
Int. J. Appl. Math. Comput. Sci., 2022, Vol. 32, No. 4, 553–567
DOI: 10.34768/amcs-2022-0039

A HYBRID CONTROL STRATEGY FOR A DYNAMIC SCHEDULING PROBLEM
IN TRANSIT NETWORKS

ZHONGSHAN LIU a, BIN YU a, LI ZHANG a, WENSI WANG a,*

aSchool of Transportation Science and Engineering
Beihang University

Beijing 100191, PR China
e-mail: wensiwws@buaa.edu.cn

Public transportation is often disrupted by disturbances, such as the uncertain travel time caused by road congestion. There-
fore, the operators need to take real-time measures to guarantee the service reliability of transit networks. In this paper, we
investigate a dynamic scheduling problem in a transit network, which takes account of the impact of disturbances on bus
services. The objective is to minimize the total travel time of passengers in the transit network. A two-layer control method
is developed to solve the proposed problem based on a hybrid control strategy. Specifically, relying on conventional strate-
gies (e.g., holding, stop-skipping), the hybrid control strategy makes full use of the idle standby buses at the depot. Standby
buses can be dispatched to bus fleets to provide temporary or regular services. Besides, deep reinforcement learning (DRL)
is adopted to solve the problem of continuous decision-making. A long short-term memory (LSTM) method is added to the
DRL framework to predict the passenger demand in the future, which enables the current decision to adapt to disturbances.
The numerical results indicate that the hybrid control strategy can reduce the average headway of the bus fleet and improve
the reliability of bus service.

Keywords: service reliability, transit network, proactive control method, deep reinforcement learning, hybrid control strat-
egy.

1. Introduction
1.1. Background. Public transportation is often
disrupted by disturbances (e.g., the uncertain travel time
caused by road congestion). These disturbances usually
lead to bus bunching and large intervals, which would
result in prolonged travel time and inconvenience. To
guarantee the attractiveness of bus services, bus operators
strive to promote the regularity and punctuality of bus
services. Therefore, it is crucial for the bus operators to
reduce the impact of disturbances on bus services.

The conventional control strategies (e.g., holding,
stop-skipping) are mainly applied to a single bus line.
Application of these strategies to a transit network is
complex. Due to the limited amount of buses, large
passenger demand and long driving time in a single trip,
the level of bus service of some lines may be poor. This
problem would become prominent during rush hours. If
the bus services cannot meet the passenger demand based
on conventional control strategies, another strategy need
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to be considered to improve the service reliability of bus
lines. How to design a reasonable and novel strategy
to solve the dynamic scheduling problems is attractive
to many researchers (Petit et al., 2019; Argote-Cabanero
et al., 2015; Wang et al., 2020).

The existing literature may not fully consider the
characteristics of standby buses. In practice, some idle
buses are placed at the depot by the bus company. These
standby buses could be flexibly inserted into the bus fleet
and provide services for passengers. After arriving at the
terminal stop and ending a single service, a standby bus
would return to the standby location and wait for the next
task. If the service quality of multiple bus lines decreases
due to the disturbances, there may not be enough standby
buses to serve passengers on all bus lines. It is necessary
to formulate an optimal scheme to maximize the benefits
brought by standby buses. Using the standby buses to
provide services can not only make use of idle resources,
but also help to solve the scheduling problem in the transit
network. Compared with the service provided by standby
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buses from the depot, it would reduce the scheduling times
if these buses are located in initial positions where service
reliability is likely poor in the future (Petit et al., 2019).
Besides, it may be economical to allow the operators to
dynamically adjust the service mode (e.g. regular service,
temporary service) of standby buses. However, in the
literature communications on standby bus strategies to
solve scheduling problems in transit networks are limited.
The effect of a hybrid application of a standby bus
strategy and a conventional control strategy to improve the
quality of public transportation service is unknown. To
complement this field, this paper develops hybrid control
strategies to solve the dynamic scheduling problem in the
transit network.

1.2. Literature review. One of the most well-known
control strategies is holding. Holding is a scheduling
method to delay the departure time of some buses
purposefully at stops. Holding mainly contains two kinds
of methods: schedule-based holding, headway-based
holding. Schedule-based holding and attempts to adjust
the departure time of buses according to the timetable
(Zhu et al., 2017). Van Oort et al. (2012) analyzed the
bus service in the Hague, the Netherlands. The analysis
shows that the schedule-based holding can save 60% of
the waiting time at stops and on board for passengers.
Xuan et al. (2011) introduced the concept of a virtual
timetable. The authors determined the holding time based
on the deviation between the actual arrival time of buses
and the virtual timetable. Hall et al. (2001) discussed the
problem of holding time at transfer stops with the goal of
minimizing the waiting time of passengers.

For bus services with a high frequency, short average
headway and high passenger demand, it is difficult for
buses to provide services according to a fixed timetable.
Headway-based holding is suitable for this situation.
The objectives of the headway-based holding strategy
can be roughly divided into two categories. One of
the optimization models is established with the goal of
minimizing the mean or variance of headway (Fu and
Yang, 2002). The other is to minimize the total waiting
or travel time of passengers (Barnett, 1974). The decision
variable of the headway-based holding is the dwell time
of buses at different stops. Fu and Yang (2002) took the
value of headway as an important index to evaluate the
performance of the bus system. The research showed that
the selection of control stops would affect the performance
of the system. Barnett (1974) designed a holding control
model to reduce the risk of disturbances with the goal of
minimizing the waiting time for passengers. They made
an empirical analysis based on the actual operation data in
Boston, USA.

Stop skipping is also a common control strategy. It
allows some buses to skip partial stops, so as to speed
up the turnover rate of buses. Stop-skipping mainly

contains three kinds of methods: limited-stop (Vuchic,
1973; Larrain et al., 2010), short-turning (Jordan and
Turnquist, 1979; Furth, 1986; Ceder, 1988), deadheading
(Cortés et al., 2011; Furth, 1985; Ceder and Stern, 1981).
Vuchic (1973) evaluated the limited-stop mode and found
that this service can improve the driving speed of buses.
Considering the influencing factors such as climate, the
direction of lines, and different periods, Larrain et al.
(2010) believed that the attraction of the limited-stop
mode was affected by the distribution of passengers.
The results showed that the average driving distance had
a significant impact on the quality of services. The
short-turning mode considers the use of buses to provide
services in areas with high passenger demands. Compared
with the full service, the services provided by buses only
in certain road segments have shorter operation time and
higher service frequency (Jordan and Turnquist, 1979;
Furth, 1986; Ceder, 1988). The deadheading mode refers
to the setting, where, if the service in the high demand
direction is completed, the bus quickly drives to the
origin stop with the form of empty bus. The bus would
provide service from the origin stop again. There is
relatively little research on deadheading because of the
long driving distance with empty buses, which increases
the operating cost (Cortés et al., 2011; Furth, 1985; Ceder
and Stern, 1981).

