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Counting and detecting occluded faces in a crowd is a challenging task in computer vision. In this paper, we propose
a new approach to face detection-based crowd estimation under significant occlusion and head posture variations. Most
state-of-the-art face detectors cannot detect excessively occluded faces. To address the problem, an improved approach to
training various detectors is described. To obtain a reasonable evaluation of our solution, we trained and tested the model
on our substantially occluded data set. The dataset contains images with up to 90 degrees out-of-plane rotation and faces
with 25%, 50%, and 75% occlusion levels. In this study, we trained the proposed model on 48,000 images obtained from
our dataset consisting of 19 crowd scenes. To evaluate the model, we used 109 images with face counts ranging from 21 to
905 and with an average of 145 individuals per image. Detecting faces in crowded scenes with the underlying challenges
cannot be addressed using a single face detection method. Therefore, a robust method for counting visible faces in a crowd
is proposed by combining different traditional machine learning and convolutional neural network algorithms. Utilizing
a network based on the VGGNet architecture, the proposed algorithm outperforms various state-of-the-art algorithms in
detecting faces ‘in-the-wild’. In addition, the performance of the proposed approach is evaluated on publicly available
datasets containing in-plane/out-of-plane rotation images as well as images with various lighting changes. The proposed
approach achieved similar or higher accuracy.

Keywords: crowd density, face detection, head pose variations, various lighting conditions, occlusion.

1. Introduction
1.1. Crowd density estimation. Social advances and
the great increase in the world population had led to
an increasing number of social events, such as concerts,
sports events, pilgrimage, political rallies, etc. All of those
assemblies may lead to public security problems resulting
in mass panic, riots, or violent protests. Therefore,
the use of automated or semi-automatic crowd control
techniques such as queue management, detecting and
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counting people, and estimating crowd flows play an
essential role in human safety. Overall, crowd density
estimation and people counting problems are categorized
into direct and indirect approaches (Conte et al., 2010).

The direct approaches (object/face detection based)
attempt to segment and detect each person in crowd
scenes and count them using effective detectors/classifiers
(Zhao et al., 2008). Detecting people using this method
becomes more difficult in a high-density crowd where
occlusions occur (Kotan et al., 2021). Nevertheless,
crowd counting under substantial occlusion problems has
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been addressed adapting part-based detectors, such as a
head detector (Sheng-Fuu et al., 2001) or a pedestrian
detector (Khatoon et al., 2012). Still, the issue of counting
people in the high-density crowd and occluded scenes
remain unresolved.

In indirect approaches (feature-based), the various
local features of the entire crowd are extracted (Saleh
et al., 2015). However, this approach is flawed in various
crowded scenes or under perspective distortions. Also, it
does not propose a solution for tracking faces. Solutions
for the aforementioned shortcomings are listed below.

Ma et al. (2004) utilized geometric correction (GC)
to convert all objects in the scene from various scales to a
common scale to address perspective issues in the indirect
approach. Fradi and Dugelay (2012) proposed applying
a perspective map normalization to weight all extracted
features to compensate for variations in distance and
density. In indirect approaches, the occlusions problem
has been addressed by employing additional features, such
as an edge histogram (Kong et al., 2005), edge counting
(Davies et al., 1995), etc.

In this paper, we propose a model that addresses
the unresolved occlusion issues in the direct approaches,
as well as perspective issues caused by the indirect
approaches. Moreover, the occlusion and pose variation
issues have been addressed in the training phase of
our neural network model. In addition, perspective
and detection issues have been solved using the sliding
window approach, which is specified and developed for
use only in face detection in crowded approaches.

1.2. Face detection. Detecting human faces in a
crowd scene is a fundamental problem in computer vision.
Significant progress has been made after seminal work by
Viola and Jones (2004). The primary task of modern
face detectors for real-world applications is to identify
whether there is a frontal face in an image. Recent
research in this area focuses on face detection challenges,
such as variations in scale, head pose, exaggerated facial
expression, significant occlusion, and various lighting
conditions.

