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The paper deals with the problem of health-aware fault-tolerant control of a vehicle fleet. In particular, the development
process starts with providing the description of the process along with a suitable Internet-of-Things platform, which enables
appropriate communication within the vehicle fleet. It also indicates the transportation tasks to the designated drivers and
makes it possible to measure their realization times. The second stage pertains to the description of the analytical model
of the transportation system, which is obtained with the max-plus algebra. Since the vehicle fleet is composed of heavy
duty machines, it is crucial to monitor and analyze the degradation of their selected mechanical components. In particular,
the components considered are ball bearings, which are employed in almost every mechanical transportation system. Thus,
a fuzzy logic Takagi–Sugeno approach capable of assessing their time-to-failure is proposed. This information is utilized
in the last stage, which boils down to health-aware and fault-tolerant control of the vehicle fleet. In particular, it aims
at balancing the exploitation of the vehicles in such a way as to maximize they average time-to-failure. Moreover, the
fault-tolerance is attained by balancing the use of particular vehicles in such a way as to minimize the effect of possible
transportation delays within the system. Finally, the effectiveness of the proposed approach is validated using selected
simulation scenarios involving vehicle-based transportation tasks.

Keywords: FTCD, modeling bearings degradation, remaining useful life prediction, health-aware fault tolerant control,
Takagi–Sugeno model.

1. Introduction

There is a belief in society that mechanical systems, unlike
electronic ones, are burdened with a higher failure rate.
This view may in part be justified because mechanical
systems largely consist of components that slowly but
inevitably degrade over time. This degradation results
from the gradual deterioration of the physical or chemical
properties of the component due to prolonged use. Such
gradual deterioration of component parameters leads to
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faults that can lead to irreversible failures of the entire
system.

Among the mechanical components that fail most
frequently are the bearings (Liu and Zhang, 2020; Duan
et al., 2018; Wei et al., 2019). This is due to the fact
that they are subjected to a high and long-term mechanical
stress. If proper operation and/or service conditions are
not ensured, their quality parameters deteriorate rapidly.

Bearings have numerous applications in many
systems, such as vehicles, electric and mechanical
machines and wind turbines (AlShorman et al., 2020; Wei
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et al., 2019; Duan et al., 2018). Due to the numerous
applications of bearings, any research aimed at extending
their service life is of a great economic importance.
In the literature, there are many fault diagnostics (FD)
(Witczak, 2014; Witczak et al., 2020c; Pazera et al.,
2020; Mrugalski and Korbicz, 2007) methods based
on, for example, vibroacoustic methods (AlShorman
et al., 2021), artificial intelligence based methods (Nath
et al., 2021), observer-based approaches (Gao and Liu,
2021), which are aimed at fault detection of bearings
and replacing them with new ones at the time of
pre-emergency or after a failure.

However, this paper proposed a completely different
and holistic approach leading to the extended service life
of bearing systems. This approach assumes that we can
gradually use individual elements included in the system,
taking into account the degree of their degradation. For
example, if we have at our disposal a group of vehicles
characterized by various degrees of bearing degradation,
then having this knowledge, we can use these vehicles to
varying degrees in order to ensure the longest possible
level of operation of all vehicles. In other words, if we
know that one of the vehicles has heavily worn bearings,
it will be less frequently used for the transport task.
However, other factors should also be mentioned, such as
increased energy consumption, speed limits, emergency
mechanical blockage. By using a less frequently damaged
vehicle, it is possible to minimize their impact on the
system and the possibility of failure. The above approach
is also known as health-aware fault tolerant control (H-A
FTC) (Lipiec et al., 2021; Jain and Yamé, 2020; Salazar
et al., 2020).

An effective H–A FTC system should
have functionalities capable of modeling system
degradation, system diagnostics, remaining useful
life (RUL) prediction (Zhou et al., 2019), and robust
FTC (Witczak, 2014; Hamdi et al., 2021). The modeling
of the degradation process is usually done using artificial
neural networks (Chen et al., 2020; Wang et al., 2018; Li
et al., 2018), life expectancy models (Chudnovsky, 2012),
knowledge based models (Do et al., 2018) and physical
models (Sun et al., 2019). One of the basic disadvantages
of the above methods is that they do not have a
mathematical description of the uncertainty of the
prediction process, which make them impossible to use in
H-A FTC systems.

In order to overcome this disadvantage, in this article
a method that combines exponential models and the fuzzy
logic framework was developed. Such a method enables
not only modeling qualitative changes in vehicle bearings,
but also carrying out fault detection. Moreover, this work
proposes the RUL prediction method. The purpose of this
method is to determine the trajectory of the deteriorating
state of the system from the moment of fault detection
to its complete failure using the time-to-failure (TTF)

indicator (Witczak, 2014). The concept of the developed
data-driven based remaining useful life prediction method
is based on the application of a group of Takagi–Sugeno
(T–S) models (Xie et al., 2021). The proposed method
enables the development of a comprehensive method of
controlling a group of vehicles, taking into account the
degradation condition of their bearings, the occurrence
of potential faults in the system, transport delays, etc.
Moreover, a new health-aware based cost function, which
takes into account predictions concerning the current
operational ability of wheel loaders bearings is proposed.
The proposed H-A FTC scheme was validated on the
theoretical model of the transport task of the rock
aggregate transported with the use of a group of wheel
loaders (WLs), where the degradation models for their
bearings were built based on the real data from the
PRONOSTIA test platform (Nectoux et al., 2012). A
wheel loader is usually used to build roads, prepare the
job site, dig and carry heavy loads, or move materials.