Bus substitution is a novel method. This service
refers to inserting standby buses into the bus fleet to
replace the early or delayed buses. Then, a retired
bus begins to operate a drop-off mode to deliver the
passengers on board, but passengers waiting at stops are
not allowed to board (Petit et al., 2018; 2019). Petit
et al. (2018) first studied how to apply the bus substitution
strategy to one bus line. This paper determined the amount
and dispatch time of standby buses with the goal of
minimizing the total cost of passengers and bus operators.
They applied an adaptive dynamic programming method
to solve the proposed problem. Then, Petit et al. (2019)
discussed feasibility of using standby buses to serve
passengers on multiple independent lines.

There are few studies on interstop control methods,
which mainly focus on controlling the driving speed
of buses. Daganzo and Pilachowski (2011) proposed
a dynamic adaptive control model for coordinating and
synchronizing the speed of bus fleets. This method can
optimize the headway of bus fleets as well as the average
driving speed of buses. Estrada et al. (2016) combined
signal priority with cruising speed control. If the headway
is larger than the set threshold, it may implement the
signal priority strategy for the bus to reduce the interval;
On the contrary, the driving speed of the bus would be
reduced.

At present, few studies consider how to implement a
scheduling decision in multiple lines. Argote-Cabanero
et al. (2015) combined the holding and cruising speed
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control under the background of multiple lines. The study
assumed that the bus fleet may be affected by external
interference factors such as cars. The interaction between
buses on different lines was ignored. Results showed
that the proposed real-time scheduling method could
effectively improve the performance of the bus system.
Laskaris et al. (2019) proposed a control model for the
multiple lines to minimize the cost of passengers. The
authors applied a simulation network to test the proposed
model.

Reinforcement learning (RL) is an important branch
of machine learning. RL could learn from the existing
experience or mistakes. This method could determine a
series of actions through feedback, which is conducive to
increasing the probability of achieving the goal. There are
many extended studies on RL. For the specific research
and expansion of RL, the reader is referred to the articles
by Guan et al. (2021) and Farazi et al. (2021). By
combining a neural network and RL, the performance of
deep reinforcement learning becomes excellent (Li et al.,
2016; Alesiani et al., 2018; 2017; Wang and Sun, 2020).
Mnih et al. (2015) applied the traditional Q-learning
algorithm to a deep neural network and proposed the Deep
Q-Network (DQN) algorithm. The algorithm consists of
multiple convolutional neural networks, and the random
gradient descent method is used to optimize the network
parameters (Krizhevsky et al., 2017; Wang and Chan,
2017; Hu et al., 2020). A double DQN is a further
extension on the basis of the DQN. This algorithm use
a double Q network to solve the overestimation problem
(Wang and Tang, 2021; Luo, 2020). In the field of
scheduling problems of transit networks, it is a feasible
research direction to solve real-time problems based on
the DDQN.

To the best of our knowledge, there is a lack of
research on the dynamic scheduling problem in transit
networks by combining the standby bus strategy and
conventional strategies. To fill this gap, a novel DDQN
algorithm and a hybrid control strategy are applied in this
paper to solve real-time scheduling problems.

1.3. Contributions. In this paper, we focus on the
scheduling problem in a transit network, which takes
account of the impact of disturbances (e.g., uncertain
travel time) on the service level of public transportation.
The main contributions are threefold. First, we design
a hybrid control strategy by incorporating conventional
strategies and the standby bus strategy. The hybrid
control strategy is a novel method to deal with the
dynamic scheduling problems in large transit networks.
Second, a two-layer control method is introduced in
this paper to determine the application time of each
strategy. We establish multiple modules to explicitly
describe the state of transit networks, which is conducive
to designing an optimal allocation scheme of standby

buses in each period. Third, after realizing the high
computing real-time requirements of solving the dynamic
scheduling problems, a tailored DDQN algorithm is
proposed to develop an effective control policy in the
transit network. The long short-term memory (LSTM)
method is considered in the DDQN algorithm to predict
the service reliability of bus lines in next several time
steps, which ensures the current decision may better
guarantee the quality of bus services in the future.

The remainder of this paper is as follows: In
Section 2, a detailed introduction to the underlying
scheduling strategy and some assumptions are presented.
Section 3 introduces the methodology used in this paper.
Results and a discussion about the relevant results are
included in Section 4. The conclusions are summarized
in Section 5.

2. Problem description
In this paper, we study a realistic scheduling problem in a
transit network. Five actions (i.e., scheduling strategy) are
used in this paper:

1. Skipping the control stop. In this paper, the control
stop is defined as the stop is selected to execute the
control strategy according to some rules, such as
the magnitude of passenger demand, whether there
is enough space in the platform for buses to hold.
When a bus is about to arrive at the control stop,
the scheduling model is activated to optimize the
scheduling actions;

2. Skipping the next stop. This action indicates that the
bus is ordered to skip the next stop after the control
stop. Passengers whose destination is the next stop
need to alight at the control stop;

3. Boarding limit. This action means that the bus
needs to depart from the control stop immediately
after the alighting process is completed. Generally
speaking, the boarding process takes more time than
the alighting process, which is especially serious in
crowded stops;

4. Holding. This action represents that the bus needs
to stay at the control stop for a period of time.
This strategy could ensure the headway of the bus
fleet and improve the service level of buses. The
disadvantage of this action is that it would increase
the travel time of passengers on board;

5. Adding standby buses into the bus fleet. The decision
of this action consists of two parts: one is to decide
when the standby buses would provide services. The
other is to decide the number of standby buses to
provide services at the control stop. Some basic
symbols are summarized in Table 1.
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Table 1. Some basic notation.
Indices
and sets

Definition

S set of standby buses
B set of regular buses
V set of buses in the transit network,

V = S ∪B
N set of stops in the transit network
R set of routes in the transit network
k index of a period
P set of days in one week
W set of weeks
K set of periods
Parameters Definition
C capacity of buses
Nr total number of stops of the route r
M total number of regular buses
Ms total number of standby buses
Mr number of regular buses serving

route r

Some assumptions made in this paper are as follows:

A1. We assume that all buses in the transit network are
not allowed to overtake.