In recent years, deep learning architectures, such
as convolutional neural networks (CNNs), have become
the most popular solution for face detection as a special
type of the object detection task in computer vision.
With respect to performance it has overshadowed classical
computer vision approaches.

In contrast to the traditional machine learning (ML)
algorithms, a CNN extracts crucial and meaningful
features, such as edges, in their first layers and combines
them in order to detect shapes in the next layers. Further
on, in fully connected layers, the CNNs learn how to
utilize all these features in order to detect or classify
objects in the scene.

Although CNNs are computationally expensive and
generally require more data for training, compared with
ML algorithms, they are effective at detecting the most
complex features of images (Zitouni and Śluzek, 2022).

1.3. Counting people’s faces in crowds. Detecting
faces in crowded scenes with the underlying challenges
cannot be addressed using a single face detection method.
In this paper a robust method of face counting in the crowd
is proposed, that combines various traditional ML and
state-of-the-art CNN algorithms.

First, we employ well-known traditional machine
learning algorithms such as the histogram of oriented
gradients (HOG) with support vector machines (SVMs)
and the Haar feature-based cascade classifier to obtain
the size of faces in the crowd images. Afterward, the
obtained sizes are utilized to specify the step size between
the window patches. Finally, the CNN is employed to
classify and count faces in each patch. The sum of faces
in the small patches gives the number of all detected faces
in the entire crowd image. The details of this procedure
are provided later in this paper.

We evaluate the proposed approach on our crowd
image dataset (AGH Crowd Density Estimation
Database—ACD) (Kian Ara and Matiolanski, 2019),
which contains images with heavy occlusion and head
pose variations.

Afterward, it is evaluated against the Pointing’04
dataset (Gourier et al., 2004), which contains
in-plane/out-of-plane rotations, and against the FEI
dataset (Thomaz and Giraldi, 2010), which contains
images with very high lighting changes.

The major contributions of this study are as follows:

• designing a face detection based crowd density
estimation approach using a developed sliding
window strategy and a CNN model;

• proving our custom training dataset based on model
requirements;

• proposing a data annotation strategy in order to
overcome false detections caused by occluded and
out-of-plane rotation face images;

• strengthening the model detection capability in a
very dark environment by applying a new strategy.

The rest of this paper is organized as follows.
Section 2 briefly reviews the related work. Section 3
describes the proposed approach to face detection.
Section 4 discusses our experiments and results. Lastly,
Section 5 concludes this paper.

2. Related work
Face detection and recognition have evolved as one of
the most widely used biometric techniques in many areas,
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such as public security, finance, crowd management, and
safety in recent years.

The work by Viola and Jones (2004) was the
first face detection framework that proposed rectangular
Haar features in a cascaded Adaboost classifier to
detect the faces in real-time with promising accuracy
and efficiency. Its drawbacks such as large feature
sizes and the incapability to detect faces in the wild
motivated the researchers to address the problems with
more complicated features like HOG (Zhu et al., 2006),
scale-invariant feature transform (SIFT), and speeded up
robust features (SURF) (Li and Zhang, 2013).

Another approach to improve the accuracy of
detectors was to separately train several models for
various head poses and scenes (Jones and Viola, 2003; Li
et al., 2002). Chen et al. (2014) introduced a model
to perform face detection combined with face alignment
in order to improve the accuracy and speed of the object
detector in challenging datasets.

In recent years, deep CNNs have achieved
remarkable success in face detection applications.
Jiang and Learned-Miller (2017) investigated Faster
R-CNN (Ren et al., 2015), a state-of-the-art object
detector, and achieved a significant performance increase
in both speed and accuracy. Combining Faster R-CNN
with hard negative mining and ResNet, Wan et al. (2016)
achieved remarkable performance on the FDDB face
detection benchmark. Sun et al. (2017) improved the
performance of the Faster R-CNN algorithm by proposing
several strategies such as feature contention, multi-scale
training, and hard negative mining. Although many
studies focused on occluded face detection (cf., e.g.,
Mahbub et al., 2016; Opitz et al., 2016; Yang et al., 2015)
the performance of face detectors is imperfect when
the faces are severely occluded and the poses vary. In
the next section, we will describe our approach in more
detail. This approach has the potential to overcome the
limitations of the existing studies.