The paper is organized as follows. Section 2 presents
the motivation to undertake research and describes the
system under consideration. Section 3 presents the basic
system constraints that should be taken into account when
designing the H-A FTC method. Section 5 presents a
new fuzzy logic based approach to modeling the bearing
degradation process. Section 6 shows the new RUL
prediction method. Section 7 presents an algorithm for
H-A FTC of multiple wheel loaders. Section 8 shows the
results of the efficiency evaluation of the proposed H-A
FTC strategy and Section 9 concludes the paper.

2. System description
The process considered is carried out in a sample plant
producing aggregates used for road hardening. The plant
produces aggregate fractions (from 2 mm to 8 mm). It
is used while hardening roads under construction. Five
loading stations, where bucket trucks arrive, are operated
by five wheel loaders. Five aggregate storage places are
continuously refilled by conveyor belts that are linked to
aggregate production.

Having a layout of the loading area (see Fig. 1),
suitable communication tools have to be implemented.
This solution enables tracking the driver’s performance
and provides information about current tasks on time
reliably and safely.

To solve the so formulated problem, the
new IoT infrastructure KIS.ME (Keep.It.Simple
Manage.Everything) is proposed. This infrastructure
provides two components:

KIS.BOX: a button box equipped with a WiFi inter-
face,

KIS.LIGHT: a signal LED equipped with a WiFi
interface.
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Fig. 1. Sample loading area.

The KIS.LIGHT buttons and KIS.BOX can light in several
specified colors. The advantage under discussion can
be efficiently used for human-machine communication
within the loading area.

The structure of proposed solution is very intuitive
and considers two main points:

• KIS.LIGHTs stand at restricted loading stations,
where dump trucks are loaded by wheel loaders,

• KIS.BOXes are installed on a wheel loader
performing loading tasks.

KIS.Manager allows virtualizing all KIS.BOXes and
KIS.LIGHTs. The KIS.Manager enables the visualization
of the digital twin of all KIS.Lights and KIS.BOXes in
the loading space. What is more, using KIS.Manager,
it is possible to represent the states of buttons while the
visualization of movements is not implemented. Such
functionalities simplify the device representations. To
solve this problem, the device position identification is
based on the parameters provided by the manufacturing
execution system (MES)

N(k) = {D(k), L(k),M(k)}, (1)

where

• k is the loading event counter, i.e., k = 0, 1, . . . ,

• D(k) is the identifier of an aggregate storage place,

• L(k) is the identifier of a loading station,

• M(k) is the k-th mass of ordered aggregate (in kg).

We assume that the distance between the loading
stations and the aggregate storage places is the same for all
routes. Each station is assigned to a specific fraction that
can be loaded there. The main factor that distinguishes the
tasks is the number of tons that must be loaded into the
dump truck. In the considered aggregate production plant,

Algorithm 1. KIS.ME procedure.

S1 : The loading station KIS.LIGHT L(k) lights with a
green color. A new task has been assigned.

S2 : The selected wheel loader KIS.BOX ring
illuminates with a green colour.

S3 : The WL driver pushes first the KIS.BOX button.
It starts flashing in green. Second KIS.BOX button
color indicates the mass of a loading aggregate (see
Table 1). The awaiting time bi is saved. The operator
starts transportation event L(k).

S4 : When the loading task is completed, the WL driver
pushes first the KIS.BOX button. Its ring becomes
black. The transportation time ci is saved.

the loading capacity of the loader bucket is 2 tons. For the
purpose of further deliberations, the work schedule on a
given horizon must be assumed, which shapes the desired
transportation plan:

Q = {N(0),N(1), . . . ,N(nE)}, (2)

where nE is the number of loading tasks while the other
variables being used are as follows:

• nT stands for the number of all loading stations,

• nE signifies the number of all wheel loaders,

• u(k) is the unknown loading start time of the k-th
loading task from D(k) towards L(k), which has to
be determined,

• vi(k) (for i = 1, . . . , nE) is a two-valued decision
variable indicating which wheel loader undertakes
transportation event N(k);

• zi(k) is the time when the i-th wheel loader (i =
1, . . . , nv) is ready to perform transportation event
N(k),

• vnv+1(k) is the time of realizing the k-th task.

The KIS.ME IoT platform is applied to determine
a loader driver performance model. A step-by-step
procedure is described as Algorithm 1.

The sample signalization presented in Fig. 2 shows
the situation, when the task is assigned to the first station
and 13 000 kg should be loaded.

3. Health-aware fault-tolerant control
In order to develop an H-A FTC strategy that takes into
account the remaining useful life of vehicles bearings,
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Table 1. Color description of loaded mass.
Color Loading mass (kg)

magenta 6 500
blue 10 000

turquoise 13 500
green 17 000
red 21 500

yellow 28 000
white 31 500

Fig. 2. Sample task signalization.

several constraints describing the behavior of the whole
system presented in Section 2 should be defined.

Wheel loaders movement restrictions. The k-th vehicle
should leave T (k) before the l-th (l > k) aggregate
package will be delivered:

IF l > k and T (k) = T (l) THEN u(k) ≤ u(l) + α(j),
(3)

where α(j) > 0 denotes the unknown variable time
between receiving the k-th and l-th loads. This limitation
is to prevent a situation where two different loads are
transported from the same loading bay at the same time,
i.e., u(k) = u(l). Nevertheless, it is obvious that time
α(l) should be as short as possible. Moreover, it should
be also assumed that j = 1 . . . , nα, nα < nE . In order
to meet this condition, an expected transportation plan P

given by (2) has to be obtained.