A2. At each bus stop, the boarding and alighting
processes are carried out at the same time. The time
of boarding and alighting follows a linear formula
related to the number of boarding and alighting
passengers. The service time of a bus at a stop is
the greater of the boarding and alighting times.

A3. All buses in route r follow a sequential order, where
bus i + 1 follows bus i, i = 1, 2, . . . ,Mr − 1, and
bus 1 follows bus Mr.

A4. The action of skipping the control stop or the next
stop is updated in real time. It might be difficult
to prevent passengers whose destination is the
control stop from boarding in advance. Therefore,
we assume that any passenger could board at the
upstream stop of the skipped stop.

A5. It is acceptable that passengers could not alight at the
destination due to the stop-skipping action. The extra
travel time of passengers who could not alight would
be given a high penalty.

The assumptions in this paper characterize the
elements of the transit network including buses,
passengers, and stops.

3. Two-layer control method
The number of standby buses at different standby
locations is calculated in the upper layer. The results

Optimization model
Upper layerHistorical data

Number of standby buses

Allocation of standby buses

Lower layerOperation module
Current system state
Running time

LSTM DDQN

Training module

Location of buses
Waiting time

Service reliability
Service time

Passenger demand 
in the future

Action a(t)
t=t+1

Reward function
Set of actions

Internal state s(t) 

Information of standby buses

Fig. 1. Framework of the two-layer control method.

from the upper layer are transferred to the lower layer.
Then, the best action is selected in the lower layer based
on the combination of DRL and LSTM. The objective
of this paper is to minimize the total travel time of
passengers, which has a great impact on the travel choice
of passengers (Cao et al., 2022). The framework of the
two-layer control method is shown in Fig. 1.

3.1. Formulation of the upper layer. The core
concept of the upper layer is to determine the amount of
standby buses at different standby locations. The symbols
used in the upper layer are shown in Table 2.

In this part, θw,p
l and ζw,p

r are determined based on
historical data. It is worth noticing that the larger the value
of ζw,p

r , the worse the service reliability of bus lines (Fang
et al., 2022). More standby buses may be allocated to
bus lines with poor service reliability to provide temporary
services. How to design an optimal solution under the
condition of limited amount of standby buses to obtain the
maximum benefit is crucial. The model in the upper layer
is shown as follows.

max
∑

w∈W

∑

r∈R

∑

l∈L

ηw,p
l · ζw,p

r · εrl , ∀p ∈ P. (1)

Objective function. The objective function (1) is to
improve the service reliability of bus lines in the transit
network. The number of standby buses at different
standby locations is optimized, subject to the following
constraints:

∑

i∈S

∑

l∈L

Xw,p
i,l ≤Ms, ∀p ∈ P,w ∈ W, (2)
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Table 2. Notation in the upper layer.
Parameters Definition
εrl binary, equals one if standby buses at

location l can serve passengers on the
bus line r; otherwise, equals zero

θw,p
l number of standby buses required for

standby location l in day p of week w
ζw,p
r average service reliability of the bus

line r in day p of week w
Variables Definition
Xw,p

i,l binary, equals one if standby bus i is
assigned to standby location l in day p
of week w; otherwise, equals zero

ηw,p
l binary, equals one if the number of

standby buses is equal to the required
number of buses in day p of week w;
otherwise, equals zero

∑

i∈S

Xw,p
i,l ≤ α ·Ms, ∀l ∈ L, p ∈ P,w ∈W, (3)

G · (1− ηw,p
l ) ≥ θw,p

l −
∑

i∈S

Xw,p
i,l ,

∀p ∈ P,w ∈ W, l ∈ L, (4)

Xw,p
i,l ∈ {0, 1}, ∀ i ∈ S, l ∈ L, p ∈ P,w ∈ W, (5)

ηw,p
l ∈ {0, 1}, ∀ l ∈ L,w ∈ W, p ∈ P. (6)

Service reliability constraint. Constraints (2) ensure that
the amount of standby buses at all locations does not
exceed the total amount of standby buses. Constraints
(3) determine the maximum number of standby buses that
can be placed in any standby locations. Here α is a
parameter, which needs to be set according to the actual
operation status. Constraints (4) link the variables ηw,p

l ,
θw,p
l and xw,p

i,l . G is a very large (infinite) positive number.
Constraints (5) and (6) describe the domains of decision
variables.

The calculation results are transmitted to the lower
layer. After one week, the value of θw,p

l is updated
according to the service reliability of bus lines. The upper
layer regenerates a new scheduling scheme and transmits
it to the lower layer.

3.2. Formulation of the lower layer. This subsection
describes the information of each part in the lower layer.
The operation module is used to infer the state of the
transit network. Then, some parameters such as the arrival
time, the departure time, headway and the number of
passengers per bus are forwarded into the training module.
In the training module, the LSTM method is used to
estimate the passenger demand in the future. Then, the
information based on the LSTM is transmitted to the

Table 3. Notation in the lower layer.
Parameters Definition
λr,ki average passenger arrival rate at stop i in

route r in period k
qr,ki alighting rate of passengers at stop i in

route r in period k
tr,ki,j travel time between stops j − 1 and j by

bus i in route r in period k
Variables Definition
tar,ki,j time instant at which bus i arrives at stop j

in route r in period k
tsr,ki,j service time of bus i at stop j in route r in

period k
tdr,ki,j time instant at which bus i departs from

stop j in route r in period k
tzr,ki,j holding time of bus i at stop j in route r in

period k
Ar,k

i,j number of alighting customers of bus i at
stop j in route r in period k

Br,k
i,j number of boarding customers of bus i at

stop j in route r in period k
βr,k
i,j number of passengers unable to boarding

the bus i at stop j due to the capacity
constraints in route r in period k

wr,k
i,j number of passengers unable to boarding

bus i at stop j due to acceleration strategy
in route r in period k

hr,ki,j headway between buses i and i− 1 at stop
j in route r in period k

Qr,k
i,j number of passengers in bus i when bus i

departs from stop j in route r in period k
tBr,k

m,i,j time instant at which standby bus m is
arranged after bus i from stop j to serve
route r in period k

Zr,k
i,j binary, equals one if standby bus i provides

service from stop j in route r in period k;
otherwise, equals zero

yr,ki,j binary, equals one if bus i arrives at stop
j in route r in period k; otherwise, equals
zero

reinforcement learning module. Through the training
module, the actions performed by different buses can be
obtained. The symbols in the lower layer are shown in
Table 3.

