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The diagnosis of systems is one of the major steps in their control and its purpose is to determine the possible presence
of dysfunctions, which affect the sensors and actuators associated with a system but also the internal components of the
system itself. On the one hand, the diagnosis must therefore focus on the detection of a dysfunction and, on the other hand,
on the physical localization of the dysfunction by specifying the component in a faulty situation, and then on its temporal
localization. In this contribution, the emphasis is on the use of software redundancy applied to the detection of anomalies
within the measurements collected in the system. The systems considered here are characterized by non-linear behaviours
whose model is not known a priori. The proposed strategy therefore focuses on processing the data acquired on the system
for which it is assumed that a healthy operating regime is known. Diagnostic procedures usually use this data corresponding
to good operating regimes by comparing them with new situations that may contain faults. Our approach is fundamentally
different in that the good functioning data allow us, by means of a non-linear prediction technique, to generate a lot of
data that reflect all the faults under different excitation situations of the system. The database thus created characterizes
the dysfunctions and then serves as a reference to be compared with real situations. This comparison, which then makes it
possible to recognize the faulty situation, is based on a technique for evaluating the main angle between subspaces of system
dysfunction situations. An important point of the discussion concerns the robustness and sensitivity of fault indicators. In
particular, it is shown how, by non-linear combinations, it is possible to increase the size of these indicators in such a way
as to facilitate the location of faults.
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1. Introduction
1.1. Process diagnoses. Many supervision techniques
proposed in the literature are based on behavioural
predictions from models characterizing their good
functioning, or using approaches based on data collected
on the system.

To approach this problem, some historical concepts
and definitions should be recalled. Although frequently
the terms “fault isolation” and “fault detection” are used
synonymously, fault detection means determining that a
problem has occurred, whereas fault isolation pinpoints
the exact location of this problem. We can add here fault
identification which consist in estimating the magnitude
and type of the fault. In common usage, fault diagnosis
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often includes fault detection, fault isolation and fault
identification. As explained by Frank (1990) and Blanke
et al. (2006), one of the basic concepts of model-based
diagnosis requires a model of the nominal process as a
reference. The first step in diagnosis is then to generate
estimates of the actual process outputs. These estimates
are then compared with the corresponding process outputs
to generate residuals. The final step is to analyze the
variations in the residuals. In one way or another, all
strategies involve the analysis of redundant information
from models and measurements.

Model-based and data-based fault diagnoses have
been investigated for decades. Both the approaches
used to fault diagnosis have significant advantages and
disadvantages. The choice of one or the other approach
is often linked to the possibility or not of having a
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model of the system that accurately reflects its behaviour.
As soon as the physical laws, supplemented by some
simplifying assumptions, can be applied, the resulting
model can then be used for diagnosis (Wang and Wan,
2017). The case of complex systems (large systems
or systems with poorly known reaction mechanisms)
is generally handled by the second type of approach
(Simanio and Farso, 2018), with the data being directly
used to provide a functional diagnosis. However, the
dichotomy stated may be questionable because, often,
database approaches also use models: for example,
detecting an operational inconsistency by analyzing a
correlation between different quantities is based on the
assumption of a model between variables. Perhaps one
could say that database methods do not use an a pri-
ori known model. This is the case, for example, for
techniques using principal component analysis where the
system model is not known, but the diagnostic technique
is based on the search for empirical linear or non-linear
redundancies between system variables.

Very often, system operation diagnosis techniques
are based on the analysis of the adequacy between a model
reflecting good functioning (which therefore plays the role
of reference) and the data collected on the system. With
this type of technique, anomaly detection is generally
simple to implement and is very effective. The same
cannot be said for the localization of these anomalies,
which requires much finer comparison techniques that
are able to isolate the types of malfunctions from each
other. To this end, techniques have been developed
for structuring fault indicators and, more precisely, by
defining subsets of indicators specific to the recognition
of particular fault subsets. The search for the ad-hoc
dimension of these indicators and their structuring
remains a difficult key point, to which are added the need
to compromise between the robustness and sensitivity of
the indicators. These various observations prompted us
to focus our contribution on the structuring of indicators
and, consequently, on the processing of data adapted to
their development.

Thus, we consider here the case where the
behavioural model of the system is not known and must
be constructed from measurements made on the system.
For linear systems, in order to extract redundancies
useful for diagnosis, the relationships between the
inputs and outputs of a system are usually obtained
using the least-squares estimator. For systems with
non-linear behaviour, modelling is much more delicate
and requires the use of variable transformations to
describe non-linearities between data. Bates and Watts
(1988) presented non-linear regression with possible
applications in chemical engineering. Smyth (2006)
describes the most common models and transformations
to convert non-linear models to linear models.

Given most of the work on diagnosis, it is clear that

the aspect generally treated, for the non-linear case, is
limited to fault detection. A much lower number of papers
were devoted to faults isolation. In the works of Alcala
and Qin (2010) or Kallas et al. (2014), the pre-image
technique offers a step of isolation and fault estimation.
The complexity of the problem is due to the non-linear
transformation that induces some difficulties in the system
identification procedure which is only partially solved by
using a regularization function.

In order to cope with nonlinear systems, several
works applied kernel principal component analysis
KPCA. In the works of Botre et al. (2016) or Ren
et al. (2016a), for example, kernel partial least squares
regression (KPLS) is used as a modeling framework to
generate residuals which are evaluated using a generalized
likelihood ratio (GLR) statistic. To the best of our
knowledge, the use of a kernel approach to diagnosis of
failures appropriate for real processes is only partially
addressed and documented in the literature (Ren et al.,
2016a). Concerning more applicable aspects of simulated
systems, in the works of Manikandan et al. (2013), Fazai
et al. (2016), Gao et al. (2017), Wang (2018), Simanio
and Farso (2018) or Jia and Huang (2016) the detection
of faults in a chemical process is proposed, in those by
Huang et al. (2014), Jun et al. (2006) or Ren et al.
(2016b) an application to water treatment is presented
and in that of Navi et al. (2018) an industrial gas turbine
is considered. Among multivariate statistical process
monitoring methods applied to chemical processes,
principal component analysis (PCA) (Benaicha et al.,
2013) has been widely used for fault detection in chemical
processes, although this approach is devoted to static
linear systems. However, some extensions have been
proposed for time varying systems (see Gu et al., 2015)
and nonlinear systems (kernel PCA) (see Kallas et al.,
2014). In the work of Nithya and Vijayachitra (2018)
PCA is proposed to detect faults of an actuator, but some
results are surprising since PCA is applied in the context
of dynamic nonlinear functioning.

1.2. Main idea and contribution. In our paper, we
present a novel technique for diagnosis without using an
a priori known model. Only using data collected from
the system, the main idea is to create a set of non-linear
structured redundancy equations in order to isolate a fault
and define its time localization, in the case where this fault
may affect one of the inputs or outputs of the system. In
this paper several contributions are to be noted.

Based on the idea that physical models of systems
can be difficult to develop, the proposed approach is
based on the construction of grey box nonlinear prediction
models if some knowledge on causality between variables
is available. In order to describe the non-linear behaviour
of systems, a formalization using Gaussian type kernels
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is used; these kernels have a parameter to adjust the
importance of non-linearity.

Usually, diagnostic procedures use the comparison
of the current situation to be analyzed with a well
functioning model. Here the approach adopted is quite
different. The non-linear prediction model is used to
construct a set of reference situations for the system in
a dysfunctioning state, i.e., for different measurement
fault configurations. A classification technique, based
on subspace angle estimation, then makes it possible to
compare the current situation to be analyzed with the
different dysfunctional situations.

If there are a number of publications on faults
detection, to the best of our knowledge there are few
published works on the isolation of these faults without
using an a priori known model. It is precisely this
point of fault localization that is addressed in our
paper by proposing a structuring of the fault-indicating
residuals, on the one hand thanks to a judicious choice
of the re-description variables for the construction of
kernel-based regression models and, on the other hand,
by using a bank of predictors, each of them using a
specific subset of variables in such a way as to improve
the isolation of faults.

The use of non-linear prediction models remains
quite classic, but we have extended its use to structured
prediction, i.e., involving particular subsets of explanatory
variables, in order to decouple certain models from
specific variables. As a direct consequence, this leads to a
significant improvement in the separation of faults.

A particularly difficult point for the diagnosis of
systems is the lack of significant sensitivity of some
residuals to faults to be detected. In the case where
the residuals depend linearly on the variables and,
consequently, on the faults affecting them, the sensitivity
analysis is simple. The non-linear case is much more
complex, which probably explains the lack of published
work in this field. The difficulty stems from the fact
that the sensitivity depends closely on the nature of the
excitations affecting the system. To solve this problem,
we propose to create a reference dictionary containing
fault signatures representative of a set of excitation
situations of the system. Since insensitivity may also
be due to the structure of the models and the values of
their parameters, increasing the number of models, at the
expense of a slight increase in complexity, favours the
isolability of faults. This increase in the number of models
is simply due to a combination of the system’s primary
models, combinations that allow for a decoupling of fault
indicators from certain variables.