Scheduling restriction. This restriction means that each
of the nE starting times for loading a rock aggregate by
the wheel loader is limited:

u(k) ≤ uE, (4)

where uE > 0 s the maximum allowable start time for the
transportation of all nE rock aggregate loads.

Transportation restriction. The operating time of the
i-th wheel loader transporting the k-th load of rock
aggregate is related to its degree of degradation:

bi(k) = max (e, b(k) + vi(k)) , (5)
ci(k) = max (e, c(k) + vi(k)) . (6)

As can be seen, when the i-th wheel loader is not
carrying the k-th load of rock aggregate then vi(k) = ε =
−∞, which means that bi(k) = ci(k) = max(e, ε) =
max(0, ε) = 0.

Concurrency restriction. This condition defines the
obvious situation that the k-th load of rock aggregate can
be transported only by one, the j-th wheel loader:

vj(k) = e ⇔ vi(k) = ε, ∀i �= j. (7)

All the above-defined restrictions make it possible to
develop a control strategy that takes into account the state
of degradation of the wheel loader bearings. Indeed, the
problem lies in the determination of the sequence of pairs:

(u(k), vi(k)), k = 0, . . . , nE − 1, (8)

resulting in the k-th rock aggregate load transportation
start time u(k) along with vi(k), the i-th wheel loader
doing this activity.

Assume the following cost functions associated with:

• minimizing

Ju = −
nE−1∑

k=0

u(k), (9)

which means determining the maximum possible
average time of loading rock aggregate;

• minimizing the time of picking up of rocks from a
given loading bay,

Jα =

nα∑

j=1

α(j); (10)

• minimizing

JH = −
nE−1∑

k=0

nE∑

i=1

(t̄i − bi(k)− ci(k)), (11)

where t̄i is the expected time-to-failure of the i-th
loader.

Note that exact values of t̄i are impossible to
attain. However, they can be efficiently estimated
with the approach proposed in Section 6. The cost
functions (9)–(11) define various goals which together
can be achieved by minimizing the following compound
criterion:

J = γ1Ju + γ2Jα + γ3JH , (12)

γ1 + γ2 + γ3 = 1, γi ≥ 0, i = 1, 2, 3, (13)

where coefficient γi weighs the role of a current restriction
and appropriate selection of these values leads to a desired
system behavior.

The knowledge about (12) and constraints (3)–(7)
allows proposing a method for modeling and control of
multiple wheel loaders which are similar to that proposed
for the fleet of forklifts by Witczak et al. (2020a).
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4. Health-aware control of multiple wheel
loaders

In this section a model for predicting the future behavior
of multiple wheel loaders is proposed. Such a model is
based on the max-plus algebra (M-PA) scheme (Majdzik
et al., 2016; 2021; Seybold et al., 2015; De Schutter and
Van den Boom, 2001; Van Den Boom and De Schutter,
2006; Witczak et al., 2020b). Unlike the well-known
M-PA models, the property of the method developed
by Witczak et al. (2020a) is that it allows handling both
system synchronization and concurrency. To obtain such
a property, the re-called model uses a set of decision
variables {vi(k)}Np

k=1 for an assumed prediction horizon
Np < nE . It is worth emphasizing that the M-PA
structure (Rmax, ⊕,⊗) involves the following properties
and operations: Rmax � R ∪ {−∞}, for all x, y ∈ Rmax,
where x⊕y = max(x, y), for all x, x ∈ Rmax and x⊗x =
x + y whereas R denotes the field of real numbers. The
above-described operations can be represented in matrix
form (Butkovic, 2010).

Based on the assumed definitions, the behavior of nE

wheel loaders can be written as

z(k) = A(v(k), k) ⊗ z(k − 1)⊕B(v(k), k)⊗ u(k),
(14)

where

• z(k) = [z1(k), z2(k), . . . , znE (k), znE+1(k)]
T ,

• v(k) = [v1(k), . . . , vnE (k)]
T ,

• A(·, ·) ∈ R
nE+1×nE+1
max ,

• z(k) is the transition matrix,

• B(·, ·) ∈ R
nv+1
max is the control matrix.

Moreover, the transformation and control matrices are
defined by (15).

The multiple wheel loader health-aware control
strategy relies on the selection of the input sequence
u(k), . . . , u(k + Np − 1) on the assumed horizon
k, . . . , k + Np − 1 in order to minimize cost function J
defined by relation (12).

According to the method described by Witczak et al.
(2020a), the prediction vector w̃(k) = [w(k)T , w(k +
1)T , . . . , w(k + Np − 1)T ]T has to be defined. Then the
recursive use of the expression (14) leads to

z̃(k) = M(ṽ(k))⊗ z̃(k − 1)⊕H(ṽ(k))⊗ ũ(k), (16)

where M(ṽ(k)) and H(ṽ(k)) are calculated by a chain
of recursive substitutions (Witczak et al., 2020a).

After the above transformations, the health-aware
control task relies on solving the following optimization

problem for each k

(
ũ(k)∗, ṽ(k)∗, ˜α(k)

∗)
= arg min

ũ(k),ṽ(k), ˜α(k)
J, (17)

subject to the constraints (3)–(7).
The results obtained in this section form a basis for

the development of a new H-A FTC method which can be
applied to a fleet of wheel loaders.