3.2.1. Methodology of the operation module. The
passenger demand is determined based on historical
operation information. The arrival time of bus i at stop
j is determined by the sum of the departure time at stop
j − 1 and the driving time between Stop j − 1 and stop
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j. We need to consider the departure time of bus i − 1
at stop j to prohibit overtaking. Therefore, tar,ki,j can be
determined by

tar,ki,j = max{tdr,ki,j−1 + tr,ki,j , td
r,k
i−1,j}. (7)

The departure time of bus i is related to the arrival time,
service time, and the action performed by bus i at stop j.
Here

tdr,ki,j = tar,ki,j + tsr,ki,j + tzr,ki,j . (8)

In this formulation, we can conclude that if the action
performed by bus i at stop j is not holding, tzr,ki,j = 0.
The service time of bus i at stop j is associated with the
boarding and alighting process. In this paper, we assume
that the boarding and alighting processes are carried out at
the same time. Based on historical data, we find that the
alighting process usually takes less time than the boarding
processes. The times of boarding and alighting processes
at stop j are linearly related to the number of passengers.
The number of passengers getting off bus i at stop j can
be expressed by

Ar,k
i,j = yr,ki,j ·qr,kj ·Qr,k

i,j−1+(1−yr,ki,j+1)·qr,kj+1 ·Qr,k
i,j−1, (9)

yr,ki,j + yr,ki,j+1 ≥ 1. (10)

In the formulation (9), if yr,ki,j = 0 and yr,ki,j+1 = 1,
then bus i stops and provides service at stop j + 1, and
Ar,k

i,j = 0. Bus i skips stop j and passengers cannot get
off the bus at stop j. If yr,ki,j = 1 and yr,ki,j+1 = 0, bus i
provides service at stop j and skips stop j+1. Passengers
whose destination is stop j + 1 need to get off bus i at
stop j. If yr,ki,j = 1 and yr,ki,j+1 = 1, then bus i does
not perform the acceleration action and stops normally at
two stops. Constraints (10) prevent the bus from skipping
two consecutive stops. The bus can usually complete the
scheduling task by skipping one stop at a time, and there
is no need to skip multiple stops continuously to improve
the service reliability of bus lines.

Besides, if the bus skipped multiple consecutive
stops, it would cause great inconvenience to passengers
and affect their travel experience. Passengers taking
bus i at stop j in period k can be divided into three
categories: the number of passengers βr,k

i−1,j ; the number
of passengers p1,r,ki,j who arrive at stop j during the period
from bus i−1 leaving stop j to bus i arriving at stop j; the
number of passengers p2,r,ki,j who arrive at stop j during the
period the bus i providing service at stop j. The service
time at stop j depends on the larger value of the boarding
and alighting times. The time required for passengers to
board or alight is affected by the used space in the bus.
The used space (expressed by Qr,k

i,j−1/C) is an important
indicator to measure the time required for passengers to
boarding and alighting. We have

p1,r,ki,j = λr,ki · (tar,ki,j − tdr,ki−1,j). (11)

The service time ts′r,ki,j at this stage could be expressed by

ts′r,ki,j = yr,ki,j ·c ·max{δ ·(p1,r,ki,j +βr,k
i−1,j), σ ·Ar,k

i,j }. (12)

Here δ and σ are parameters representing the average time
for passengers to boarding and alighting, respectively.

Define
{
c = 1 if 0 ≤ Qr,k

i,j−1/C ≤ τ,

c > 1 if τ < Qr,k
i,j−1/C ≤ 1

(13)

as a parameter which is related to the used space in bus i; τ
represents the threshold of the used space. The passengers
p2,r,ki,j who arrive at stop j during the period ts′r,ki,j could
be defined as

p2,r,ki,j = λr,kj · ts′r,ki,j . (14)

Besides, based on historical data, the number of people
getting off at stop j could be calculated. Thus, the number
of passengers getting on Br,k

i,j can be expressed by

Br,k
i,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

yr,ki,j · (p1,r,ki,j + βr,k
i−1,j + p2,r,ki,j − wr,k

i,j )

if p1,r,ki,j + βr,k
i−1,j + p2,r,ki,j

≤ C − (Qr,k
i,j−1 −Ar,k

i,j ),

yr,ki,j · (C − (Qr,k
i,j−1 −Ar,k

i,j )− wr,k
i,j )

otherwise.
(15)

Here wr,k
i,j could present the number of passengers unable

to take bus i at stop j due to the acceleration action.
Existing studies have proved that the method

of limiting the number of boarding passengers can
effectively improve the quality of bus services (Vuchic,
1973; Larrain et al., 2010). In this paper, the boarding
limit action means that passengers at a stop are only
allowed to get on the bus during the period of alighting.
If the alighting process is over, the bus stops service and
leaves the stop. Therefore,

wr,k
i,j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max{p1,r,ki,j + βr,k
i−1,j + p2,r,ki,j − σ ·Ar,k

i,j /δ, 0}
if p1,r,ki,j + βr,k

i−1,j + p2,r,ki,j

≤ C − (Qr,k
i,j−1 −Ar,k

i,j ),

max{C − (Qr,k
i,j−1 −Ar,k

i,j )− σ ·Ar,k
i,j /δ, 0}

otherwise.
(16)

If the bus i performs the action of boarding limit, the
value of wr,k

i,j needs to be calculated according to (16).
Otherwise, wr,k

i,j = 0. The service time of bus i at stop j
could be obtained through

tsr,ki,j = yr,ki,j · c ·max{δ ·Br,k
i,j , σ ·Ar,k

i,j }. (17)

The number of passengers on board at consecutive stops
is

Qr,k
i,j = Qr,k

i,j−1 +Br,k
i,j −Ar,k

i,j . (18)
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The number of passengers who cannot board due to
capacity constraints or acceleration action is