Finally, the common thread of our text is that
of a continuous stirred-tank reactor (CSTR), the
structure chosen being sufficiently complex in terms of

non-linearities and the number of variables to highlight
the interest of a data-based diagnosis technique. This
example, although small in size (5 inputs and 5 outputs),
serves as a guideline throughout the text to implement
the contributions mentioned above. We thought it was
wise to use this example systematically in all stages of
the proposed approach. However, many developments in
the text clearly show that this approach remains generic,
which will allow the future reader to use it for his or her
own application.

In view of the main ideas underlying our approach,
it is clear that the very principle of FDI, as set out in
the seminal work, remains in use, namely the generation
of fault-indicating residuals. However, the way in
which they are constructed and used covers a number
of personal developments in our presentation: prediction
from a non-linear grey box model, structuring residuals by
elimination of variables, dictionary of reference residuals
covering different operating regimes, situation recognition
by estimating angles between subspaces.

1.3. Outline. The remainder of the paper is organized
as follows. Section 2 is devoted on the one hand to
the model structures that can be proposed to describe
the behaviour of a CSTR and, on the other hand, to the
output prediction of a system considering the non-linear
case by using a kernel formulation. Section 3 is dedicated
to the detection and isolation of faults affecting input or
output. This section alerts the reader to the problem of the
sensitivity of fault detection indicators by providing some
elements for discussion and the beginning of a solution.
Section 4 is devoted to our contribution: designing
a structured model, designing fault indicators allowing
isolation, estimating the magnitude of faults affecting
the measurements of the input and output variables. A
conclusion is presented in Section 5 and suggests some
possible research directions.

2. System under consideration and its
different model structures

In the following the systems considered are represented
by the set of differential equations :

0 = g1(d/dt, x1, x2, . . . , xn, u1, u2, . . . , um),

...
0 = gn(d/dt, x1, x2, . . . , xn, u1, u2, . . . , um),

(1)

where the variables xi and ui are generally referred
to as state variables and command or input variables,
respectively, and where the operator d/dt reminds that the
variables xi and ui may appear as their derivatives with
respect to time.

In the following, the structures of the models that
can reflect how the CSTR operates are presented. We
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recall the equations resulting from the knowledge of
reaction mechanisms, then those resulting from a black
box approach, since the FDI approach proposed in
the following will be established in the absence of a
phenomenological model.

In order to address the objective of detecting and
isolating faults that may affect the measurements of these
variables, we are led to construct indicators that can
highlight the presence of these faults and, above all,
locate them. To do this, these indicators must have a
particular structure so that each of them is sensitive to a
fault or possibly to a group of faults. This structuring
is made possible if the components themselves of the
system model (1) have ad-hoc sensitivities to the different
variables. Obviously, this is not the case of the system (1)
whose components gi, i = 1, . . . , n are sensitive to all the
variables and thus to all the faults that can affect them.
The situation would be different if some components gi of
the model were independent of particular variables. For
example, this independence can be obtained, under certain
conditions, by trying to eliminate the variable x1 between
the two equations g1 and g2.

When the functions gi are perfectly known, tools
adapted to this elimination are available (Ritt, 1950; Nur
et al., 2018; Diop, 1989) and, in particular, in the case of
polynomial differential systems (Buchberger and Kauers,
2010). In our proposal, the situation is quite different
since only the occurrence of the variables in these models
is known. Therefore, the elimination principle previously
mentioned cannot be directly applied. However, from
a strictly structural point of view, it is quite possible to
assume the existence of a model

0 = gn+1(d/dt, x2, . . . , xn, u1, u2, . . . , um)

resulting from the elimination of the variable x1 between
two models gi and gj of (1) where this variable intervenes.

In the following, this idea will be widely exploited
using the specific example of a chemical reaction, but as
indicated above, the proposed approach remains generic
and does not use any particularity linked to this example.
Moreover, although known, the equations describing the
chemical reaction mechanism are not used in order to
remain in the context of data-based FDI. The following
sections are devoted to the summary description of
the reaction mechanism, the grey box model structure,
the kernel-based prediction model structure and their
parametric identification.

2.1. Physical model example: The continuous stirred-
tank reactor. The following continuous model Mc

describes the chemical kinetics of a reactor in which five
species A,B,X, Y, Z are considered. Without affecting
the generality of the proposed diagnostic approach, the
feed rate q as well as the volume V of the reactor

cX0(t)
cY 0(t)
cZ0(t)

cA0(t)
cB0(t) cB(t)

cA(t)

cX(t)
cY (t)
cZ(t)

CSTR

Fig. 1. System structure.

are assumed to be constant. The input concentrations
are denoted by cA0, cB0, cX0, cY 0, cZ0 and the output
concentrations by cA, cB, cX , cY , cZ . Figure 1 shows
that the system is of the MIMO type with five inputs
and five outputs. The equations of the model of this
system are derived from the knowledge of the reaction
mechanisms between the five species considered but also
from simplifying hypotheses on the operation of the
reactor (in particular, homogeneity). From a qualitative
point of view, the unbalanced reaction mechanism is
described by

A+B
k1−→ X,

B +X
k2−→ Y,

B + Y
k3−→ Z,

(2)

the term unbalance meaning that it is only listed the
reactants and the products, respectively, on the left- and
right-hand sides of the arrow. The unknown reaction rate
coefficients ki, i = 1, . . . , 3 are assumed to be constant
to simplify the presentation and implementation of the
proposed diagnostic approach. In the following, for
notational simplicity, the input and output variables are
respectively gathered in the vectors:

u =
[
cA0 cB0 cX0 cY 0 cZ0

]T
,

x =
[
cA cB cX cY cZ

]T
.

(3)

It is important to note that in the following, the system
model is assumed to be unknown, and only its structured
is known. Obviously, in order to have measurements of
the inputs and outputs of the system, a non-linear dynamic
model was used, but in the proposed diagnostic approach
this model was then completely ignored, our objective
being to detect and locate faults only from the input and
output data collected on the system in operation.

2.2. Grey-box model of the continuous stirred-
tank reactor. Based on the data collected from a
system, different modelling strategies can be considered
to characterize its functioning. In the absence of
knowledge on reaction mechanisms, i.e., by ignoring the
model equations, an elementary way to represent the
MIMO system is provided by a set of equations which
expresses each predicted output as a function of the five
inputs and this without taking into account any coupling
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between the outputs. This type of model is known
as a black-box model in the sense that the choice of
its structure does not result from any phenomenological
knowledge of the system.

Still ignoring the reaction mechanisms, we can also
consider building simpler models where each output of the
MIMO system only uses certain inputs. Of course, in the
absence of knowledge about reaction mechanisms, we are
rather helpless about how to design this explanatory model
of outputs as a function of certain inputs, especially when
they are dynamic systems with non-linear behaviour. With
regard to the diagnosis purpose, the only interest in this
reduced black-box model lies in the reduction in the
number of explanatory variables but above all, in the
context of fault detection, in the fact that the non-inclusion
of a variable in an equation is free from the influence of
the possible fault of that variable.

A more reasonable situation uses the notion of a
grey-box model because it uses partial knowledge of the
behaviour of the physical system. In the following, the
proposed approach uses this grey-box model because it
is only based on the known structure (2) of the reaction
mechanism governing the combined evolution of the
different chemical species. It should be noted, however,
that this knowledge remains rather superficial in the
sense that kinetics remain unknown and that only the
occurrences of the variables in the concentration evolution
equations are used.

Given the known structure of the reaction mechanism
(2) and, in particular, the occurrence of variables in this
model, a smaller number of explanatory variables can be
used in the non-linear regression model than that used in
the black-box models. In general, this reduction principle
remains applicable for any system whose physical or
chemical mechanisms are known without knowing the
numerical values of the parameters of the model of this
system. According to the description (2), because of
the nature of the interactions between the five species
involved, the following structures, also illustrated with
Fig. 2, are proposed:

M

⎧
⎪⎪⎪⎪⎪⎨
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(4)

where hp = i − 1 : i − p, hq = i − 1 : i − q fi
will be further defined and the notation i − 1 : i − g
allows to take into account the information of the time
interval [i − g, i − 1]. The advantage of this structure
is, on the one hand, the reduction in the number of
explanatory variables in each model and, on the other
hand, subsets of explanatory variables specific to each
model, which will promote the isolation of faults affecting

u1

u2
Systemu3

u4
u5 x5

x1

x2
x3
x4

model f1

modelf5

modelf4

modelf3

model f2

x̂5
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x̂2

x̂3

x̂4

Fig. 2. Functional diagram of system model M.

Table 1. Variable occurrence in models M.
x1 x2 x3 x4 x5 u1 u2 u3 u4 u5

f1 × × . . . × . . . .
f2 × × × × . . × . . .
f3 × × × . . . . × . .
f4 . × × × . . . . × .
f5 . × . × × . . . . ×

the measurements. Table 1 provides the appearance of
variables in models (4). A column in this table indicates
the occurrence of a variable in the five equations, while
a row lists the variables involved in a particular equation.
With regard to our diagnosis objective, the examination
of this table clearly indicates the possibility of detecting
all faults that may affect an input or output of the system;
we observe that the signatures of the variables in the M
models are distinct from each other except for u5 and x5

for which the faults are not isolable.
To conclude, since the phenomenological model is

not known a priori, only the structure (4) of M will be
used for the diagnosis. The proposed model is of the
grey box type because it uses partial knowledge of the real
system, i.e., the causality between inputs and outputs.