5. Fuzzy logic approach to modelling the
degradation process

The exponential models enable us to create tools for
modeling the degradation process of many common
components, which are used in industry (Zhang et al.,
2018; Anis, 2018), including the 2021 PHM Data
Challenge (Singleton et al., 2015; Sutrisno et al., 2012).
The main part of this challenge is testing the platform
PRONOSTIA. The main objective of this section is to
combine together exponential modeling with historical
data collected from the ball bearing the same type. For
that reason a fuzzy logic framework is presented in this
section.

The following structure of the exponential
degradation model should be mentioned (see, e.g.,
the works of Li et al. (2015) or Gebraeel et al. (2005))
and the references therein):

xk = φ+ θk exp

(
βktk + σkB(tk)− σ2

k

2
tk

)
, (18)

where

• k represents the number of the sample,

• xk is the degradation parameter being modeled (e.g.,
a vibration),

• φ is a constant known as the minimum bound of the
degradation parameter,

• β, σ and θ are unknown parameters, which
are responsible for shaping the behavior of the
exponential model,

• tk is a time at a given sample k,

• σB(tk) denotes a Brownian motion obeying a normal
distribution N (0, σ2tk).

The model (18) yields a logarithmic transform of the
traditional form

mk = ln (xk − φ)

= ln (θk) +

(
βk − σ2

k

2

)
tk + σkB(tk), (19)
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A(v(k), k) =

⎡

⎢⎢⎢⎣

b1(k − 1) + c1(k − 1) ε . . . ε
ε b2(k − 1) + c2(k − 1) . . . ε
...

...
. . .

...
b1(k − 1) + c1(k − 1) + c1(k) + v1(k) b2(k − 1) + c2(k − 1) + c2(k) + v2(k) . . . h(k)

⎤

⎥⎥⎥⎦ ,

B(v(k), k) = [v1(k), v2(k), . . . , vnv(k),max(c1(k) + v1(k), . . . , cnv (k) + vnv (k))]
T .

(15)

which is transformed into a compact regressor-like form

mk = rTk pk, (20)

with

rk = [1, tk]
T , pk =

[
ln (θ), β − σ2

2

]T
. (21)

where rk ∈ R
2 represents the regressor vector and pk ∈

R
2 means a time-varying parameter vector.

5.1. Fuzzy logic in the bearing degradation pro-
cesses representation. The development of a method
for remaining useful life estimation of bearings in HV
requires knowledge of a model of the bearing degradation
process. This model can be created in the identification
process on the basis of a set of measurement data
from many bearings with different degradation rates.
The method used to model the bearing degradation
process should be highly accurate despite the presence
of measurement noise or uncertainties. Moreover, the
method should have computational simplicity allowing its
application in real time. The tool that meets the above
requirements is fuzzy logic.

Let us assume that the model (20) can be simplified
by accepting that φ = 0. Gebraeel et al. (2005) and Li
et al. (2015) showed that φ is known or it can be obtained
from xk. Thus, omitting φ from the model (20) does not
deteriorate the accuracy of the degradation model. The
above assumption yields mk = xk.

The degradation signal zk can be constrained just like
the variable mk:

m ≤ mk ≤ m̄, (22)

which, when outside the limit values, is considered to be
the minimum symptom of degradation. In other words,
m̄ > 0 represents the maximum allowable degradation
level. Of course, when mk value remains within the
range (22), we assume that the bearing is undamaged and
remains in the nominal condition. The interval (22) can
be applied to determine one of the basic RUL parameters,
i.e., time-to-failure (TTF). The TTF represents the time
of the system transition from nominal mk to damaged

state m̄ according to the actual degradation process. The
knowledge about the interval (22) allows dividing it into
n classes. Each of these classes represents a different
condition of the bearing degradation level. In practice,
it can be assumed with a high probability that such classes
can be uniformly distributed over (22) with a spread of

zj = m+ (j − 1)
m̄−m

n− 1
, j = 1, . . . , n. (23)

This assumption can be justified by the fact that, in
general, the degradation signal zk evolves within (22).
Thus, the degradation signal of each component being
monitored goes from the minimum up to the maximum
bound.

Thus, the classes defined in this way will form a basis
for defining membership functions (Zadeh, 1992), which
will be used for modeling the unknown structure of the
degradation model mimicking the degradation signal zk.
This process will be repeated for a set of various bearings
of the same type, which allows designing a degradation
database, which can be suitably adapted to the bearing
being currently monitored. This means that the closest
(in the sense of the degradation profile) fuzzy logic model
will be used to get a prediction of the future degradation
zk.

In the literature on fuzzy logic, various types
of membership functions can be found, among others
sigmoidal, trapezoidal, piecewise linear, Gaussian or
singleton (Zadeh, 1992). In this paper, it is assumed that
the triangular membership functions will be applied (cf.
Fig. 3):

aj = bj−1, bj = zj,

cj = bj+1, j = 2, . . . , n− 1,

a1 = b1, cn = bn,

(24)

where parameters aj , bj , cj describe the j-th membership
function.

On the basis of the assumed membership functions,
the model of the bearing degradation process can be
represented in the form of a Takagi–Sugeno (Tanaka and
Sugeno, 1992) model which consists of several submodels
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Fig. 3. Triangular membership functions and their application
for degradation modeling.

given by

IF mk ∈ Dm,j THEN zk = rTk p
j + vk, j = 1, . . . , n.

(25)

where Dm,j represents the fuzzy set described by the
j-th triangular membership function (24) and vk is
measurement and modeling uncertainty.