3. Proposed method
Many algorithms have been evaluated on low-density
crowds, such as UCSD, Mall, PETS datasets with
a density of 11–46, 13–53, 3–40 people per image
respectively (Chan et al., 2008; Chen et al., 2012;
Ferryman and Ellis, 2010). Other researchers have
principally focused on counting people in extremely dense
crowd images. In such images, each individual may
occupy a few pixels only (Idrees et al., 2013). The
proposed face-based algorithm in this study has been
evaluated on medium-density crowds, with a density of
21 to 905 faces per image. To obtain a reasonable
evaluation of our solution, we trained and tested our
model on our substantially occluded dataset (AGH Crowd
Density Estimation Database, or ACD) (Kian Ara and

Fig. 1. Flowchart of the proposed algorithm.

Matiolanski, 2019).
Our goal is to estimate the number of people based

on faces in crowd scenes under significant occlusion. To
address the problem of occlusion and variation in poses,
we introduce occlusion during the training of the model.
By segmenting images into several random sections in
the training procedure of the CNN algorithm, the model
learns various features of faces and can mitigate the
negative effects of occlusion and variations in the pose.

In contrast to many state-of-the-art detection and
classification approaches, which utilize windows of varied
sizes and time-consuming pyramid structures in object
detection (Liu et al., 2012; You-jia and Jian-wei, 2010;
Han et al., 2014),we propose an improved sliding window
technique for use in crowd image analysis. First, we
divide the images into 50 by 50 patches (pixels) and apply
the classifier (CNN) to each of them. The sum of the
faces detected in each patch makes the final estimate. To
avoid multiple counts of single faces that may appear at
the border between patches, we used a combination of
several approaches, such as Haar-cascade detection and
the SVM classifier with HOG, to obtain the size of each
head.

A new sliding window technique is proposed to
determine the step size between patches based on the
information (size of the whole face) obtained by the face
detectors in the first stage. The flowchart of the proposed
algorithm is shown in Fig. 1.

3.1. Data preparation. We trained and tested the
proposed model on our dataset (Kian Ara and Matiolanski,
2019). It consists of 48,000 patches of head images
obtained from the crowd scenes for training purposes and
109 crowd scenes for testing the model performance. The
total number of unique faces in the training dataset images
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is 2181 (48,000 cropped from various aspects of the face)
and 16,501 in the test dataset images.

Images were manually labeled before feeding the
dataset to the model. First, the database images are
converted to grayscale, and the position of the faces in
each image is determined by marking them with a single
red dot on each face. To train on the most significant and
meaningful part of faces, red dots are placed in the center
of the nose and eyes triangle.

Subtracting images with red dots from grayscale
images automatically yields the count of all labels in
each image. Furthermore, these images were randomly
segmented to generate 40,000 training samples of four
classes:

• Class 0: negative (patches without any faces)

• Class 1: positive (patches consisting of one face)

• Class 2: positive (patches consisting of two faces)

• Class 3: positive (patches consisting of three faces)

As shown in Fig. 2, a new dataset is created by
randomly selecting rectangles around this reference point
(face center point). Using this strategy, hundreds of new
data are created from just one face image. For instance,
the main rectangle creates a full-sized face containing,
eyes, a nose, and a mouth. Another rectangle could
be an image containing only the nose and one eye. If
the lower or upper edge of the rectangle is at the center
point, the most covered face image is created, with almost
25% of the entire face visible. Therefore, using this
data preparation method, we can create a model that
can recognize images of masked faces up to 3/4 of the
total covered. Further on, in Section 3.3, we shall
show how discarding the face area with less than 25%
visibility (which we claim not to detect) helps us not to
double-count the faces in the margin between neighboring
windows in the sliding window strategy.

Training the model with specified segmented regions
(the region of interest includes at least one of the eyes
or nose) enables the CNN model to observe and learn
facial features from different aspects and focuses on the
most crucial parts of the face. This alleviates the effect
of occlusion and ensures that the model is robust against
head posture variation.