2.3. Output prediction using dynamic non-linear re-
gression. The prediction of variables generated by time
series is a major tool in all areas of system monitoring and
diagnosis. Indeed, obtaining predictions directly serves
to predict the future evolution of a system, which is
essential, on the one hand, to anticipate its behaviour,
whether normal or abnormal, and, on the other hand, to
make a decision on the control law to be applied to the
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system. This prediction is generally based on a sequence
of past observations of the input and output of the process
under consideration and uses a pre-established model of
the normal functioning of the system.

To do this, a preliminary step of identifying the
system was carried out, by constructing a relationship
between the input and output of the system based on
data deemed to be healthy. In general, independently of
our application to the CSTR, if we consider the input
and output variables (u, y) of a SISO system, y can be
explained by means of u using a non-linear regression
technique. Of course, the underlying difficulty is the
choice of the regression structure. First of all, we recall
the structure of a linear static regression that will serve as
a starting point for the synthesis of a non-linear dynamic
regression.

In its simplest form, a prediction model can be
defined as a linear regression described, at time i, as
yi = f(zi, θ), where θ and zi ∈ R

p+q . The estimates
of the model parameters θ can be obtained by different
techniques; the simplest approach is to minimize the
following penalized criterion:

Φ(θ) =
1

2

r+N∑

i=r+1

(yi − f(zi, θ))
2 +

γ

2
‖ θ ‖2, (5)

where r+1 and r+N are the bounds of the time horizon
used for the identification and where the explanatory zi
variables depend on the past outputs and inputs of the
system:

zi =
[
yi−1, . . . , yi−p, ui−1, . . . , ui−q

]T ∈ R
p+q (6)

As in any estimation procedure using a black box model,
the choice of the structure of the function f is up to the
user and is linked to the system to be characterized.

Remark 1. This identification principle, presented here
for a single output variable, obviously applies to all the
output variables of the system. In the case of the CSTR, it
is the variables xi, i = 1, . . . , 5 that will be concerned.

In (5), N is the number of data pairs available and γ
a positive term used to control the compromise between
the two terms of the criterion. The first term quantifies the
similarity between the estimated and measured outputs,
while the second term provides more regular solutions.
The choice of the regularization parameter γ controls
the balance between the training error and the degree
of regularity. As is well known, this so-called ridge
regression reduces the variability between the coefficients
of θ by shrinking them; as a result, more prediction
accuracy is obtained at the cost of only a small increase
in the bias in the estimated parameters. In this paper, we
will not seek for an optimal value of γ, our goal being
essentially dedicated to the detection of a fault.

To deal with a non-linear prediction model, it is a
common practice to map the original input data zi into
another feature space. For that purpose, using a non-linear
function ϕ, we consider the projection of the data:

zi ∈ R
p+q → ϕ(zi) ∈ R

r. (7)

In this case, we consider a kernel K defined by the
elements [K]i,j = 〈ϕ(zi), ϕ(zj)〉. This makes the
prediction of the system output explicit (Kallas et al.,
2018):

ŷ = K β,

β = (γ IN +K)−1 y
(8)

with

cy =
[
y1, . . . , yN

]T ∈ R
N

cβ =
[
β1, . . . , βN

]T ∈ R
N .

Moreover, for a new observation at time p + 1, we
have

znew
p =

[
ynew
p , . . . , ynew

1 , unew
q , . . . , unew

1

]
. (9)

The predicted output can be written as

ŷnew
p+1 = κT (znew

p )β (10)

with the following definitions:

κ(znew
p ) =

⎡

⎢
⎣

〈ϕ(zr+1), ϕ(z
new
p )〉

...
〈ϕ(zr+N ), ϕ(znew

p )〉

⎤

⎥
⎦ ∈ R

N ,

K =

⎡

⎢
⎢⎢
⎣

〈ϕ(zr+1), ϕ(zr+1)〉 . . . 〈ϕ(zr+1), ϕ(zr+N )〉
〈ϕ(zr+2), ϕ(zr+1)〉 . . . 〈ϕ(zr+2), ϕ(zr+N )〉

...
〈ϕ(zr+N ), ϕ(zr+1)〉 . . . 〈ϕ(zr+N ), ϕ(zr+N )〉

⎤

⎥
⎥⎥
⎦
,

zi =
[
yi−1, . . . , yi−p, ui−1, . . . , ui−q,

]T
.

It is important to mention that the non-linear function
ϕ(·) is not necessarily given in an explicit form, however
the kernel function K(·, ·) can perfectly describe the
non-linear relations between data only by defining the
dot product. Many non-linear functions can be used
to define this dot product 〈·, ·〉 between data. In this
paper, we consider the Gaussian function which is a
radial basis function (but there exist other choices such as
quadratic, polynomial, hyperbolic tangent kernels), taking
into consideration the distance (or similarity) between
data. The coefficients κ(zi, zj) of K(·, ·) are given by

κ(zi, zj) = exp
(
− 1

c
‖ zi − zj ‖2

)
, (11)
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where the parameter c controls the sensitivity of the kernel
function with respect to the observation z(·) (smaller
values of c will make the function overfit the data points,
while larger values will make it underfit). Moreover, if the
measurement output variable ynew is known, it is possible
to compare the estimate ŷnew with this measurement in
order to generate a residual indicator whose magnitude
may reveal a measurement anomaly on unew or ynew:

ỹnew = ŷnew − ynew. (12)

2.4. Identification of model parameters. As the
principle of kernel transformation has been developed in
Section 2.3, we limit ourselves here to giving the structure
of the models and the identification results showing the
quality of the forecast of the five outputs. The procedure
of identifying the system model of correct functioning is
a completely classical approach integrating validation and
testing of the model. For the identification of this model, it
was implicitly assumed that all input and output variables
were measured. Obviously, in a more general framework,
the number of available measurement sensors can lead to
constraints on the number of models to be built.

The following figures reflect the results of identifying
the parameters of the functions f(zi) involved in the
model M. Figure 3(a) shows the five entries in the
training database Be. Using these data, the model was
developed and validated with the values p = 8, q = 8.
Figure 3(b) shows the five noisy outputs of this same
database. A database Bt is used for testing the identified
model M. Figure 4(a) shows the inputs used for this
test. The choice of these inputs complies with the range of
variation of the inputs used in the database Be. Figure 4(b)
contains five graphs relating to the five outputs model
M. This figure also compares the five measured system
outputs with the corresponding predicted outputs of model
M. We note that the structure chosen for models M is
quite adequate to reproduce the variations in the outputs
despite the noise affecting the measurements.

Remark 2. (Influence of hyper-parameters) The iden-
tification technique has a number of hyper-parameters
offering degrees of freedom to improve the quality of
the models resulting from this identification. These
parameters include: c, the range of functions used
to calculate the distances between observations (11),
p and q the orders of the regression models (6), γ,
the regularization parameter (5) used to estimate the
parameters for regressions. However, this important
aspect is not discussed here for reasons of space and the
reader can refer to Kallas et al. (2018) for an analysis
of the choice of parameters. Let us simply mention that
for this application, the values of c can be between 4
and 8, those of γ between 10−3 and 10−9 and the orders
p, q between 4 and 12. In practice, these values must be
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Fig. 3. Training database Be: input (a) and output (b).

adapted according to the severity of the non-linearity of
the system and its dynamics.

3. Principle of fault localization
Let us recall some essentials of the procedure usually used
in the field of diagnosis before presenting the strategy
adopted and the results obtained. There are generally
three important successive phases, often of increasing
complexity: detection, localization or isolation and fault
estimation. In all that follows we consider only faults
affecting the measurements of the inputs or outputs of
the system, which in practice leads to the presence of
abnormal measurements. As indicated in the introduction,
the fundamental point of the diagnosis concerns the
synthesis of indicators, often called residuals, capable of
highlighting and recognizing dysfunctions.
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Fig. 4. Test database Bt: input (a) and output (b).

Definition 1. (Residual) In the diagnostic sense, a residue
is a function of the data collected from the system to be
monitored that takes the zero value in the absence of data
errors. On the other hand, in the presence of faults, under
certain structural conditions, the residual is expected to
manifest this presence, i.e., to be sensitive.

Definition 2. (Detectability) Given a set R of residuals
and a D set of faults, a fault d ∈ D is detectable if there is
a subset of residuals R̄ ∈ R depending on d.

Definition 3. (Isolability) Given a set R of residues
sensitive to two faults di ∈ D and dj ∈ D, di is isolatable
from dj if there exists a subset of residuals R̄i ∈ R
depending on di but not on dj , and a subset of residuals
R̄j ∈ R depending on dj but not on di.

Definition 4. (Fault signature) A fault signature vector

typically consists of values 0 or 1. A value of 1
corresponds to a symptom indicating a fault, while a
zero indicates normal behavior. A signature consisting
of zeros only represents normal operation. A set of
signatures can then constitute a fault signature matrix,
each column corresponding to a fault.