βr,k
i,j = max {p1,r,ki,j +βr,k

i−1,j+λ
r,k
j ·tsr,ki,j −Br,k

i,j , 0}. (19)

The headway between bus i and bus i − 1 at stop j
can be obtained by

hr,ki,j = tar,ki,j − tdr,ki−1,j . (20)

The following constraints represent the time limitations
for the standby bus m if this bus provides service at stop
j in route r in period k,

tdr,ki,j ≤ tBr,k
m,i,j ≤ tar,ki+1,j , (21)

tdr,km,j ≥ tBr,k
m,i,j + tsr,km,j. (22)

In this paper, the service reliability of all stops is
derived in the operation module. Related parameters are
then transmitted to the training module. The service
reliability of bus lines would be affected by the reliability
of road traffic. Due to the complexity of road traffic, we
use a macroscopic method (i.e., zone-based travel time
reliability (ZTTR)) to evaluate the reliability of bus lines.
Specifically, a well-known risk metric, i.e., the value at
risk (VAR), is defined as follows:

VAR(T ) = inf{t : F (t) ≥ ψ}, (23)

M =
t− E(t)

E(t)
, (24)

where ψ ∈ (0, 1) is the confidence level, T denotes the
random variable, t represent the travel time of passengers
with a given OD pair, F (t) indicates the cumulative
distribution function of T , M means the normalized
deviation of trips.

The conditional VAR (CVAR) to present the average
of losses exceeding VAR is

CVAR(M) = E[M |M ≥ VAR(M)]

=
1

1− ψ

∫ ∞

VAR(M)

mf(m) dm.
(25)

The formulas

ri,j = VAR(M) + E[(M − VAR(M))+]

=

∫ ∞

VAR(M)

mf(m) dm = (1− ψ)CVAR(M),
(26)

SRi =
∑

j∈N

SRi,j =
∑

j∈N

ri,j · wpi,j (27)

establish the relationship between the travel risk ri,j and
ZTTR, where SRi represents the ZTTR of zone i; SRi,j

indicates the ZTTR between zone i and zone j; ri,j
denotes the average risk of passengers traveling from zone
i to zone j; wpi,j is the weight of zone OD pair (i, j),

usually expressed by the passenger demand. The service
reliability between two stops in a bus line can be expressed
by the ZTTR between two corresponding zones.

The improvement of service stability of bus stops
is conducive to transferring some passenger demand to
public transportation. Specifically, the demand transfer
can be expressed as a utility function related to time and
cost,

V bus
ij = a · tbus

ij + b · cbus
ij , (28)

V car
ij = a · tcar

ij + b · ccar
ij + d, (29)

P bus
ij =

exp(V bus
ij )

exp(V bus
ij ) + exp(V car

ij )
, (30)

where V bus
ij and V car

ij are the utilities of travelling by
bus and car, respectively; tbus

ij and tcar
ij are the average

travel time between zone OD pair (i, j) by bus and car,
respectively; cbus

ij and ccar
ij are the costs of travelling by bus

and car, respectively; a, b and d are weight parameters;
P bus
ij represents the probability that passengers choose to

travel by bus (i.e., the public transportation sharing rate).
The value of parameter P bus

ij can reflect the attractiveness
of public transportation to passengers.

3.2.2. Methodology of the training module. The
DRL method has excellent performance in dealing with
the continuous decision-making problem. The DRL could
achieve the optimal goal through continuous interaction
with the environment. The time-varying characteristics
of the scheduling problem in the transit network are
significant. Therefore, this paper selects DRL to solve the
proposed problem. Besides, the LSTM method is used to
predict the service reliability of all bus stops. The future
information would be integrated into the current state for
decision making.

LSTM is a special kind of recurrent neural network
(RNN) investigated to remember data over long durations.
A conventional RNN also has a memory mechanism.
However, the data stored in an RNN would increase
exponentially after a large number of iterations. In
contrast, LSTM has the ability to learn the long-term
dependencies based on historical data (Cheng et al.,
2018). It is worth noticing that the gate structure
in LSTM is crucial in processing historical data and
storing information. Important information is stored and
transferred to subsequent cells, while trivial data would be
gradually forgotten.

In practice, the service reliability of bus stops is
important for operators to formulate policies. Operators
need to take measures to ensure the service reliability of
stops seriously affected by disturbances. With the use
of LSTM, historical operation data can be integrated into
the current state. Specifically, each LSTM cell contains
two elements: an observation unit and a state unit. An
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observation value o′t could be obtained by inputting the
state st−1 and action at−1 into the observation unit. The
state unit integrates the historical data and the current
observation value ot. Then, the state unit maps these
information to a new state st. State st would be
transmitted to the next cell and get a new state st+1.

Based on historical data, the service reliability of
bus stops in the next five time steps is predicted. The
predicted data are mapped to the current state st. Then,
the internal state st is forwarded to the DDQN cell for
action selection.

The action value function of reinforcement learning
is formulated as the expected value of the discounted
reward, which is defined as

Qπ
t (s, a) = Eπ

[ ∞∑

k=0

γk · rt+k|st = s, at = a
]
. (31)

The quantity

Q∗(s, a) = max Qπ(s, a) (32)

denotes the optimal action value function. The goal
of reinforcement learning is selecting an optimal policy
to maximize the action value function. Here E(T ) is
the expectation of T ; st denotes the state at time t; at
represents the action selection at time t; γ is the discount
rate; r represents the reward that can be obtained at time t;
π denotes the policy that could be performed by the agent.

The DQN is a variant of reinforcement learning. The
action selection and evaluation in the DQN algorithm
are based on the same network, which may lead to
overestimation. The objective function in the DQN can
be expressed as

Y DQN
t = rt + γ ·max

a
Q(st+1, a; θ

−). (33)

Van Hasselt et al. (2016) pointed out that using the
same network parameter θ− to select actions and evaluate
Q values may lead to a nonzero lower limit of Q∗(s, a).
Specifically, in the DQN algorithm, the optimal Q value
is updated by taking the average of the maximum values
of all possibleQ values. This optimal Q value thus would
be greater than the maximum of the expected value of all
Q values, which is the reason for the overestimation. To
avoid this problem, Van Hasselt et al. (2016) proposed the
DDQN algorithm. This method can effectively deal with
complex problems based on historical data.