3.2. Convolutional neural network (CNN). Our
training dataset consists of 40,000 face images in 4
classes. We train the CNN to recognize and classify
each of these classes. The CNN used in this study is
based on the main architecture of the state-of-the-art VGG
network (Simonyan and Zisserman, 2014) and is inspired
by Rosebrock (2021). The VGGNet has been trained
on ImageNet, the most comprehensive hand-annotated

Fig. 2. Generating dataset/images for training the CNN model.

visual dataset (Simonyan and Zisserman, 2014). Among
the top-performing CNN models, VGG is notable for its
simplicity and uniform architecture. In contrast to the
16-layer VGG network, with a 7.3% error rate, there are
much more complex models such as Microsoft’s ResNet
model with a 3.6% error rate, but many more layers (152
layers) (Simonyan and Zisserman, 2014) compared with
the VGG.

Notwithstanding its benefits, the VGG neural
network has a few drawbacks. It is very slow in the
training phase and its weights are extremely large, making
it a time-consuming task to deploy the VGG.

The proposed CNN model contains 5 convolutional
layers, 3 max-pooling layers, and a set of fully connected
layers. The first convolutional layer consists of 32 kernels
of size 3 × 3 applied with a stride of 1 and padding is set
to “same”.

The CNN models require nonlinear properties in
order to represent more sophisticated features that are
more adaptable to the real world.

A new feature map was created in the first layer by
applying a nonlinear activation function, namely ReLU
(rectified linear unit). The monotonicity, continuity, and
scale invariance are the most important properties of
the Relu activation function needed in the optimization
process. This function is defined as

ReLU(x) = max(0, x), (1)

where the output of ReLu is mapped between zero (the
absence of the feature) and the input value x.

In order to reduce the internal covariate shift of the
network, the batch normalization technique was applied
between the layers of the CNN model (Ioffe and Szegedy,
2015).

The max-pooling is performed on a 3 × 3 pixel
window to reduce the resolution of the feature map
while preserving active features. The most popular
regularization technique, dropout (with the probability set
to 25%), is applied to the hidden layer nodes in order to
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reduce the effect of overfitting caused by model fitting on
the training data. The number of filters has been increased
from 32 to 64 in the second block of the model structure
to learn the most complex facial features. At this stage,
25% dropout is applied again.

The next block of the proposed model is similar to the
second block, except that the number of filters is increased
to 128 cores.

Finally, to attain predicted probabilities for each class
label (label 0 = negative image, label 1 = one face, label 2
= two faces, label 3 = three faces), fully-connected
layers with a dropout of 50% of nodes are followed by a
Softmax transformation (classifier) at the end of the model
structure. We aim to classify into four categories, hence
the categorical cross-entropy loss function (Softmax Loss
= Softmax activation + Cross-Entropy loss) is used to
distinguish between estimated and ground truth labels.
The CNN aims to optimize its weights and biases by
minimizing the cross-entropy error through the cost
function.

To avoid overfitting, another regularization
technique, data augmentation, is employed in the training
phase. Data augmentation is a technique that allows
generating more training data from the existing dataset
by applying random transformations, such as rotations,
variations in the brightness of images, horizontal/vertical
shifts, horizontal/vertical flips, etc. (Fig. 3). The rest of
the model’s hyperparameters are listed as follows: The
total number of training epochs = 300, the initial learning
rate for the Adam optimizer = 0.001, and the batch size
= 32. The proposed CNN is implemented using Keras,
an open-source deep-learning library (Keras, 2015).

The proposed model is trained on 80% of the
randomly selected images and afterward tested on the
20% of subsequent images. As illustrated in Fig. 4,
our CNN obtained 84.41% classification accuracy on the
training set and 84.36% accuracy on the testing set. The
architecture of the proposed CNN is presented in Table 1.
The CNN uses tensors of input shape (image height,
image width, color channels), ((50, 50, 3) in this study).
Additionally, a 3D tensor shape (height, width, channels)
is also the result of any Conv2D and MaxPooling2D layer
operations. As shown in the table, applying more layers
to the CNN architecture results in a smaller output shape
of the subsequent layer.