Detection is limited to looking for the presence of
a fault affecting a variable by estimating its occurrence
time, while isolation specifies which variable is subject
to the detected fault. The estimation aims to quantify
the amplitude of the fault. The detection/localization
technique is based on the generation of fault indicators,
each indicator being characterized by a particular
signature. Fault isolation consists in comparing the
experimental signature obtained from the measurements
with all the theoretical signatures. This comparison
remains a delicate and difficult point of this approach, as
it often requires a normalization of indicators and the use
of thresholds.

In fact, behind the apparent simplicity of the
detection/localization procedure lie a number of
difficulties. First of all, since the system under
consideration is non-linear, the impact of measurement
errors can vary in accordance with the operating point of
the system, i.e., according to the inputs applied to it. This
variation in sensitivity also affects the isolability of the
faults, as faults affecting two different variables can have
very similar influences.

Secondly, linked to the previous problem of
sensitivity, the choice of detection thresholds then
becomes problematic and the use of adaptive thresholds
in the case of non-linear systems remains an almost
unexplored approach to the best of our knowledge. If
the choice of thresholds to be applied to fault indicators
remains problematic, the original reason undoubtedly
comes from the difficulty of designing these indicators
offering a priori the fundamental property of separating
fault signatures.

A third, and not the least, difficulty is that of fault
isolation, which is eminently linked to the structure of the
system and that of the indicators performing the diagnosis.
If the number of variables subject to failure is high (10
in our case), these indicators must have independence
properties, which is partly related to their dimensions.
Again, while isolability studies exist in the linear case,
to the best of our knowledge no methodological work has
been published on this subject.

In Sections 3 and 4, we do not attempt to provide
theoretical solutions to these difficulties, but they are
explained and the proposed approaches provide practical
answers. Section 3.1 presents an example of residual
generation and their temporal evolution, indicating how
they are sensitive to faults. In Section 3.2 FDI will be
dealt with according to the classical procedure based on
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thresholds and its limits will be highlighted, which will
justify the approach proposed in Section 4. As mentioned
in Section 3.3, the presence of non-linearities in the
system under study reinforces this difficulty because the
sensitivity of the fault indicators is highly dependent, on
the one hand, on the operating point of the system and, on
the other hand, on the nature of the exciting inputs.

3.1. Residual generation. In order to cover all
situations, the faults were created on the five outputs xi

in the respective time intervals Ij , j = 1, . . . , 5 and on
the five inputs ui in the respective time intervals Ij , j =
6, . . . , 10:

I1 = [50 : 110], I2 = [140 : 200],

I3 = [230 : 290], I4 = [320 : 380],

I5 = [410 : 470], I6 = [560 : 620],

I7 = [650 : 710], I8 = [740 : 800],

I9 = [830 : 890], I10 = [920 : 980].

The model for the correct functioning of the system
was identified based on the healthy database (Section 2.4).
Diagnostic tests were systematically performed on model
M with several sets of data collected in situations of
sensor failures. For each observation, the prediction
model then allows the calculation of residuals (12). Two
examples of state residuals are shown Figs. 5 and 6
obtained with parameters γ = 10−6, c = 5, p = 8, q = 8
and two data sets. We observe that the residuals are
sensitive to the fault that affects the measurement of the
state xi and to all the inputs ui, i = 1, . . . , 5.

According to Table 2 of theoretical fault signatures,
for several time instants there is a good agreement
between experimental and theoretical signatures. In
Figs. 5 and 6 the grey rectangles indicate for each residual
of model M the time locations of the faults to be detected.
At each sampling moment, the reader will be able to
verify that the experimental signature generated by the
five model residues, after comparison with the theoretical
signatures of Table 2, allows us to locate most of the faults.

For example, in Figs. 5 and 6, up to time instant 49,
the five residuals are close to zero. For times 50 to 110
(approximatively), only the first and the third residuals
show a sensitivity to fault on x1, which is in accordance
with the values in Table 1. However, the second residual
is not sensitive to this fault. The other time intervals are
commented on in a similar way. Moreover, we can also
notice that the sensitivity of the residuals to the faults
depends on the data set that have been used. For example,
the examination of Figs. 5 and 6 highlights that the fifth
residual presents different sensitivities towards the fault
on x4 in the time interval [320 : 380]. Thereafter, it will be
necessary that the diagnostic procedure takes into account
these variations of sensitivity according to the excitations,
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Fig. 5. Residuals for model M (1st data set).
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Fig. 6. Residuals for model M (2nd data set).

this being largely due to the non-linear behaviour of the
system.

To conclude, the example presented but also all the
others we have treated show that not all residuals are
equally sensitive to faults (see the example of Figs. 5
and 6) which is also true for all the examples treated),
this being due, on the one hand, to the non-linear nature
of the system and, on the other hand, to the nature of
the excitations; a combination of these two causes can
also reinforce the problem of sensitivity or insensitivity.
It is important to realize that the fault signature tables
that reflect the influence of a variable on a model are
only simple occurrence tables and, therefore, they do
not report the weight of the contribution of a given
variable to the output of the model. This binary influence
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should therefore be complemented by a method using a
more appropriate set of residuals and a fault classification
technique.

3.2. Detectability and isolability. In order to highlight
some potential difficulties in diagnosis for non-linear
systems, it is necessary to return to the analysis of
theoretical fault signatures and, in particular, to examine
whether the faults are a priori detectable and localisable.
Remember that detection is limited to recognizing the
presence of a fault, whereas isolation is intended to
locate it, i.e., assign it to a particular variable. The
sensitivity problem has a particularly crucial impact on
the possibility of isolation. It is therefore necessary to
study a priori whether the various faults have signatures
that allow them to be discriminated against. Beforehand,
we remind the importance of the Hamming distance for
the comparison of the theoretical binary fault signatures.

Definition 5. (Localizable fault) Let us recall that the
Hamming distance d(vvv,www) between two vectors vvv,www ∈
{0, 1}n is the number of coefficients in which they differ.
In terms of diagnosis, a fault is said to be localizable
with an order k (number of different bits) if its Hamming
distance from the signature of the nearest fault is k digits.

This definition applies, of course, to evaluating the
distances from a vector to a group of vectors representing
particular faults, the minimum value of orders k then
allowing a particular fault to be recognized. To illustrate
its use, the M model (4) is considered. Table 2 directly
obtained from Table 1 gathers the binary signatures sth

i of
faults that can affect the 10 variables xi, ui, i = 1, . . . , 5
of the system. The structure of this table shows that
all faults are theoretically detectable since each signature
has at least one non-zero element. Since the signatures
sth
5 and sth

10 are identical, faults affecting x5 and u5 are
not isolable, but faults affecting the other variables are
isolable.

Table 3 shows the theoretical degree of fault
localizability. This table, built directly from Definition 4
applied to each column of Table 2, indicates the
theoretical signatures sth

i of the faults that can affect
the variables xi, ui, i = 1, . . . , 5. The columns and
rows of Table 3 indicate the variables for which the
Hamming distances are evaluated. For example, between
the signatures sth

4 and sth
8 , which relate themselves to

variables x4 and u3, the distance is 4 as indicated in
Table 3 by the light grey cell. The signatures of the
faults on x4 and u3, both coded in 5 digits (the number of
models), therefore different from 4 digits which indicates
a good separation of these signatures. This is different for
many other situations where the separation of signatures
is only 2 digits, with an even more particular situation
for signatures of u5 and x5 with zero distance. The
observations that have just been made concern only

Table 2. Fault signatures for model M.

x1 x2 x3 x4 x5 u1 u2 u3 u4 u5

sth
1 sth

2 sth
3 sth

4 sth
5 sth

6 sth
7 sth

8 sth
9 sth

10

f1 1 1 . . . 1 . . . .
f2 1 1 1 1 . . 1 . . .
f3 1 1 1 . . . . 1 . .
f4 . 1 1 1 . . . . 1 .
f5 . 1 . 1 1 . . . . 1

Table 3. Hamming’s distances between theoretical signatures
for model M.

x1 x2 x3 x4 x5 u1 u2 u3 u4 u5

x1 0 2 2 4 4 2 2 2 4 4
x2 2 0 2 2 4 4 4 4 4 4
x3 2 2 0 2 4 4 2 2 2 4
x4 4 2 2 0 2 4 2 4 2 2
x5 4 4 4 2 0 2 2 2 2 0
u1 2 4 4 4 2 0 2 2 2 2
u2 2 4 2 2 2 2 0 2 2 2
u3 2 4 2 4 2 2 2 0 2 2
u4 4 4 2 2 2 2 2 2 0 2
u5 4 4 4 2 0 2 2 2 2 0

theoretical signatures. In the measurement exploitation
phase, the situation is different and more subtle since it
concerns the comparison of the theoretical signatures with
an experimental signature, the latter being sensitive to
the fault but also, unfortunately, to random measurement
errors.