Now, (25) can be rewritten as follows:

mk =

n∑

j=1

μj(mk)
(
rTk p

j + vk
)
, (26)

n∑

j=1

μj(mk) = 1, μj(mk) ≥ 0,

where μj(mk) (j = 1, . . . , n) stands for the normalized
j-th rule firing strength calculated according to the
triangular shape (24). Alternatively, the system (26) can
be redefined as

mk = r̄Tk p̄+ vk, (27)

where

r̄ = [μ1(mk)r
T
k , μ2(mk)r

T
k , . . . , μn(mk)r

T
k ]

T , (28)

and

p̄ = [(p1)T , . . . , (pn)T ]T . (29)

As can be seen, the quantity mk in (27) is influenced not
only by r̄, but also by 2n parameters within p̄ ∈ R

2n.
It is worth emphasizing that in most cases the number

of degradation classes n is relatively low. However, even
if the number n is large, it can observed that some of
μl(mk) can be inactive, which means they are equal to
zero, until the bearing degradation process enters a given
class. The situation described above means that some
elements of vector r̄ can be constantly equal to zero and
this can make the process of parameter estimation more

difficult. To solve this problem, the natural properties of
triangular membership functions can be used. As can be
seen in Fig. 3, for any variablexk at most two membership
functions are active at the same time. In this case Eqn. (26)
transforms to the following form:

mk = μj(mk)r
T
k p

j + μj+1(mk)r
T
k p

j+1 + vk, (30)

μi(mk) + μj+1(mk) = 1,

where μi(mk) ≥ 0 for j = 1, . . . , n− 1.
Now, assume that vk can be modeled via the

Brownian motion (Gebraeel et al., 2005; Li et al., 2015)
and

|vk| ≤ v̄, (31)

where v̄ represents a known upper bound of vk, which
denotes a maximum possible difference between the
bearings degradation process (30) and model output md,k,

md,k = μj(zk)r
T
k p

j + μj+1(mk)r
T
k p

j+1, (32)
μj(mk) + μj+1(mk) = 1,

where μj(mk) ≥ 0 and j = 1, . . . , n− 1.
The developed methodology for modeling the

bearing degradation process on the basis of the historical
run-to-failure data allows representing it in form of set
l = 1, . . . , nh models

md,k = μj(mk)r
T
k p

j
l + μj+1(mk)r

T
k p

j+1
l , (33)

μj(mk) + μj+1(mk) = 1,

where μj(dk) ≥ 0 and j = 1, . . . , n − 1. The main
advantage of such a representation is that instead of
processing a large data set, the degradation parameter
vector p̄l = [(p1l )

T , . . . , (pnl )
T ]T is only processed.

5.2. Parameter estimation of the fuzzy logic model.
A mathematical description of the fuzzy-logic model was
presented above. This section presents an algorithm that
enables the estimation of p̄l parameters of this model.

In order to solve this problem, multiple methods of
parameter estimation available in the literature can be
used. Among the available methods, one of the classes
of algorithms, called bounded error, deserves special
attention (Arablouei and Doğançay, 2013; Kraus et al.,
2007). An advantage of these methods is the possibility of
obtaining optimal parameter estimates without knowing
the disturbance characteristics. Due to its properties,
the Modified quasi-Outer Bounding Ellipsoid (MOBE)
algorithm (Arablouei and Doğançay, 2013) algorithm
deserves special attention. This algorithm is characterized
by low computational complexity comparable to the
recursive least-squares (RLS) algorithm.

At the beginning it should be mentioned that in
order to simplify the notation, the index l (denoting
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the l-th bearing) has been omitted. The algorithm for
estimating the parameters of the developed fuzzy logic
model has the form of Algorithm 2. Finally, note that
the adaptation of the MOBE algorithm is not accidental
and it has a strong scientific background (Arablouei and
Doğançay, 2013) motivated by the fact that it copes better
with the situations in which the degradation signal is more
or less on a constant level. In such cases, the lack of
suitable persistent excitation (Witczak, 2014) may lead
to numerical problems with the application of the RLS
algorithm. Indeed, as can be observed in Algorithm 2,
new data contribute to the parameter estimation iff the
current error of the models ejk exceeds a given threshold
v̄ > 0. Moreover, λj

k plays a role of an adaptive forgetting
factor, which overcomes the RLS-based strategies with a
constant one (usually within λ ∈ [0.9, 1]).

From the analysis of Algorithm 2 it can be seen that
it does not update the parameters wj

k when the absolute
value of the current estimation error is lower than v̄.

5.3. Modeling of the bearing degradation pro-
cesses. It should be emphasized that modeling the
bearing degradation process should start at the moment
of the incipient fault detection in the bearing. Thus, at
the beginning, the so-called first prediction time (FPT)
tFPT should be defined, which enables the determination
of the moment in which the modeling of the process
of predicting the remaining useful life of the bearing
begins. Among the numerous parameters and signals
used in the diagnostic processes of bearings, kurtosis and
the root mean square (RMS) deserve special attention.
These parameters enable an effective detection of the
deteriorating condition of the bearings. It should be
underlined that the kurtosis is sensitive to incipient
faults (Witczak, 2014) but not best suited to reflect the
time varying nature of the degradation process (Gebraeel
et al., 2005; Li et al., 2015). The RMS method
does not have this weakness and together with the
kurtosis (Gebraeel et al., 2005) enables the delivery
of clear diagnostic information. Finally, the resulting
strategy is given by Algorithm 3. The diagram in Fig. 4
shows the algorithm that allows determining tFPT with
application of the kurtosis and then obtaining a model
representing the bearing degradation process with the
associated parameter updates.