In order to increase the classification accuracy of
the model, 8000 images with a classification confidence
score greater than 0.95 are appended to the initial dataset.
Afterward, the proposed model was retrained on the new
dataset which improved the classification accuracy by 3%.
The model accuracy for the binary classifier was improved
up to 97.58% and was subsequently used to compare the
proposed model with state-of-the-art face detectors.

Fig. 3. Data augmentation example.

Fig. 4. Training loss and accuracy of the model.

3.3. Sliding-window and occlusion solutions. In
order to address the problem of occlusion and variation in
head poses, we include occlusion in the training phase of
the model. The proposed model is trained on the images
of faces with an occluded area up to 75% where faces are
50% occluded in both vertical and horizontal directions.
Figure 5 demonstrates how the proposed method avoids
counting faces multiple times (twice or more), where a
part of the face can appear in more than one patch.

To estimate the number of people in crowded scenes,
images are divided into patches of 50 × 50 pixels. These
patches are then individually classified/labeled by the
CNN model. Counting the classification result of all
patches gives the final prediction result.

We propose a modified sliding window technique to
avoid errors caused by the appearance of face parts in two
or more patches.

In the proposed technique fixed-size windows are
shifted from left to right and from top to bottom to
identify faces using the CNN classifier (see Fig. 6). In this
method, first, the size of the detected head is specified by
various approaches, and afterward, the step size between
each window is calculated according to the obtained
dimensions as

Δ = L+
M

4
, (2)

where L = 50 (pixels in vertical and horizontal directions)
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Fig. 5. Proposed algorithm recognizes faces with an occluded
area of up to 75%.

Fig. 6. Scene-scanning (start from the top-left corner, shift by
delta pixels).

is the length of the window and M is the maximum length
of the detected face (pixels) with various approaches such
as Haar-cascade detection, SVM classifier with HOG
features, etc.

As mentioned before, our model is trained to
recognize faces that are occluded up to 75% of their area
(Fig. 5). While this is useful in detecting occluded faces
it can also cause our algorithm to count faces that are
split between neighboring windows twice. In order to
overcome this issue, we have included a margin between
neighboring windows. This margin spans horizontally
(for 25% of window width) and vertically (for 25% of
window height).

3.4. Histogram equalizations as a lighting solution.
Histogram equalization (HE) is a broadly used technique
for image contrast enhancement due to its simplicity
and reasonable performance, particularly in a condition,
where the image is too dark or too bright and contrast
enhancement of the entire input image is required (Fig. 7).
HE aims to convert the given distribution to a uniform
distribution assuming the pixel values lie between 0 and

Table 1. Summary of the CNN architecture used in our experi-
ments.

Layer (type) Output shape Param #

Conv2D (None,48,48,32) 896
Activation (None,48,48,32) 0
Batch Normalization (None,48,48,32) 128
Max Pooling2D (None,16,16,32) 0
Dropout (None,16,16,32) 0
Conv2D (None,16,16,64) 18496
Activation (None,16,16,64) 0
Batch Normalization (None,16,16,64) 256
Conv2D (None,16,16,64) 36928
Activation (None,16,16,64) 0
Batch Normalization (None,16,16,64) 256
Max Pooling2D (None,8,8,64) 0
Dropout (None,8,8,64) 0
Conv2D (None,8,8,128) 73856
Activation (None,8,8,128) 0
Batch Normalization (None,8,8,128) 512
Conv2D (None,8,8,128) 147584
Activation (None,8,8,128) 0
Batch Normalization (None,8,8,128) 512
Max Pooling2D (None,4,4,128) 0
Dropout (None,4,4,128) 0
Flatten (None,2048) 0
Dense (None,1024) 2098176
Activation (None,1024) 0
Batch Normalization (None,1024) 4096
Dropout (None,1024) 0
Dense (None,4) 4100
Activation (None,4) 0
Total Pramas 2,385,796
Trainable Pramas 2,382,916
Non-Trainable Pramas 2,880