3.3. Principle of fault localization. First of all, it
should be recalled that fault detection and localization
are carried out by comparing the actual signature of the
model residual with the theoretical ones of Table 2. As
the latter are in binary form, it is therefore appropriate
that the actual signature is also in binary form. This is
done by numerically evaluating the model residuals and
then comparing them to a given threshold. Of course,
this thresholding can lead to an error in evaluating the
influence of a fault (due to the choice of the threshold
but also according to the sensitivity level of the system
to faults) and therefore can compromise the result of
comparison of experimental and theoretical signatures.
Therefore, it is well understood that it is necessary to
examine the robustness of detection/localization against
an error due to inadequate thresholding and to adopt a
detection/localization technique that is tolerant against
such an error.

From a practical point of view, at a particular time
instant let us consider, e.g., the experimental signature
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(from evaluation of 5 model residuals followed by a
thresholding):

sex =
[
1 1 1 1 0

]T
.

This signature does not correspond to any theoretical
signature of Table 2. Nevertheless, we can calculate the
k index which quantifies the number of different digits
between this experimental signature and the theoretical
signatures of Table 2. Using Definition 4 with sex and
sth
i of Table 2, we obtain

Δ =
[
1 1 1 3 5 3 3 3 3 5

]T
.

The experimental signature is therefore close to the
signatures relating to the faults in x1, x2 and x3, this
undecided situation being the result of the thresholding of
the residuals, but also the size of the signatures. Although
simplistic, this example clearly shows the limitations of
the localization technique using Boolean residuals. Let
us recall that the major difficulty lies in the choice of
the threshold allowing the change from a residual to its
Boolean form, a choice that is all the more delicate as
our purpose concerns a non-linear system whose residuals
have very variable sensitivities depending on its operating
point.

4. Robust alternative to fault localization
Noting the difficulty of choosing a threshold for the
binarization of residuals, the insufficient separating power
of the residuals from the five models (Tables 2 and 3), the
significant variations in residual sensitivities over time,
we propose a diagnostic procedure using a classification
approach, the implementation of which is based on angle
evaluation between subspaces. In addition to the above,
signatures derived from model M are limited to five
components which can make their comparisons difficult
in the presence of low sensitivity to certain faults. For
this reason, the proposed approach aims to make these
comparisons more robust by increasing the number of
output prediction models and, consequently, the size
of signatures as explained in Section 4.1. Based on
these suplementary models, fault isolation is presented in
Section 4.2 and illustrated in Section 4.3.

4.1. Extended signature table. It should be
remembered that Table 2 of fault signatures was
constructed only by observing the occurrence of the ten
system variables in the five equations of the model.
This table can be largely completed by considering
combinations of these five equations, these combinations
being selected in order to free themselves from certain
variables in order to generate structured fault indicators.
For example, the f1 and f2 models of Table 1 have x1

and x2 as common variables. We can therefore form two
additional models from f1 and f2 by a simple aggregation
followed by a suppression of x1 or x2. It is important to
note that this operation applies to variable occurrences and
does not require knowledge of the fi functions.

This aggregation/suppression principle leads to
Table 4 which totals Nm = 24 models but they only
present a part of these complementary models. The
first column of the table locates the model numbers, the
second column specifies which models were merged and
the name of the variable whose influence is removed.
Columns 3 and 12 of this table indicate the occurrences
of the variables in the models but also generate the
theoretical signatures sth

i of the faults affecting the
variables xi, ui, i = 1, . . . , 5. The rows f1 to f5 of this
table are nothing but those of Table 1 describing model
M.

Its construction was done in a systematic way by
examining the occurrences of each variable in all the
equations. The rows f6 to f11 of model Me in Table 4
come from the virtual carry-over of variables from f1 (i.e.,
x1 and x2) in models f2 to f5. For example, f6 comes
from the virtual carryover x1 from model f1 in model
f2 and f7 comes from the carryover x2 from model f1
in model f2. Similarly, rows f12 to f19 come from the
elimination of f2 (so x1 or x2 or x3 or x4) with the models
f3 to f5. Rows f20 to f22 come from the elimination
of f3 from models f4 and f5, rows f23 and f24 come
from the elimination of f4 from f5. Other eliminations
are possible, but it is to be noted that it is structurally
impossible to apply them to u5 (or x5) because of the
occurrence of this variable which only appears in model
f5.

The following equations give the structure of
the 24 non-linear models Me whose parameters have
been identified according to the procedure indicated in
Section 2.4:
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Table 4. Table of 24 models Me.
x1 x2 x3 x4 x5 u1 u2 u3 u4 u5

sth
1 sth

2 sth
3 sth

4 sth
5 sth

6 sth
7 sth

8 sth
9 sth

10

f1 × × . . . × . . . .
f2 × × × × . . × . . .
f3 × × × . . . . × . .
f4 . × × × . . . . × .
f5 . × . × × . . . . ×
f6 x1 : f1, f2 . × × × . × × . . .
f7 x2 : f1, f2 × . × × . × × . . .
f8 x1 : f1, f3 . × × . . × . × . .
f9 x2 : f1, f3 × . × . . × . × . .
f10 x2 : f1, f4 × . × × . × . . × .
f11 x2 : f1, f5 × . . × × × . . . ×
f12 x1 : f2, f3 . × × × . . × × . .
f13 x2 : f2, f3 × . × × . . × × . .
f14 x3 : f2, f3 × × . × . . × × . .
f15 x2 : f2, f4 × . × × . . × . × .
f16 x3 : f2, f4 × × . × . . × . × .
f17 x4 : f2, f4 × × × . . . × . × .
f18 x2 : f2, f5 × . × × × . × . . ×
f19 x4 : f2, f5 × × × . × . × . . ×
f20 x2 : f3, f4 × . × × . . . × × .
f21 x3 : f3, f4 × × . × . . . × × .
f22 x2 : f3, f5 × . × × × . . × . ×
f23 x2 : f4, f5 . . × × × . . . × ×
f24 x4 : f4, f5 . × × . × . . . × ×
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(13)

hp = i− 1 : i− p, hq = i− 1 : i− q.

The notation x̂j
m,i reminds us that model fm explains

variable xj at time i. The choice of the explanatory
variable is at the user’s discretion. For example, model
f6 has x2 as a variable to explain but x3 or x4 could have
been candidates.

In order to clarify the notation of the predicted
variables, define the vector L containing the indices of the
variables reconstructed by the different models fm,m =
1, . . . , 24:

L = {1 2 3 4 5 2 3 2 1 4 5 2 (14)
3 4 4 4 4 5 5 3 4 5 4 5},

which allows predictions to be written in the form of
x̂
L(m)
m,i ,m = 1, . . . , 24 and the prediction errors

x̃
L(m)
m,i = x̂

L(m)
m,i − xL(m),i, m = 1, . . . , 24. (15)

For example, the prediction error for variable x3 at time i
for the 7-th model (m = 7) is x̃3

7,i = x̂3
7,i − x3,i

Considering Definition 4, Table 5 clearly shows
that switching from theoretical signatures established
with model M (f1 to f5, Table 2) to theoretical
signatures established with model Me (f1 to f24, Table
4) can improve the degree of separability of theoretical
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Table 5. Hamming’s distance between theoretical signatures.

x1 x2 x3 x4 x5 u1 u2 u3 u4 u5

x1 0 16 10 11 16 14 10 11 15 16
x2 16 0 14 15 14 14 12 13 13 14
x3 10 14 0 9 16 16 10 11 15 16
x4 11 15 9 0 13 17 11 16 10 13
x5 16 14 16 13 0 12 14 15 11 0
u1 14 14 16 17 12 0 14 13 13 12
u2 10 12 10 11 14 14 0 13 15 14
u3 11 13 11 16 15 13 13 0 14 15
u4 15 13 15 10 11 13 15 14 0 11
u5 16 14 16 13 0 12 14 15 11 0

Table 6. Location of a fault in variable x1.
Variable x1 x2 x3 x4 x5 u1 u2 u3 u4 u5

Index k 2 15 14 9 15 12 10 12 12 16

signatures. Examination of these two tables clearly
shows that the separation of signatures improves as the
number of models increases. For example, to distinguish
signatures related to variables x1 and x2, the use of
models f1 to f5 gives an index k of 2 but increases to
16 if one takes models f1 to f24. Again the reader will
nevertheless notice that the use of 24-bit signatures does
not allow the isolability of faults on x5 and u5, which is
confirmed by a null distance between x5 and u5.

Remark 3. Bear in mind the fundamental interest
in Table 5 which significantly increases the size of
the vectors of fault signature with the sole purpose of
improving their classification. For example, consider the
case of a fault affecting the variable x1 for which the 24
model residuals (after application of a threshold) revealed
the following experimental signature:

x̃xxb = [1 1 0 0 0 0 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 0 0].

This signature does not exactly correspond to any
theoretical signature of Table 4. Nevertheless, we can
calculate the k index (see Definition 4) which quantifies
the number of different digits between this experimental
signature and the theoretical signatures. The examination
of the values taken by this index (Table 6) shows, on the
one hand, that the experimental signature x̃xxb differs only
in 2 digits (out of 24) from the first theoretical signature
and that, on the other hand, the second theoretical
signature closest to it differs in 9 digits. As a result, there
is no ambiguity about the proximity of the experimental
signature to the nearest theoretical signature. Despite the
error due to the thresholding, we can therefore conclude
that the experimental signature makes it possible to find
the faulty variable, in this case x1.