It should be emphasized that as a result of the
application of Algorithm 3 (cf. Fig. 4), a set of models
corresponding to the run-to-failure of nh bearings will
be obtained. Such models are represented in the set of
nh × 2× n parameters.

6. Remaining useful life prediction
On the basis of the results obtained in Section 5,

it is possible to design the method of the remaining

Algorithm 2. Fuzzy logic models parameters estimation.

S0 : Set k = 1, set pi0 = 0, i = 1, . . . , n and P j
0 = ρI,

j = 1, . . . , n − 1, where ρ > 0 is a large positive
constant.

S1 : Determine a list of active sub-models

j = {i : μi(mk) + μj+1(mk) = 1,

i = 1, . . . , n− 1}. (34)

S2 : Form temporary regressor and parameter vectors:

rjk = [μj(mk)r
T
k , μj+1(mk)r

T
k ]

T , (35)

wj
k = [(pik)

T , (pj+1
k )T ]T . (36)

S3 : Calculate

ejk = mk − (rjk)
Twi

k−1. (37)

S4 : If |ejk| > v̄ then

hj
k = (rjk)

TP j
k−1r

j
k, (38)

λj
k =

gjk
|ejk|
v̄ − 1

, (39)

P j
k = (λj

k)
−1

(
P j
k−1 − P j

k−1r
j
k(r

j
k)

TP j
k−1(g

j
k)

−1
)
,

(40)

wj
k = wj

k−1 + P j
k r

j
ke

j
k; (41)

otherwise,

P j
k = P j

k−1, (42)

wj
k = wj

k−1. (43)

S5 : Set k = k + 1 and go to Step 1.

useful life prediction of a currently operating bearing.
In the proposed method, which is an extension of the
method presented in Fig. 4, an additional task concerning
remaining useful life prediction is included. As a result
of the introduced changes, Algorithm 4 is proposed. It
should be emphasized that during Step 5 the following
activities are performed:

1. The current degradation class i is determined in
Step 1.
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Algorithm 3. Calculation of the tFPT with application of
the kurtosis.

S1 : Compute the average kurtosis μK and the standard
deviation σK for a set of historical data achieved
from nominal bearings.

S2 : Use the 3σK rule to obtain the kurtosis uncertainty
interval:

K = [μK − 3σK , μK + 3σK ] . (44)

S3 : Calculate kurtosis mf on the basis of the current
measurement, where f is a sample number for the
current time tf .

S4 : Validate mf on the window mf , . . . ,mf+nw , i.e.,
the first element mf+j , j = 0, . . . , nw for which the
remaining ones are mf+j �∈ K, is assumed as the one
corresponding to FPT and tFPT = tj .

S5 : If tFPT is obtained then the process of bearing
degradation modeling is initialized.

2. A set of nh historical models for class i is obtained:

mn,k = μi(mk)r
T
k p

i
l + μi+1(mk)r

T
k p

i+1
l , (58)

μi(mk) + μi+1(mk) = 1.

where μi(mk) ≥ 0, l = 1, . . . , nh.

Based on these results, the following relation
between the current and historical models (58) can be
defined:

Qi
l =

(
μi(zk)r

T
k (p

i
l − pi)

+μi+1(zk)r
T
k (p

i+1
l − pi+1)

)2
, (59)

for l = 1, . . . , nh whereby (55) gives the l-th historical
model in the i-th degradation class, which is the closest to
the currently operating one.

The knowledge of the l-th historical model allows
proceeding to Step 6. As was mentioned in Section 5.1,
the maximum degradation signal bound by the relation
(22) denotes the failure threshold. At this time moment,
which signifies the moment of failure, the l-th model
should satisfy

m̄ = μj(m̄)rTf p
j
l + μj+1(m̄)rTf p

j+1
l , (60)

μj(m̄) + μj+1(m̄) = 1, μj(m̄) ≥ 0.

for some i ≤ j ≤ n− 1 and f > k.
By analyzing the relationship (23), it can be deduced

that j = n − 1. Furthermore, from Fig. 3, it can be seen
that μn−1(m̄) = 0 and μn(m̄) = 1. In such a case, the

Algorithm 4. Time-to-failure calculation.

S0 : Set k = 1, set pi0 = 0, i = 1, . . . , n and P i
0 = ρI,

j = 1, . . . , n − 1, where ρ > 0 is a large positive
constant.

S1 : Form the set of currently active sub-models:

j = {i : μj(mk) + μi+1(mk) = 1,

i = 1, . . . , n− 1}. (45)

S2 : Set regressor and parameter vectors:

rjk = [μj(mk)r
T
k , μj+1(mk)r

T
k ]

T , (46)

wj
k = [(pjk)

T , (pj+1
k )T ]T . (47)

S3 : Calculate

ejk = mk − (rjk)
Twj

k−1. (48)

S4 : If |eik| > v̄ then

hj
k = (rjk)

TP j
k r

j
k, (49)

λj
k =

gjk
|ej

k
|

v̄ − 1
, (50)

P i
k = (λj

k)
−1

(
P j
k−1 − P j

k−1r
j
k(r

j
k)

TP j
k−1(g

j
k)

−1
)
,

(51)

wj
k = wj

k−1 + P j
k r

i
ke

j
k; (52)

otherwise,

P j
k = P j

k−1, (53)

wj
k = wj

k−1. (54)

S5 : Find the closest historical model

l = arg min
l=1,...,nh

Qj
l . (55)

S6 : Predict tf :

f =
m̄− pn1,l
Tspn2,l

, tf = Ts × f. (56)

S7 : Calculate RUL

RULk = (f − k)Ts. (57)

S8 : Set k = k + 1 and go to Step 1.
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Fig. 4. Flowchart of the proposed framework.

remaining task is to calculate f > k for which (60) is
fulfilled, i.e.,

m̄ = rTf p
n
l . (61)

This problem in solved on the basis of (21) for the
regressor rf = [1, tf ]

T with tf = Ts×f , where Ts stands
for the known sampling time. Thus, (61) represents the
failure time defined by relation (56).