255 and it is calculated as follows:

Sk = T (rk) =
k∑

j=0

p(rj) =
L− 1

MN

k∑

j=0

nj , (3)

where k ∈ [0, . . . , L−1] for an n bit image, L = 2n,
SK , rk, P , rj , L, MN , n stand for the number of pixels
in the equalized image, the number of new frequencies,
the total frequency that corresponds to a specific value of
rj , the range of values from 0 to L − 1, the maximum
intensity value, the total number of pixels in the image,
and the number of pixels with intensity j, respectively.

First, we added 200 single-face images to our
ACD (Kian Ara and Matiolanski, 2019) and applied
our algorithm in the two-class estimator mode on the
Pointing’04 dataset (Gourier et al., 2004) and compared
the performance results with various algorithms. The
FEI dataset (Thomaz and Giraldi, 2010) contains 2800
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(a) (b) (c) (d)

Fig. 7. Original image (a), intensity histogram of the original image (b), image after histogram equalization (c), intensity histogram of
the equalized image (d).

face images including dark (faces are recognizable to the
human eye), very dark (faces are not recognized by a
human eye), excessively dark (faces are invisible in the
images), and out-of-plane rotation images (Table 2).

We investigated applying HE to all images and found
that despite its ability to reconstruct hidden faces in an
image, it had a few drawbacks. In high-quality images,
the image quality decreases due to the HE average shift
approach. Moreover, the computation power requirements
increase significantly. In order to reconstruct faces from
the dark images, we proposed an algorithm depicted in
Fig. 8.

Initially, we need to identify extremely dark images
where faces are invisible and divide our dataset into two
categories based on their brightness intensities. For noise
removal, we first applied a Gaussian filter, and afterward
calculated the average luminance intensity of the entire
image. Empirically, we have found that images with
an average brightness intensity of less than 15 indicate
intense dark images. A 5 × 5 Gaussian kernel with a
default border type is used to smooth the image noise.
The formula for a Gaussian function in two dimensions
is (Shapiro and Stockman, 2001)

G(x, y) =
1

2πσ2
exp

(
−x2 + y2

2σ2

)
, (4)

where σ is the standard deviation of the Gaussian
distribution, x and y are the distances of the pixels from
the origin in the horizontal and vertical axes, respectively.

After applying HE, the non-local means denoising
technique (Buades et al., 2011) is utilized to reduce
the noise effect generated by the HE algorithm in
reconstructed images. The suggested algorithm chooses
a pixel and dedicates a window around it (7 × 7 in
this study), then it looks for similar patches in order

to replace that specified pixel value with the average
of all similar windows. It implements this process
over the entire image pixels, which makes the process
of denoising images time-consuming compared with the
other denoising methods, but with better performance.

4. Experiments and evaluation
As mentioned before, we collected 109 images with a
person count ranging between 21 and 905 with an average
of 151 individuals per image from various sources. Some
of the examples of images with the associated ground truth
count are illustrated in Fig. 9. Figure 10 demonstrates
a few examples of our model performance in each
subwindow.

4.1. Comparison of methods for pose variations,
severe occlusion, and various lighting conditions.
Studies involving face detection differ in objects and
training and testing datasets. Therefore, an accurate
comparison of this work with these artifacts may not be
entirely meaningful.

Therefore, in this study, we separately compare
solutions for face detection with pose variations (such as
rotation of faces from −90 to 90 degrees), detection under
various occlusion levels (such as faces with 25%, 50%,
and 75% occlusion), and in images with various lighting
conditions.