In conclusion, it should be noted that increasing
the number of models can improve the separability of
theoretical signatures. As a direct consequence, the
recognition of an experimental signature to localize a
fault is improved. Obviously, this improvement is at the
cost of an increase in the volume of calculations, on the
one hand, on the identification of model parameters, and
on the other hand, on the procedure for generating and
analyzing residuals. It should also be borne in mind that
the system under consideration is non-linear, which may
lead to significant variations in residuals in relation to
faults. With this in mind, the following section proposes a
new robust approach to the problem of fault detection and
localization.

4.2. Proposed diagnosis strategy. As the models M
(4) and Me (13) give a very representative view of the
functioning of the real system, they can be used for output
prediction. They have very similar performances in terms
of output prediction quality, but for reasons of separability
of signatures, model Me is the one used for the diagnostic
step. The proposed strategy includes an off-line step
dedicated to the generation of a so-called reference fault
signature database and an online step that analyzes model
residuals using the reference signature database.

Given the sensitivities of the residuals, which vary
according to the operating points of the system, a fault
signature database is constructed from the Me prediction
model, this database being the image of a set of various
situations that can be reached by the real system. This
set of situations was generated for different inputs and for
different fault magnitudes, the fault affecting a particular
variable being generated in the same time interval for all
configurations and amplitude in the interval [0.05, 0.15].
For each variable, these time interval are given in Table 7.

4.2.1. Off-line design of an input references database.
As previously mentioned, the construction of reference
signatures requires prior generation of excitation signals
for the system (its inputs) in order to generate data
representative of the system’s operating domain. This
necessity is well known in the field of parameter
identification of a system and in particular in the
linear case where techniques for the construction of
experimental designs are available (Dagnelie, 2012).
Here, we are dealing with a problem of diagnosis of
non-linearly operating systems for which, rather than the
usual techniques, an experimental construction of this
experimental design was preferred. The system inputs
were generated by a series of random magnitude and
duration pulses chosen in a bounded interval, [0.2, 0.4]
for the magnitudes and [25, 65] for the durations. Such a
signal is represented in the upper part of Fig. 7, the lower
part resulting from low-pass filtering of this signal in order
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Table 7. Time intervals for the presence of faults.

x1 x2 x3 x4 x5

I [50:110] [140:200] [230:290] [320:380] [410:470]
u1 u2 u3 u4 u5

I [560:620] [650:710] [740:800] [830:890] [920:980]
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Fig. 7. Input u1 reference design.

to avoid abrupt variations in the system excitation. The
example presented is obviously valid for the five inputs of
the system, which then makes it possible, thanks to the
previously identified model, to generate the five outputs
corresponding to these five inputs.

The construction just described is thus a set of
input/output data, which is then called a configuration.
Obviously, several configurations will be generated
afterwards in order to have a set of reference situations.
In the following, 12 configurations will be used.

4.2.2. Generation of an input/output reference
database. From the previously constructed reference
data, reference data for input/output faulty situations were
then generated, with faults having an additive influence on
the data. Table 7 specifies the time domains where these
faults are active. In order to have a set of situations with
faults, it is advisable, as for the generation of excitation
inputs, to consider several fault magnitudes in a bounded
domain, here [0.02, 0.08]. This domain has been chosen
in relation to the range of variation of the inputs/outputs
of the system. Table 8 displays the relative importance of
the faults affecting the inputs and outputs of the system by
indicating the ratios of the fault magnitudes and the mean
values of the signals for the chosen configurationsCj , j =
1, . . . , 12. We can see that the average importance is
around 25%.

This database was developed with 12 input
configurations denoted by Cj , j = 1, . . . , 12 (this number
being adapted by the user according to the systems to be
analyzed) and for each configuration Cj the excitations
(ui, i = 1, . . . , 5) were chosen in the same operating
domains.

4.2.3. Generation of a residual database with 12 con-
figurations. Then, we have built a database containing
residuals in the presence of faults and for different
operating modes. For each configuration, model Me

generates a residual vector at 24 components. As an
example, Fig. 8 shows the 24 residuals related to the first
configurationC1, where the faults were created on the five
outputs and inputs (time intervals I in Table 7). The grey
markers display the time intervals at which faults were
created on the system’s output and input measurements.

Obviously, for this configuration, a number of
residuals show a lack of sensitivity to faults, which may
change for other inputs: for other configurations, due to
different excitations, the sensitivities of the residuals may
be different and reflect differently the presence of faults.
It should also be noted that the non-linear nature of the
system leads to residual values that are sensitive to the
operating point and the fault magnitude. The simple ratio
of the signal magnitude to the fault magnitude, which
is widely used in the linear case to adjust the detection
threshold, may be ineffective here. Thus with all the
twelve configurations (this number to be adapted) we can
have an image of a large number of situations. Of course,
the underlying difficulty is to ensure that the majority of
situations are covered.

Remark 4. One may wonder about the interest in
keeping models whose sensitivity to certain faults seems
low, or even very low. To analyze this possibility and
to give an idea of the sensitivity, Table 9 indicates for
configuration C1 the mean magnitudes of the residuals of
24 models when faults are applied to 10 variables in the
time intervals defined in Table 7. Although this is only one
configuration, some observations can be made, especially
for the magnitudes marked by a light grey background.
The model M13 has a sensitivity of 0.04 for a fault on
x4. However this model has a proven sensitivity to other
variables such as x3 and u3 and for this reason its role
must be kept. The same remark can be made about model
M14. Model M14 indicates a sensitivity of 0.06 with
respect to variable x2. However, as we note that the other
variables also have weak influence, the role of this model
may seem questionable and it could be removed from the
list of models useful for diagnosis.

4.2.4. Generation of a fault signature database. The
12 configurations allow to extract 10 reference tables,
each corresponds to a fault on the 5 states and the 5 inputs
of the system. For example, Table 10, relating to a fault in
x1, contains the average values of the residues calculated
on the time interval I1 = [50 : 110], for 24 models Me

and for configurations Cj , j = 1, . . . , 12. The reader will
notice that the first column of table T1 has been used to
form the first column of Table 9.

The dispersion of the numerical values between
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Table 8. Relative average magnitudes of input and output faults.
u1 u2 u3 u4 u5

C1 0.10 0.10 0.10 0.10 0.10
C2 0.14 0.14 0.14 0.14 0.14
C3 0.17 0.17 0.17 0.17 0.17
C4 0.21 0.21 0.21 0.21 0.21
C5 0.22 0.21 0.22 0.22 0.22
C6 0.26 0.25 0.26 0.26 0.25
C7 0.26 0.26 0.26 0.26 0.26
C8 0.26 0.26 0.26 0.26 0.26
C9 0.26 0.27 0.26 0.26 0.27
C10 0.27 0.27 0.27 0.27 0.27
C11 0.31 0.31 0.31 0.31 0.31
C12 0.35 0.35 0.35 0.35 0.36

x1 x2 x3 x4 x5

C1 0.12 0.05 0.08 0.07 0.06
C2 0.18 0.09 0.11 0.12 0.09
C3 0.22 0.14 0.14 0.15 0.13
C4 0.26 0.18 0.18 0.20 0.14
C5 0.27 0.19 0.19 0.20 0.15
C6 0.33 0.23 0.22 0.25 0.17
C7 0.35 0.22 0.22 0.27 0.19
C8 0.34 0.24 0.22 0.25 0.19
C9 0.33 0.24 0.22 0.25 0.19
C10 0.33 0.24 0.22 0.27 0.19
C11 0.37 0.28 0.26 0.31 0.23
C12 0.45 0.33 0.31 0.35 0.26

0 500 1000
0

0.02
0.04

Fig. 8. Residuals from model Me (configuration C1).
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Table 9. Residuals of the 24 models, obtained with configuration C1.
δx1 δx2 δx3 δx4 δx5 δu1 δu2 δu3 δu4 δu5