Two networks are used in the DDQN method. The
first network is an online network, which is used to
evaluate the current action value function. In this network,
the parameter θ is used to represent the parameters in the
neural network. The second network is the target network,
which is used to calculate the value of the objective
function Yt. θ− represents the parameters of the second

neural network. The objective in the DDQN could be
defined as

Yt = rt + γ ·Q(st+1, argmax
a

Q(st+1, a; θ); θ
−). (34)

The loss function represents the mean square error
between the evaluated action value and the target value.
The loss function is defined as

L(θ) = E(Yt −Q(st, at, θ))
2. (35)

The evaluation network uses the method of gradient
descent to minimize the loss function. The update method
of θ is based on the gradient descent

θt+1 = θt + αt · ∇θt · L(θt), (36)

where αt is the learning rate. In this algorithm, the
parameter θ is used to select the action. The parameter
θ− is used to evaluate the selected action.

For the scheduling problem in the transit network, it
is necessary to accurately define the state space, action
space and reward function. These attributes are discussed
below.

Definition of the state space. The state is used to
describe the status of the transit network. The state of
the transit network at time t can be expressed by st =
(Li, Q

r,k
i,j ,W

r,t,k
i,j , hri,j), where

• Li represents the location of bus i in the transit
network;

• Qr,k
i,j indicates the number of passengers on board i

when bus i departs from stop j in route r in period k;

• W r,t,k
i,j represents the number of waiting passengers

when bus i arrives at stop j at time t; the parameter
W r,t,k

i,j could be calculated via

W r,t,k
i,j = p1,r,ki,j + βr,k

i−1,j ; (37)

• hri,j represents the headway between buses i and bus
i− 1 at stop j in route r.

Definition of the action space. Action means the
scheduling method used in the transit network. In this
paper, five actions are mainly considered in the transit
network: (i) skipping control stop; (ii) skipping next stop;
(iii) boarding limit; (iv) holding; (v) adding standby buses
into the bus fleet. The action can be selected according to
the practical operation conditions and performed by bus i
at time t.

Definition of the reward function. The conventional
actions in the action set (i.e., skipping the control stop,
skipping the next stop, boarding limit and holding) would
have a variety of effects on passengers. For example,
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the skipping action could reduce the travel time of some
passengers on board. But at the same time, this action may
increase the waiting time of passengers at bus stops and
the additional travel time of passengers whose destination
is the skipped stop. The fifth action (i.e., adding standby
buses into the bus fleet) would have a positive impact on
the transit network, but the number of standby buses is
limited. Therefore, it is necessary to make a reasonable
plan to arrange standby buses.

The objective in this paper contains multiple parts,
which is shown as follows. The waiting time of
passengers at bus stops is

W1 =
∑

i∈V

∑

j∈N

∑

r∈R

∑

k∈K

(ξ · λr,ki · (hr,ki,j )
2

+ βr,k
i−1,j · hr,ki,j ), (38)

where ξ is a coefficient. The in-vehicle time of passengers
is

W2 =
∑

i∈V

∑

j∈N

∑

r∈R

∑

k∈K

(tr,ki,j + tsr,ki,j ) ·Qr,k
i,j−1

+ tzr,ki,j ·Qr,k
i,j . (39)

The extra travel time of passengers due to the skipping
strategy is

W3 =
∑

i∈V

∑

i′∈V

∑

j∈N

∑

r∈R

∑

k∈K

(1 − yr,ki,j ) · qr,kj ·Qr,k
i,j−1

· V (tr,ki,j+1 + tr,ki′,Nr−j+1 + hr,ki′,Nr−j)

+ (1− yr,ki,j+1) · qr,kj+1 ·Qr,k
i,j−1 · hr,ki+1,j .

(40)

The goal of this paper is to minimize the total
travel time of passengers in the transit network, so three
types of time (i.e., W1,W2,W3) need to be considered
comprehensively. The objective is defined as the total time
with the state s,

T (s) = α1 ·W1 + α2 ·W2 + α3 ·W3. (41)

whereα1, α2, andα3 are the coefficient values of different
parts.

Here r is the reward that the agent could obtain after
executing action a with state s. This indicator is used to
measure the quality of the selected action. In this paper,
we set

r =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

μ · G− T (s′)
G

if T (s′) is lower with

state s′ than s,

μ · G− T (s′)
G

· η otherwise.

(42)

Here G has the same meaning in (4); it G is (infinite)
positive number; μ (μ ≥ 1) could appropriately expand

Algorithm 1. Training combining DDQN and LSTM.
Step 1. Initialize replay memoryD.
Step 2. Initialize the parameter θ of the online network.
Step 3. Initialize the parameter θ′ = θ of the target
network.
Step 4. for episode = 1 : E do
Step 5. Initialize the current state o1.
Step 6. for time t = 1 : T do
Step 7. get the initial state st based on the LSTM.
Step 8. with probability ε select a random action
at.
Step 9. otherwise select an action at =
argmaxa Q(st; at; θ)
Step 10. Execute the action at, calculate the
reward rt, and collect the next observation ot+1.
Step 11. Store the transition (st, at, rt, st+1) into
D.
Step 12. Sample a random mini-batch of
transitions (sk, ak, rk, sk+1) from D.
Step 13. Set

Yt =

⎧
⎪⎨

⎪⎩

rj if episode terminates at step j + 1,

rj + γ ·Q(sj+1, argmaxa Q(sj+1, a; θ); θ
−),

otherwise.
Step 14. Calculate loss function based on
Eqn. (35), and perform a gradient descent with Eqn. (36).
Step 15. θ− = ζ · θ + (1 − ζ) · θ−
Step 16. end for
Step 17. end for

the reward value; η is a coefficient (0 ≤ η ≤ 1).
This reward setting can encourage agents to find actions
that can minimize the total travel time of passengers in
the transit network. Besides, it could also reduce the
exploration of non-optimal areas.

3.3. Framework of the training module. This paper
proposes a novel DDQN algorithm to solve the scheduling
problem in the transit network. The overall framework
of the tailored algorithm is shown as Algorithm 1. In
this algorithm, E represents the total number of episodes.
Time t is defined as the time when buses arrive at stops or
a standby bus needs to provide service. It is particularly
noteworthy that the traditional DDQN method updates the
parameter θ− every C steps. However, it is difficult to
determine an optimal value of C in practice. Therefore,
in this algorithm, we update the value of parameter θ−

every iteration, as shown in Step 15 of the algorithm. The
parameter ζ belongs to the internal (0, 1).