In order to evaluate the comparison of different
methods in real-world applications, we utilize our dataset
(AGH Crowd Density Estimation Database, or ACD),
which is a more challenging benchmark compared with
the existing datasets. In this study, the sum of absolute
differences (SAD) and the mean of absolute errors (MAE)
were utilized to evaluate the performance of various face
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Table 2. Summary of the datasets.
Conditions/Dataset ACD Pointing’04 FEI dataset
Number of images 109 1302 2800
Number of faces 16501 1302 2800
Head pose variations Out-of-plane In/out-of-plane Out-of-plane
Lighting condition Normal Normal Normal/dark/very dark
Occlusion Up to 75 % Normal Few faces covered by glasses

Fig. 8. Flowchart of implementation of the proposed face detection algorithm on dark images.

detectors in crowds using the following formulas:

SAD =

N∑

i=1

|yi − xi|, (5)

MAE =
1

N

N∑

i=1

|yi − xi|, (6)

where N is the number of test samples, y and x are the
estimated face count and ground truth, respectively.

Recall or sensitivity (the ratio of correctly predicted
positive observations to all true observations) was used to
assess the face detection model performance. It can be the
model metric when the cost of a false negative (FN) or
Type II error is high,

Recall =
TP

TP + FN
, (7)

where TP and FN, denote the numbers of true positives
and false negatives, respectively.

The proposed method is evaluated in two scenarios.
In the first scenario, an empirical comparison of
the performance of the proposed approach and the
well-known face detection libraries and toolkits such as
the Haar cascade face detector, the deep learning face
detector in OpenCV (DNN) (Open CV, 2019), and
the HOG with a linear SVM and a maximum-margin
object detector (MMOD) with CNN based features in

Dlib (King, 2009), is compared in the most challenging
conditions. The capabilities of these algorithms on an
example image are demonstrated in Table 3.

The algorithms are trained on images with specific
sizes so an accurate comparison of these methods may
not be possible. Therefore, the algorithms are evaluated
according to their desired image sizes. As is shown
in Table 3, the proposed approach can recognize faces
in various poses and faces with up to 75% coverage.
The DNN and MMOD methods outperform the Haar,
LBP, and HOG-based face detectors, especially in pose
variations. HOG-based detectors are more accurate than
LBP and Haar cascades, with fewer false positives (FPs).
However, FP is the major drawback of the Haar cascade
face detector appropriate thresholding is used to overcome
this problem. In this study, we overcome false-positive
errors by discarding faces larger than twice the average
perceived face size. HOG and Haar feature-based cascade
classifiers are less robust to occlusion, which can be
utilized in the first phase of the proposed approach, where
we only want to obtain the full size of the human face in a
crowd.

In the second scenario, the proposed method is
evaluated on the Pointing’04 dataset (Gourier et al.,
2004) and the FEI dataset (Thomaz and Giraldi, 2010).
The Pointing’04 dataset contains 1302 large-sized (faces
with a minimum size of 140 × 140) single faces
with various rotations. The FEI dataset contains 2800
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Fig. 9. Estimation results of the proposed method.

Fig. 10. Face detection result of the proposed method on each sub-window. The evaluation was examined on 50 × 50 images; the
displayed images are resized to 400× 400 pixel images.
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Table 3. Successful detections with head pose variations are indicated by ‘Yes’.

Haar No No No No No No Yes No
LBP Yes No No No No No Yes No
DNN Yes No No No Yes Yes Yes No
HOG-SVM Yes No No No No No Yes No
MMOD Yes No No No Yes Yes Yes No
Proposed Yes Yes Yes No Yes Yes Yes Yes

single faces photographed in various lighting conditions.
The performance of the proposed algorithm has been
compared with state-of-the-art face detectors, some of
which are presented by Tsai et al. (2018).

These algorithms are Adaboost (Viola and
Jones, 2004), Simple (Pai et al., 2006), the head
detector (Marin-Jimenez et al., 2011), the object
detector (Cevikalp and Triggs, 2012), the tree-structured
part model (Face p146) (Zhu and Ramanan, 2012), the fast
face detector (FFD) (Yang et al., 2014), the hierarchical
part model (HPM) (Ghiasi and Fowlkes, 2014), the
deformable part model (DPM) (Orozco et al., 2015),
image quality assessment (IQA) (Chen et al., 2015),
Face++ (Face++, 2015), the maximum-margin object
detector (MMOD) with CNN based features (King,
2009; 2015), normalized pixel difference (NPD) (Liao
et al., 2016), the single-stage headless (SSH) face
detector (Najibi et al., 2017) and the in-plane/out-of-plane
face detector (IOP) (Tsai et al., 2018), as well as the
deep neural networks (DNN) module (Open CV, 2019).
Comparative results are exhibited in Table 4.