M1 3.06 1.44 0.02 0.04 0.02 2.66 0.03 0.02 0.02 0.02
M2 0.55 3.44 0.25 0.30 0.00 0.01 1.89 0.02 0.01 0.00
M3 0.41 0.56 3.30 0.03 0.05 0.05 0.06 3.06 0.03 0.05
M4 0.02 0.73 0.17 1.71 0.02 0.01 0.03 0.07 2.78 0.01
M5 0.02 1.54 0.17 0.47 2.85 0.06 0.04 0.02 0.04 2.95
M6 0.02 2.53 0.18 0.23 0.03 0.38 1.54 0.02 0.02 0.00
M7 0.27 0.13 0.63 0.13 0.20 0.29 0.20 0.22 0.14 0.07
M8 0.10 0.59 0.33 0.09 0.07 0.24 0.09 0.49 0.14 0.07
M9 0.80 0.07 1.19 0.07 0.03 0.76 0.06 1.14 0.07 0.04
M10 0.95 0.04 0.16 1.28 0.01 0.95 0.01 0.05 2.15 0.02
M11 1.51 0.04 0.16 0.22 1.34 1.23 0.08 0.03 0.07 1.45
M12 0.05 1.97 1.47 0.12 0.03 0.05 1.30 1.27 0.03 0.03
M13 0.69 0.01 3.79 0.04 0.01 0.03 0.57 3.43 0.02 0.03
M14 0.09 0.06 0.08 0.14 0.10 0.09 0.07 0.14 0.08 0.07
M15 0.12 0.02 0.43 2.02 0.01 0.02 0.56 0.03 3.60 0.00
M16 0.19 2.13 0.05 0.76 0.02 0.04 0.97 0.04 1.21 0.01
M17 0.11 0.16 0.69 0.15 0.11 0.11 0.23 0.20 0.20 0.09
M18 0.17 0.02 0.12 0.38 3.23 0.03 1.04 0.04 0.02 3.54
M19 0.10 1.30 0.05 0.45 3.14 0.02 0.25 0.02 0.02 3.32
M20 0.27 0.04 1.80 0.83 0.03 0.06 0.06 1.55 1.11 0.04
M21 0.04 0.68 0.03 1.55 0.03 0.02 0.03 0.19 2.59 0.02
M22 0.11 0.04 0.67 0.13 0.82 0.10 0.11 0.93 0.05 0.50
M23 0.03 0.05 0.35 1.58 1.25 0.05 0.03 0.12 3.10 1.27
M24 0.02 0.99 0.16 0.03 2.15 0.03 0.02 0.05 0.54 2.35

12 situations is obviously due to the non-linear nature
of the system. These twelve residues are supposed
to be representative of the different operating regimes
of the system. For the other nine variables (xi, i =
2, . . . , 5, ui, i = 1, . . . , 5) similar tables Ti, i = 2, . . . , 10
were developed. The ten tables Ti can then be used
as references for situations with faults. One can, of
course, compare the results of Tables 4 and 10 indicating
respectively the occurrences of the faults of the variable
x1 and their sensitivities in the model equations. For
example, the first three rows of Table 10 indicate a
significant sensitivity of a fault in x1 on the first three
models, as opposed to the two following rows showing
a very low sensitivity of this fault in the two following
models, which is well in agreement with the occurrences
of the first five rows of Table 4.

4.2.5. On-line diagnosis: Fault localization. In this
step, where we try to identify the variable affected by
a fault in each new observation, we will need to use
a rather particular indicator which is the main angle.
This main angle can be considered as a generalization
of the concept of the angle between two straight lines
or two planes to hyperplanes in spaces of any size.
Subsequently, this angle will be used to measure the

proximity between an experimental signature and the set
of reference signatures established for the ten potential
faults and different operating points of the system.

Definition 6. (Angles between subspaces (Jordan, 1875;
Gunawan, 2018)) Let (X, 〈·, ·〉) be a real inner product
space, which will be our ambient space throughout this
definition. Let U = span{u1, . . . , up} and V =
span{v1, . . . , vq} be two subspaces of X with 1 ≤ p ≤ q.
The angle θ between U and V is given by

cos2 θ =
det(MTM)

det(Nu) det(Nv)
(16)

with M := [〈ui, vk〉]T being a q × p matrix, Nu :=
[〈ui, uj〉]T a p× p matrix and Nv := [〈vk, v�〉]T a q × q
matrix.

If the principle angle between the two subspaces is
small, they are nearly dependent. The above definition
allows for the effective calculation of the angle between
subspaces. Many techniques have been developed to
allow this calculation with the desired accuracy and the
reader is referred to specialized work on this subject such
as that by Nur et al. (2018) or Gunawan (2018) and the
publications cited therein.

Therefore, we reduce the problem of fault
localization to a problem of signal classification. Indeed,
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Table 10. Residual table T1 with a fault on x1, obtained with 12 simulations.
C1,1 C1,2 C1,3 C1,4 C1,5 C1,6 C1,7 C1,8 C1,9 C1,10 C1,11 C1,12

M1 3.06 3.57 3.23 3.38 3.39 3.2 3.28 3.31 3.31 3.27 3.30 3.30
M2 0.55 0.80 0.59 0.73 0.57 0.64 0.70 0.65 0.71 0.64 0.64 0.59
M3 0.41 1.24 0.84 0.99 0.87 0.69 0.89 0.94 0.92 0.83 0.92 0.84
M4 0.02 0.10 0.03 0.05 0.02 0.02 0.05 0.01 0.02 0.03 0.00 0.06
M5 0.02 0.06 0.08 0.06 0.05 0.02 0.07 0.02 0.03 0.05 0.03 0.05
M6 0.02 0.07 0.01 0.03 0.02 0.02 0.03 0.01 0.00 0.00 0.00 0.01
M7 0.27 0.14 0.22 0.46 0.25 0.31 0.36 0.26 0.40 0.50 0.24 0.45
M8 0.10 0.20 0.09 0.08 0.07 0.08 0.07 0.04 0.06 0.07 0.04 0.10
M9 0.80 0.37 0.58 0.52 0.55 0.61 0.56 0.51 0.54 0.62 0.52 0.58
M10 0.95 1.14 1.13 1.15 1.31 1.08 1.08 1.18 1.07 1.07 1.11 1.10
M11 1.51 1.84 1.69 1.74 1.79 1.62 1.73 1.74 1.70 1.65 1.69 1.69
M12 0.05 0.07 0.02 0.05 0.03 0.03 0.03 0.01 0.04 0.03 0.01 0.03
M13 0.69 1.19 0.86 0.97 0.83 0.88 0.91 0.96 0.94 0.83 0.94 0.80
M14 0.09 0.12 0.13 0.08 0.10 0.07 0.05 0.08 0.04 0.03 0.05 0.06
M15 0.12 0.12 0.15 0.14 0.16 0.13 0.12 0.12 0.12 0.13 0.11 0.13
M16 0.18 0.43 0.32 0.39 0.29 0.30 0.39 0.34 0.37 0.35 0.34 0.32
M17 0.11 0.21 0.06 0.14 0.13 0.17 0.13 0.09 0.12 0.20 0.05 0.18
M18 0.17 0.31 0.23 0.26 0.28 0.25 0.24 0.30 0.26 0.16 0.27 0.19
M19 0.10 0.05 0.09 0.05 0.09 0.08 0.02 0.07 0.03 0.04 0.05 0.06
M20 0.27 0.53 0.54 0.52 0.49 0.39 0.50 0.53 0.52 0.53 0.52 0.50
M21 0.04 0.02 0.10 0.14 0.09 0.06 0.14 0.07 0.11 0.09 0.08 0.07
M22 0.11 0.38 0.20 0.23 0.23 0.22 0.28 0.27 0.23 0.10 0.23 0.15
M23 0.03 0.09 0.05 0.03 0.05 0.03 0.04 0.02 0.02 0.03 0.02 0.05
M24 0.02 0.09 0.07 0.05 0.03 0.01 0.03 0.02 0.00 0.05 0.03 0.02

the preceding tables (Ti, i = 1, . . . , 10) finally represent
a dictionary of reference situations corresponding to the
ten faults, each reference situation being itself the result
of 12 configurations obtained for different system inputs
(see Table 10 for the fault example regarding x1).

At each time instant i, the fault localization strategy
is based on the comparison of the experimental residual
vector x̃i with components x̃

L(m)
m,i obtained from 24

models (13) with the Ti signature tables. This comparison
is performed here by analyzing the angles between the
experimental residual vector and the subspaces generated
by the column vectors of the Ti tables. To this end, at time
instant i, (16) is applied with

x̃i =
[
x̃
L(1)
1,i . . . x̃

L(24)
24,i

]T
, i = 1, . . . , N,

Ui = span{x̃i},
Vj = span{Cj,1, Cj,2, . . . , Cj,12, }, j = 1, . . . , 10,

x̃i ∈ R
24, Ui ∈ R

24, Vj ∈ R
24×12,

(17)

where C·,· are defined in tables Ti, Table 10 showing the
example of T1 for a fault affecting x1. As a result, at each
time instant i, 10 angles θi,j , j = 1, . . . , 10 are obtained,
reflecting the proximity of the experimental signature to
the ten theoretical signatures, each of these signatures

corresponding to a possible fault; the minimum angle then
allows the fault to be isolated:

jmin,i = arg min
j∈(1,10)

θi,j . (18)

4.3. Some numerical results about fault locali-
sation. Figures 9(a) and (b) respectively show a set
of measurements of the system’s inputs and outputs,
the latter being corrupted by noise from a uniform
distribution. The maximum noise magnitude has been set
at 4% of the amplitude of the variation ranges of each
signal. The faults were generated in the time intervals
I defined in Table 7. The procedure in Section 4.2 is
applied to these data; it includes fault detection and fault
localization. At each time instant i, the residual vector of
the 24 models is evaluated numerically. The main angle
θ1,i between this vector and the subspaces generated by
the columns of T1 (relative to a fault in variable x1) is
evaluated. This operation is repeated for all tables Tj and
finally we have angles θj,i, j = 1, . . . , 10.