Finally, it should be noted that the above algorithm
should be applied for all wheel loaders. This means that
tf (see (56)) for the i-th wheel loader is simply denoted
by t̄i (cf. (11)).

7. H-A FTC of multiple wheel loaders
The structure of the loading system and its operating
procedure described in Section 2 allows scheduling the
work of nv wheel loaders according to (16). The
optimization problem of each loading tasks k (see (16))
is calculated with the use of an external application and
the results of optimization are delivered by the dedicated

platform to KIS.ME. As a result, commands provided by
the human operator are replaced by the platform ones.

Let us start with recalling that Algorithm 2 provides
the actual transportation times of the i-th transporter, i.e.,
ci(k)

m and bi(k)
m. Thus, by comparing them with the

nominal values ci(k) and bi(k) (cf. (5) and (6)) one can
estimate transportation faults, which are simply defined as
delays

IF ci(k)
m ≤ ci(k) THEN fi,c(k) = 0

ELSE fi,c(k) = ci(k)
m − ci(k) (62)

and

IF bi(k)
m ≤ bi(k) THEN fi,b(k) = 0

ELSE fi,b(k) = bi(k)
m − bi(k). (63)

Note that this representation corespondents to
delays of ci(k) and bi(k), respectively. Finally,
the combination of all developed methods, including
the system degradation modeling and RUL prediction
methods, enables determination of fault estimates. On
the basis of this knowledge, it is possible to design the
H-A FTC system for a group of wheel loaders, taking
into account the degradation state of their bearings. The
fault-tolerant control part of the proposed strategy is
adapted from our previous works (Witczak et al., 2020b;
2020c). It is modified by exchanging the original cost
function (Witczak et al., 2020c), with (12), denoted by
J , which covers

• Ju: performance,

• Jα: fault-tolerance,

• JH : health-awareness.

All these factors are merged together with a suitable
relevance weights γ1, γ2, γ3, which express their relative
importance. The detailed mechanism of the developed
scheme is given by Algorithm 5.

8. Assessment of the effectiveness of the
developed H-A FTC method

The main objective of this section is to provide an
experimental verification of the proposed approach. This
approach is based on Algorithms 2–5. This section is
divided into two subsections. The first one presents
the results of remaining useful life predictions during
run-to-failure tests. The results obtained from this
subsection provide information about the remaining
useful life models. This enables the correct application
of the second part of the framework. The second
subsection confirms the correctness of the health-aware
fault-tolerant control of the wheel loaders fleet according
to the time-to-failure measure from the first part of the
section.
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Algorithm 5. H-A FTC of multiple wheel loaders.

S0 : Set: k = 1, v(0), and Np, uE .

S1 : Form: N(k), . . . ,N(k +NE).

S2 : For the i-th wheel loaders carrying the (k − 1)-th
load of rock aggregate assume vi(k − 1) = e and
then obtain bi(k − 1)m, cmi (k − 1) and z(k − 1).

S3 : Perform fault estimation with (62) and set f̂i,b =

fi,b(k − 1) and f̂i,c = fi,c(k − 1).

S4 : If f̂i,b �= 0 and/or f̂i,b �= 0, calculate elements of
control matrix A(·, ·, ·) in (15), relating to zi of the
i-th wheel loaders:

Av,i,i(·, ·, ·)i,i = bi(k − 1) + ci(k − 1)

+ f̂i,b + f̂i,c, Av,nv+1,i(·, ·, ·)
= bi(k − 1) + ci(k − 1)

+ ci(k) + f̂i,b + f̂i,c + f̂i,c + vi(k),
(64)

and

bi(k) = max
(
e, b(k) + f̂i,b + vi(k)

)
, (65)

ci(k) = max
(
e, c(k) + f̂i,c + vi(k)

)
. (66)

If f̂i,b �= 0, then set

Bv,nv+1(·, ·) = bv(k) (67)

while

bv(k) = max(c1(k) + v1(k), . . . , cnv (k)

+ vnv (k)). (68)

S5 : Using Algorithm 5, Calculate t̄i for each wheel
loader.

S6 : Determine ṽ(k)∗, ũ(k)∗, α̃(k) by (17) for
constraints (3)–(7).

S7 : Assume u(k)∗ and v(k)∗ in the system consisting
of all wheel loaders.

S8 : Set k = k + 1 and go to Step 1.

8.1. RUL prediction of ball bearings. The
data obtained thanks to the PRONOSTIA test
platform (Nectoux et al., 2012) made it possible to
validate the developed RUL prediction method. The
considered data come from accelerated tests and are
intended only to verify the prepared software. The test
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Fig. 5. Raw vibration signal of ball bearing.