4. Computational experiments
4.1. Background and data. Experiments have been
carried out in Beijing. The topological layout of all bus
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Fig. 2. Map of the Beijing transit network.

lines is shown in Fig. 2. Table 4 gives detailed information
of nine bus lines, including origin stops, terminal stops,
length and the average headway during rush hours. The
study period was from March 9, 2020 to March 13, 2020.
We investigated the quality of bus services during the
morning (i.e., 7 am–9 am) and evening rush hours (i.e.,
5 pm–7 pm) every day.

Passengers are assumed to board at speed δ = 3
s/person and alight at speed σ = 1.5 s/person. Here τ
represents the threshold of the used space and its value
in this paper is 0.8. In Eqn. (13), we assume that c = 2.
The time span of each trip is 10 minutes. Buses in the
investigated periods cruise at a speed of 20 km/h. Besides,
we assume that the number of standby buses is 10. There
are four standby locations in the research area, which are
marked as big dots in Fig. 2. Standby buses are allowed
to provide services for the bus line with poor service
reliability. These buses would return to the original depot
after a single service.

It is worth noting that the number of passengers
arriving at bus stops during rush hours are obeyed by the
Poisson distribution. Besides, the impact of some special
events on bus services is not considered in this paper, such
as the struggle between passengers.

4.2. Analysis of the results.

4.2.1. Reduction in passenger travel time. The
proposed DDQN and LSTM was coded in Python. The
algorithm was tested on a computer with an Intel ®
Core (TM) i7–10700 CPU @ 2.90GHZ, 16GB RAM.
As depicted in Fig. 3, the proposed algorithm is trained
for 50000 episodes to learn an optimal policy. It was
found that the rewards fluctuated rapidly in the first 10000
episodes, and gradually reached steady state in the next
10000 episodes. To verify the superiority of the proposed
algorithm, it is set that the passenger demand fluctuates
severely due to disturbances in the 20000 episodes of the

Fig. 3. Evolution of rewards in the training process.

experiment. From Figure 3, we can find that the reward
value tends to stabilize after slight fluctuations. The stable
state indicates that an optimal policy is found.

The total travel time of passengers for different
scheduling strategies is calculated. The scheduling
strategies are divided into no-control (NC), conventional
control (CC) and hybrid control (HC) strategies. CC
includes four actions: skipping the current stop, skipping
the next stop, a boarding limit and holding. The HC adds
the action of adding standby buses into bus fleets based
on CC. The proposed TCM method in Section 3 could
judge the bus stop whose service reliability might be very
poor in the future. Standby buses can be used to provide
temporary services, which is conducive to improving the
service reliability of the specified line. In particular, if
standby buses remain idle in the standby locations for
a long time, it offers a good opportunity for re-using
these buses as regular buses once in a while. Therefore,
the travel experience of passengers may be improved
theoretically, while operators can also make better use of
idle resources.

The total travel time of passengers includes waiting
time at bus stops, driving time and extra travel time
caused by various actions. In fact, the speed of buses
is constant and all scheduling strategies in this paper
cannot reduce the driving time. However, the waiting time
and exact travel time of passengers could be optimized.
The total travel time of passengers per bus line under
different scheduling strategies is shown in Fig. 4. We can
observe that both the CC and HC have a positive effect
on improving the quality of public transportation services.
Compared with the inherent network, the total travel time
of passengers for CC is roughly reduced by 40–50%. This
proportion in the transit network based on HC roughly
exceeds 60%. Furthermore, in order to verify the excellent
performance of HC in energy conservation, the public
transportation sharing rate and the energy consumption
caused by private cars and buses are calculated (Hao
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Table 4. Characteristics of the nine bus lines.
Line Origin stop Terminal stop Length (km) Headway during rush hours
16 ErLiZhuang Zoo stop 12 11
26 ErLiZhuang TianNingSiDong 23 5
68 MaGuanYingXi ChangQiao road 12.7 10
87 DingHuiSiDong JinMenQiao 15.5 15
124 DaTunDong XiSi street 12.4 8
332 BeiGongMen stop QianMen 21.1 8
425 NanWu XiaoYing 19.4 8
469 The Summer Palace WuLuJu 11 10
610 LuGu XiYuan 20 9

et al., 2019; Goeke and Schneider, 2015). Parameters
used in this paper are consistent with these two papers.
Results show that compared with the transit network
based on NC, the energy burned per passenger can be
reduced by 15.67% if HC is performed to solve the
dynamic scheduling problems. Obviously, HC is more
suitable for solving the dynamic scheduling problem in
large transit networks. This phenomenon explicitly shows
that for a large transit network with numerous bus lines,
the proposed strategy is able to outperform the existing
control methods via providing services by standby buses.

The origin stop of Lines 16 and 26 is ErLiZhuang.
Numerous passengers choose to travel by buses on these
two lines. The total travel time of passengers on these two
lines is thus high. A similar phenomenon also occurs in
Lines 469 and 610, where buses begin to provide service
from the depot or the famous tourist area. Interestingly, it
is found that the total travel time of passengers on Line 87
is smallest among all bus lines. One of the reasons for this
situation is that the arrival rate of passengers at bus stops
on Line 87 is small. The other reason is that the OD of
passengers is mainly concentrated in the middle area. The
above two reasons lead to a low pressure of bus services
on Line 87 during rush hours.