For example, Fig. 10 shows the evolution of the
principal angles θ2,i and θ6,i over time, angles estimated
using tables T2 and T6. The first 40 points of these graphs
are not to be taken into account for initialization reasons,
so we can clearly see principal angle values of θ2,i and
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Fig. 9. System inputs (a) and outputs (b).
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Fig. 10. Angles (θ2,i, θ6,i) associated to faults on (x2, u1).

θ6,i respectively close to 0 in the intervals [49 : 117]
and [561 : 624]. Outside these intervals the principal
angles are significantly different from zero. Taking these
two graphs into account, we can therefore conclude that
a fault affects the second variable, i.e., x2 and the sixth
variable, i.e., u1 in the respective intervals [49 : 117] and

[561 : 624]. The previous step is of course performed at
any time for the ten principal angles. Table 11 presents a
comparison then the “true” and “estimated” time intervals
for the presence of faults.

A more global and synthetic view of the results of
fault location is proposed. For each of the ten time
intervals (11) identified as fault carrying, the main angles
have been replaced by their respective averages over these
intervals. Table 12 illustrates the localization results using
the classification principle based on the principal angle
computation between subspaces. Thus, for the first time
interval Î1, where a fault exists, the value 3 is the angle
between the subspace generated by the residual vector and
the subspace generated by the 12 column vectors of the
table T1 which relates to a fault affecting variable x1. The
9 other values of the column Î1 a being calculated with the
column vectors of the other tables Ti, i = 2, . . . , 10. The
value 3 is the smallest in column Î1; the fault detected
on the time interval Î1 is therefore the one that affects
variable x1. The other time intervals Îi, i = 2, . . . , 10
are analyzed in a similar way.

The values on the diagonal of the table correspond to
the smallest angles in each column: in the 10 intervals,
the faults that affect the variables have been located.
However, we again note the ambiguity of localization
between the faults affecting the variables x5 and u5

(medium grey boxes), an ambiguity that is entirely
justified by the structure of model Me. We can also note
for the time interval Î3 the proximity of angles 4 and 9
which can possibly create a doubt on the failed variable,
namely x3 or u3. A similar remark applies to interval Î8
concerned by the proximity of values 3 and 6.

Remark 5. As mentioned above, since this is a system
with non-linear behaviour, the prediction model obtained
can only be valid in the operating domain in which it
was developed. In other words, it is valid for the input
variation range with which it was identified and tested.
However, it is questionable to what extent it can be used
in the margins of this area. An FDI test was carried
out in this respect. In previous tests (see Fig. 9(a) for
example) the variation range of the inputs was [0.2, 0.4], it
is now increased to [0.25, 0.50] so a little disjointed from
the domain that was used to build the output prediction
model. The same fault configuration was applied and
Table 13 gathers the detection/localization results. All the
conclusions of Table 12 apply to this new situation, which
shows that the proposed approach is somewhat robust.
Of course, this conclusion applies to this example and
its generalization requires further analysis. In the case
of inconclusive localization results, the implementation
of the procedure must be reviewed by questioning the
database used to build the prediction model and the
structure of the model, particularly the delays p and q of
its dynamic part.
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Table 11. Time intervals in the presence of faults.

x1 x2 x3 x4 x5

I [50:110] [140:200] [230:290] [320:380] [410:470]
Î [49:117] [139:205] [229:297] [314:385] [409:470]

u1 u2 u3 u4 u5

I [560:620] [650:710] [740:800] [830:890] [920:980]
Î [561:624] [651:713] [741:804] [830:895] [921:984]

Table 12. Fault isolation using the subspace angle approach.

Î1 Î2 Î3 Î4 Î5 Î6 Î7 Î8 Î9 Î10
T1 3 56 67 54 65 16 66 71 57 58
T2 55 3 68 67 73 76 18 54 84 74
T3 58 59 4 78 85 80 62 6 82 85
T4 67 66 79 5 75 64 43 68 15 77
T5 68 75 77 29 3 70 75 76 83 3
T6 11 49 71 57 69 4 69 70 51 59
T7 58 18 71 66 86 75 3 49 81 87
T8 59 61 9 82 86 81 69 3 86 85
T9 69 72 82 17 81 61 40 72 2 86
T10 68 75 77 29 3 70 75 76 84 3

Table 13. Fault isolation for the validation test.

Î1 Î2 Î3 Î4 Î5 Î6 Î7 Î8 Î9 Î10
T1 14 41 49 49 55 18 48 49 51 43
T2 65 7 56 42 63 66 22 58 55 62
T3 52 49 5 49 53 36 36 10 57 51
T4 55 34 38 6 49 56 46 49 13 43
T5 47 61 61 60 5 51 60 56 57 7
T6 21 45 53 58 57 10 57 54 57 53
T7 59 20 51 43 67 57 7 46 57 59
T8 59 60 13 58 51 45 43 5 64 45
T9 56 38 45 13 54 60 61 57 5 53
T10 49 61 63 59 7 53 58 61 59 7

In summary, the proposed approach is based on
three essential points: the use of structured prediction
models to promote the separation of fault signatures, the
use of a reference signature database to cover different
operating situations and reduce problems of variable
residue sensitivity, and finally, the use of a signature
recognition technique based on angles between subspaces.

5. Conclusion
The problem of detecting faults has been addressed
here using a data processing technique. In the absence
of an a priori physical model, the proposed technique
is of a numerical nature and proceeds by establishing
an empirical model providing redundancies between
system outputs. This is a well-known technique in
the case of systems with linear behaviour, but which

is developed here in a non-linear framework. The
fault detection aspect has been discussed earlier in
a non-linear framework, in particular with non-linear
principal component analysis, but it should be recalled
that KPCA remains of problematic use as far as fault
localization is concerned.

Our approach provides some answers to the problem
of fault detection and localization, as well as a discussion
of comments on the sensitivity of residuals to faults. First
of all, we proposed a non-linear approach for the system’s
output prediction. At a given time the equation error
model is defined by non-linear regression depending on
the previous measurements of the input and the output
of the system. Secondly, comparing the output with its
prediction allows us to construct a residual which is a
priori sensitive to faults. Thus the magnitude of these
residuals allows us to detect when a fault occurs. Then, in
order to clarify the localization of the fault, a method for
isolation is proposed. Isolation needs to design reduced
prediction output model involving only a part of the
process variables. Our approach has focused on the design
of structured fault indicators, i.e., those that are sensitive
to specific faults. These residuals were developed from
black box prediction models requiring no knowledge of
the relationships between system variables. In order to
reduce the complexity of these residuals, knowledge of the
interactions between variables was used without knowing
a priori the parameters describing these interactions. This
second approach has made it possible to structure fault
indicators in a more relevant way.

Modelling efforts are not sufficient to completely
solve the fault isolation problem, largely due to the
non-linearities of the system. Indeed, these non-linearities
induce, depending on the operating regime of the system,
significant changes in the sensitivity of the models to
faults. This is the reason for a major difficulty in fault
detection and isolation. To address this problem, we have
proposed a classification-type approach by developing
a database of reference residuals in the presence of
faults, residuals covering a large number of operating
situations. To identify a current situation, the residuals
generated from the prediction of the system outputs are
then compared with the reference residuals by calculating
angles between subspaces. The proposed approach has
proven effective for all cases treated, but it should be
emphasized that particular excitations on the system can
make the diagnosis ineffective.

The relevance of the proposed approaches is
illustrated on a simulated CSTR characterized by a
MIMO structure allowing to have some redundancies
for the residual generation and, in particular, the
inter-redundancy relationships between the outputs
independent partly or entirely of the inputs. Redundancy
has been intensively used to generate structured residuals
each of them involving a particular set of variables
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allowing fault detection and isolation.
Among the major problems that can be the subject of

future work, the one of fault detection conditions remains
in its entirety. It covers various aspects, in particular
the choice of excitation inputs that effectively allow to
detect and localise faults and the sensibility analysis of
the residuals to the faults. In addition, it would be
interesting to recognize for which excitation class fault
detection/localization cannot be undertaken due to the
insensitivity problem mentioned previously.

References
Alcala, C. and Qin, S. (2010). Reconstruction-based

contribution for process monitoring with kernel principal
component analysis, Industrial and Engineering Chemistry
Research 49(17): 7849–7857.

Bates, D.M. and Watts, D.G. (1988). Nonlinear Regression
Analysis and Its Applications, Wiley, New York.

Benaicha, A., Mourot, G., Benothman, K. and Ragot, J. (2013).
Determination of principal component analysis models for
sensor fault detection and isolation, International Journal
of Control, Automation and Systems 11(2): 296–305.

Blanke, M., Kinnaert, M., Lunze, J. and Staroswiecki, M.D.
(2006). Diagnosis and Fault-Tolerant Control, Springer,
Berlin.

Botre, C., Mansouri, M., Karim, N., Nounou, H. and Nounou,
M. (2016). Kernel PLS-based GLRT method for fault
detection of chemical processes, Journal of Loss Preven-
tion in the Process Industries 43: 212–223.

Buchberger, B. and Kauers, M. (2010). Bases de Gröbner,
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