
makes JPGA run faster and better preserve the piecewise
sparse structure than PGD. Since PGD solves (3) with
treating x as a global sparse vector, it does not yield good
piecewise sparsity. For example, for function f2 (σ =
0.1): (10, 7, 43, 62) in Table 2, PGD do not result in sparse
representations at the 3-th and 4-th pieces. In addition,
PGD tends to spend more time when noise level grows,
while JPGA is not that sensitive to the noise level.

Comparisons in a noisy case: JPGA and ADMM. It
is showed that MLASSO solved by ADMM also provide
sparser solutions with less error but more time than the
traditional LASSO used by Hao et al. (2018). The
multiple-parameter setting makes ADMM for solving
(14) different from JPGA, which does not rely on
regularization parameters. Note that one could adjust
λi constantly until better piecewise sparsity is obtained.
The parameter setting process depends greatly on the
prior information which may not always be accessible
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Table 2. Piecewise sparsity of algorithms for comparison on test
functions.

Function Methods Piecewise sparsity

f1 (σ = 0.05)
JPGA (7,11,3,0)
PGD (8,16,36,9)

ADMM (25,33,81,15)

f1 (σ = 0.1)
JPGA (6,11,3,0)
PGD (7,13,35,44)

ADMM (25,33,90,88)

f2 (σ = 0.05)
JPGA (5,9,20,2)
PGD (7,13,27,26)

ADMM (25,11,86,72)

f2 (σ = 0.1)
JPGA (5,7,20,3)
PGD (10,7,43,62)

ADMM (25,8,94,153)

f3 (σ = 0.05)
JPGA (0,1,0,0)
PGD (3,10,14,3)

ADMM (25,9,71,84)

f3 (σ = 0.1)
JPGA (1,1,0,0)
PGD (3,11,40,41)

ADMM (25,8,65,195)

f4 (σ = 0.05)
JPGA (11,11,2,0)
PGD (11,18,16,5)

ADMM (25,16,46,289)

f4 (σ = 0.1)
JPGA (10,11,2,0)
PGD (12,21,38,45)

ADMM (25,12,44,383)

in applications. We also observe that the approximation
surfaces obtained by ADMM are more fluctuating than
others when the noise level increase.

5. Conclusion and discussion
This paper presents an approach to piecewise sparse
approximation based on a proximal gradient method. The
proposed JPGA can be treated as a differential system for
which some traditional tools may be used for convergence
rate analysis. Simulations show that JPGA not only runs
faster than PGD and ADMM, but preserve the piecewise
sparse structure with application to scattered data fitting.

The convex program (3) equipped with JPGA
provides a parallel perspective for approximation
problems with a piecewise sparse prior. There are
some gaps between the performance theory of (3) and
sufficient conditions for successful approximation of
JPGA. A complete analysis of the theory for both the
convex program and the piecewise version of the classical
algorithm will be made in our future work.
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Fig. 5. Distribution of the support for f1 (first row), f2 (second row), f3 (third row) and f4 (last row) with σ = 0.1.
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Appendix

A1. Proof of Theorem 1
First, we discuss some basic concepts of stability and
Lyapunov function referring to Hirsch et al. (2004).

In order to prove that X∗ is asymptotically stable, we
define

E(X) ≡ V (X)− V (X∗). (A1)

Using ∇V (X∗) = 0 and (11), we have

Ė(X) = 〈∇V (X), Ẋ〉 = −‖Ẋ‖22, (A2)

which shows that X ∈ G\X∗, Ė(X) < 0. Thus,
by using Theorem 5 by Franca et al. (2018), X∗ is an
asymptotically stable critical point of (11).

A2. Proof of Theorem 2
Assume that X∗ ∈ argminV (X). Then V (X∗) = V ∗.
Define

E(X, t) = t[V (X)− V (X∗)] +
1

2
‖X −X∗‖2.

The derivative of E at t is

Ė = V (X)− V (X∗) + t〈∇V (X), Ẋ(t)〉
+ 〈X −X∗, Ẋ(t)〉. (A3)

From (11) we get ∇V (X) = −Ẋ . Observe that the
right-hand side of (A3) can be rewritten as

−t‖Ẋ‖2+V (X)−V (X∗)+ 〈X∗−X,∇V (X)〉. (A4)

V (·) is convex and

V (X)− V (X∗) + 〈X∗ −X,∇V (X)〉 ≤ 0.

Accordingly, (A4) is nonpositive. Thus we have Ė ≤ 0,
which means E(X, t) is decreasing in t, i.e.,

E(X, t) ≤ E(X0, t0)

for all t ≥ t0. Thus

V (X)− V (X∗) =
1

t
E(X, t)− 1

2t
‖X −X∗‖2

≤ 1

t
E(X0, t0).

Then we get

V (X(t))− V (X∗) ≤ C

t
.
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