Notwithstanding that our model was prepared and
trained for small-size faces (images consisting of faces
between 18 and 50 pixels) in a crowded environment, it
achieves prominent performance on both datasets.

4.2. Results by the proposed method. In this section,
a combination of different methods is compared and
presented in Table 5. For comparison, we used 109 images
with 21 to 905 individuals per image. The size of each
face in the images varies between 18× 18 and 162× 162
pixels.

The first row in Table 5 shows the results of using
only the Haar cascade to specify the size of the faces,
yielding 1237 SAD and 11.34 MAE. The second row
shows that using HOG with SVM interestingly reduces
MAE to 6.2. A combination of HOG with SVM and
the Haar cascade does not improve the accuracy of the
model. As is shown in Table 5, the combination of
HOG with SVM for specifying the size of faces and the

Table 4. Performance comparison on the Pointing’04 (indicated
by P) and FEI (indicated by F) datasets.

Techniques Recall(P) Recall(F) Average
Adaboost 0.4439 0.8514 0.647

Simple 0.4224 0.3214 0.3719
Head detector 0.5584 0.8971 0.7277

Object detector 0.3656 0.8036 0.5846
Face-p146 0.7887 0.9939 0.8913

FFD 0.9969 0.9957 0.9963
HPM 0.8379 0.9792 0.9085
DPM 0.9977 0.9257 0.9617
IQA 0.7189 0.9368 0.8278

Face++ 0.3472 0.8157 0.5814
MMOD 0.5337 N/A N/A

NPD 0.9547 0.9932 0.9739
SSH 0.9984 0.9921 0.9952
IOP 0.9416 0.9882 0.9649

DNN 0.9884 N/A N/A
Proposed 0.9976 0.9828 0.9902

proposed CNN model outperforms other combinations
and the state-of-the-art face detection algorithm presented
in OpenCV. In Figs. 11 and 12, we demonstrate absolute
differences (ADs) and the mean absolute error (MAE)
for nine groups of 109 images each, which are sorted by
ground truth counts values from the smallest to the largest.
In contrast to the DNN face detector which does not fully
comply with the density changes, our proposed method
has a uniform error in various densities.

5. Conclusion
In this paper, we propose an approach for face
detection-based crowd estimation under significant
occlusion and head pose variations. Several effective
strategies have been proposed to increase the robustness
of the CNN model. By randomly segmenting crowd
images to generate face datasets and using them in the
training phase of the CNN algorithm, the neural network
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Table 5. Comparison of different methods.
Methods SAD MAE
Haar cascade + Proposed model 1237 11.34
HOG with SVM + Proposed model 676 6.2
HOG with SVM + HAAR + Proposed model 873 8
HOG with SVM + DNN 1754 16.09

Fig. 11. Comparison of the absolute counts (histogram).

model can learn various features of faces and mitigate the
negative effects of occlusion and head pose variations in
the face detection approach.

The proposed method combines the well-known
traditional machine learning algorithm with the
state-of-the-art CNN algorithm to predict faces in
crowded scenes. A new sliding window approach is
implemented using the combination mentioned above.
Combining the GHE-based approach with several
different strategies allows the model to reconstruct
faces from images with various lighting. Utilizing a
network based on the VGGNet architecture with fewer
convolutional layers, the proposed algorithm outperforms
various face detection algorithms on the most challenging
data sets. Our model is mostly trained on small face
images (with sizes lower than 50 × 50 pixels) and
achieves the best results on images consisting of faces
with sizes in the range of 18–43 pixels. Since our model
is robust predominantly on the detecting of tiny faces, it
can be improved by training different models on various
face scales. Therefore, in future work, addressing the
scalability of the proposed method we will improve the
detection performances on images consisting of larger
face images.
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