4.2.2. Frequency of different actions. The frequency
of various actions performed by buses during the research
period are shown in Table 5. It can be found that
the frequency of holding action exceeds that of the
acceleration actions (i.e., skipping the current stop,
skipping the next stop and the boarding limit). The reason
for this phenomenon is that the holding action is simple
with a low negative impact. The waiting time caused
by holding is usually short, which is more acceptable
for passengers than being skipped at a destination or the
inability to take the current bus. Therefore, passengers
are willing to accept a holding action different from
acceleration actions. If it is necessary to use the skipping
action to improve the service reliability of bus lines, the
controlled bus tends to skip the next stop. This is because
this action could reduce the exact travel time of passengers
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Fig. 4. Passenger travel time for different scheduling strategies.

compared with skipping the current stop. If the next
stop is skipped, the passengers with the destination of
the next stop can get off at the current control stop. The
additional travel time required is only the waiting time.
In contrast, if the current stop is skipped, the passengers
with the destination of the current stop have to get off at
the next stop, the extra travel time of passengers includes
the waiting time and twice the running time between the
current stop and its next stop. For example, if bus i skips
the control stop j, passengers need to alight at stop j + 1.
Then these passengers will wait at stop N − j and board
bus i′ back to stop N − j + 1. On the other hand, if bus i
skips stop j+1, passengers whose destination is stop j+1
need to alight at stop j. Then they will wait for bus i + 1
to go to stop j + 1. This is because if the next stop is
skipped, the additional travel time required for passengers
is the waiting time at the current stop.

The scheduling results are shown in Fig. 5. In this
figure, some bus trajectories in one day are displayed.
The x-axis presents the rush hours, the y-axis indicates
the ID of buses from #1 to #18 and the right y-axis
shows the nine bus lines. Specifically, two solid lines are
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Fig. 5. Scheduling results.

used to indicate the operating conditions of these buses
during the morning and evening rush hours, respectively.
Several actions are marked by grey dots of varying scale.
The period between 9:00 and 17:00 regards off-peak
times separated by two dashed lines. The bus trajectory
during this period is not of primary interest in this paper.
As depicted in Fig. 5, the holding action is used more
frequently than the acceleration action (i.e., skipping and
boarding limit) when the headway of the bus fleet is
unreasonable. Furthermore, it is found that these actions
are concentrated between 7 am and 8 am during morning
rush hours, while strategies are mainly applied to adjust
the headway from 18:00 to 19:00 during evening rush
hours.

In Fig. 6, the number of standby buses at different
locations is shown. The heatmap on the left side of Fig. 6
represents the allocation of standby buses to different
locations. The horizontal axis indicates the bus ID and the
vertical axis indicates the date. The number in each box
represents the location to which the bus is assigned. For
example, the first square in the bottom left corner indicates
that standby bus 1 is assigned to location 1 on Friday. The
heatmap on the right side of Fig. 6 shows the frequency
of bus services. The box indicates the number of trips
performed by standby buses on that day. For example,
the first square in the bottom left corner indicates that
standby bus 1 completes a total of three trips on Friday.
The service reliability of bus lines covered by locations
1 and 2 is poor. The number of services provided by
buses at these locations is high. Through a large amount
of simulations, we find that standby buses in location 1
usually serve lines 332 and 469. The bus placed in the
standby location 2 serves passengers on bus lines 16 and
425. Buses in location 3 tend to serve passengers on
lines 26, 87 and 610; buses in location 4 mainly provide
services for bus lines 68 and 124. The comparison results
of different strategies is going to be shown in the following
subsection.

4.2.3. Distribution of headway. In this part, the
distribution of headway during the investigated period
for different strategies is shown in Fig. 7. The headway
of all buses is determined every fifteen minutes. From
Fig. 7, we can see that the headway of the original transit
network is large and the service reliability is poor. The
average headway of buses during the study period is
about 9.21 minutes. Passengers need to spend a long
time in the inherent transit network. The black line
shows the results of the transit network based on the CC.
The average headway is about 8.15 minutes. However,
the frequency of large headway (e.g., greater than 10
minutes) are still very high. In contrast, HC has the best
headway reduction performance. The average headway
can be reduced to 6.47 minutes. The distribution of
headway is mainly concentrated in the period between 5
and 8 minutes minutes. The frequency of large headway
is greatly reduced compared with the NC and the CC.
The reason for this phenomenon is that the CC only
takes measurement for control after the disturbance causes
serious congestion, which results in a delayed decision.
In contrast, the proactive control method (i.e., the HC)
can reduce the average headway due to the mechanism
of controlling before disturbances.

The headway distribution for different control
strategies is summarized in Table 6. The headway in
this paper is divided into three levels: 0–6 minutes, 6–10
minutes, and more than 10 minutes. From Table 6, we
can find that CC has a weak effect on improving the
quality of bus services. Compared with the inherent
network, the HC can significantly increase the proportion
of headway in 0–6 minutes. Applying the HC to solve
the dynamic scheduling problem is conducive to reducing
the proportion of headway exceeding ten minutes. This
is because the standby bus strategy would give priority
to assigning buses to serve passengers on bus lines with
poor service reliability. The optimization of the headway
of 6–10 minutes is not obvious, which is limited by the
number of standby buses.

5. Conclusions
In this paper, standby buses are considered to provide
temporary or regular services for some bus lines. Besides,
it is difficult to determine when to take action due to
complex traffic conditions. We proposed a two-layer
control method to solve the scheduling problems in
the transit network. The optimization objective is to
minimize the total travel time of passengers in the transit
network. The simulation results show that our method
can effectively improve the service reliability of the transit
network. Our findings are the following:

1. The two-layer control method is an effective
real-time scheduling method. It is very important
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Table 5. Frequency of different actions for each bus line during the investigated period.

Action Line/frequency
Line 16 Line 26 Line 68 Line 87 Line 124 Line 332 Line 425 Line 469 Line 610

Skipping the current stop 2 1 2 4 3 6 1 2 4
Skipping the next stop 10 15 12 11 19 8 10 14 16
Boarding limit 22 10 19 18 13 11 12 17 8
Holding 62 58 70 68 76 82 64 78 85
Standby bus 16 13 4 7 5 19 12 29 13
No-control 110 132 145 102 137 141 144 165 134

Fig. 6. Location and service frequency of standby buses during the research period.

to accurately describe the environmental state, such
as headway, service reliability and driving time.
These parameters have significant impact on the
optimization results of the tailored DDQN algorithm.

2. Passengers are willing to accept a holding action
other than skipping actions. The average frequency
of the action of skipping the next stop is higher than
that of skipping the current stop. This is because
skipping the next stop would lead to a less exact
travel time for passengers.

3. HC could further improve the service reliability of
the transit network on the basis of CC. The standby
bus strategy would give priority to assigning buses
to serve passengers on bus lines with poor service
reliability. Our results show that HC benefits from
placing standby buses at the designated location in
advance, and outperforms CC in terms of reducing
passenger travel time and the average headway of bus
fleets. It is conducive to the long-term development
of the bus services.
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