0 0.5 1 1.5 2 2.5 3 3.5 4
Time 104

2.5

3

3.5

4

4.5

5

5.5

K
ur

to
si

s 
V

al
ue

Horizontal Kurtosis
B1

1
B2

1
B2

2
B3

1
B3

2

Fig. 6. Kurtosis of vibration signals.

bearings were evaluated from 6 to 8 hours. While the
actual operating time of the bearings is usually measured
in months. The prepared solution enables the correct
modeling of the bearing vibration signal. The increase
in the bearing vibration is due to the degradation of the
internal bearing surfaces (see Fig. 5). In the same way,
a diagnostic method has been proposed by Yan and Gao
(2009) where three accelerometers were used to measure
the vibration on the tested bearings.

The difference with respect to the above applications
is that in this one a load is applied to the bearing to
accelerate its degradation. In the particular case of
bearing test beds, and compared to those proposed in
the literature, the data provided by the PRONOSTIA
experimental platform are different in the sense that they
correspond to “normally” degraded bearings. This means
that the defects were not initially initiated on the bearings
and that each degraded bearing contains almost all the
types of defects (balls, rings and cage). The acquired
experimental data can then be used for fault detection,
diagnosis and forecast.

Figure 6 shows the vibration kurtosis signal, which
is necessary to estimate the historical models. The
value 3 pertains to the healthy state of a ball bearing.
However, a value greater than 4 indicates end-of-life,
and the ball bearing should be replaced. To normalize
the data, a kurtosis shift was performed. The zero
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level indicates the healthy condition and a value greater
than 1 indicates permanent bearing damage. Finally, the
historical models were prepared to serve as benchmarks
for future degradation prediction (see Fig. 7), and a
simulation of the remaining useful life of one bearing
was performed. A sample remaining useful life prediction
after 65% of ball bearing life was presented in Fig. 8. This
example shows the correctness of the proposed approach.
The entire remaining useful life framework enables us to
predict the time-to-failure of ball bearings, which can be
used in wheel loaders.

8.2. Fleet scheduling. The considered scenario
contains five wheel loaders, the scheduling prediction
horizon was set to four. Verification was prepared for
15 loading tasks. For that purpose, the sequence of
tasks (B,M, T,G,W,M,M,R,G,B,M, Y,B,M,W )
is employed. Each letter corresponds to the colors names,
which represent the loading mass for each task (see
Table 1). The use of this idea enables implementation
in multinational companies without the requirement
of employee training or language learning. The use
of color markings is universal. The results provided
by Algorithm 4 enable us to calculate the value of
time-to-failure. Figure 9 shows the operation time (in
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days) of wheel loaders before necessary maintenance. We
assume that the decrease in the remaining useful life to
the level of 35% corresponds to the necessity of replacing
the ball bearings. The discussed figure shows the situation
with the equal load on all wheel loaders (WLs). The third
WL has the shortest TTF. This means that it cannot be
exploited as extensively as other WLs.

Figure 10 shows the transportation events realized by
five WLs. The third WL has the lowest condition of ball
bearings and was assigned to the easiest (low weight) task.
This WL is shown in the form of an irregular shape in the
Gantt diagram. The task realization times are shown in
Fig. 11. During the current scenario, no faults, i.e., delays,
are introduced. Figure 12 confirms the correctness of the
proposed approach. Indeed, the third WL was chosen less
often than others during 300 loading tasks.

The second scenario corresponds to a situation where
the second WL has a fault (delay) and it is described as
follows:

Scenario. The wheel loader fault is

f2,b(k) =

{
0, k < 7,

4, otherwise.
(69)

A fault of the WL is described as the transportation time
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delay in the considered scenario, and hence, the second
and third WLs should be assigned less often than others.

The Gantt diagram (see Fig. 13) shows the
scheduling strategy, which depends on the ball bearings
condition and the assigned tasks. The third WL has the
easiest tasks and the second one after fault recognition
has been less time assigned. This makes it possible to
extend the operating time of all WLs before the required
maintenance.

The task accomplishment times are presented in
Fig. 14. Due to delays in loading (caused by a fault), there
are delays in the realization of tasks. Compared with the
classical model predictive control (Majdzik et al., 2016),
the H-A FTC method correctly assigns tasks to optimize
the schedule and loading times.

Figure 15 shows the histogram after 300 tasks. The
second WL was chosen less frequently than other WLs.
These results confirm the correctness of the proposed
solution.

9. Concluding remarks
The primary goal of this paper was to develop a new H-A
FTC strategy for a group of cooperating wheel loaders.
The proposed approach provides the remaining useful
life of ball bearings and combines this with fault-tolerant
control to schedule tasks of wheel loaders according to
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Fig. 13. Scheduling scheme for the scenario of the fault of the
2nd WL.
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a health indicator of currently available wheel loaders.
The method is general in nature and if there are data sets
of other bearing types, it will also be effective and its
effectiveness depends on these data. At the same time,
the method is so constructed that it enables the prediction
of the remaining service life of other components.

The proposed solution is based on the available
historical data. It can be used with other maintenance
components, such as batteries or electronic components
(e.g., MOSFET transistors). The main determining factor
is the ability to collect degradation data of the component.
As a result, a health-aware fault-tolerant control algorithm
was developed and applied to the loading task scenario,
which verifies the correctness of proposed solution. The
achieved results confirm the effective scheduling of tasks.
The proposed IoT infrastructure of KIS.ME, provided by
RAFI GmbH & Co. KG company, makes it possible to
easily transmit the necessary information to the wheel
loader driver. The presented performance evaluation
enables us to apply the proposed approach in a real
health-aware scheduling of multiple wheel loaders.
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