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Small target detection under a complex background has always been a hot and difficult problem in the field of image
processing. Due to the factors such as a complex background and a low signal-to-noise ratio, the existing methods cannot
robustly detect targets submerged in strong clutter and noise. In this paper, a local gradient contrast method (LGCM) is
proposed. Firstly, the optimal scale for each pixel is obtained by calculating a multiscale salient map. Then, a subblock-
based local gradient measure is designed; it can suppress strong clutter interference and pixel-sized noise simultaneously.
Thirdly, the subblock-based local gradient measure and the salient map are utilized to construct the LGCM. Finally, an
adaptive threshold is employed to extract the final detection result. Experimental results on six datasets demonstrate that
the proposed method can discard clutters and yield superior results compared with state-of-the-art methods.
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1. Introduction
Small target detection has been widely applied in the
fields of intelligent visual observation systems (Yao et al.,
2022; Baran et al., 2016; Chmiel et al., 2016), early
warning systems (Li et al., 2021), infrared (IR) image
information processing (Yang et al., 2022) and target
detection (Uzair et al., 2020; Tabor, 2010). Due to the
long detection distance, the target occupies few pixels
in the infrared image and lacks the shape and geometric
characteristics. Additionally, the complex and varied
background environment and the low signal-to-noise ratio
make it difficult to detect real targets (Han et al., 2018b;
Yu et al., 2022).

In the human visual system (HVS), researchers
utilize the visual attention mechanism to identify the
most salient areas in the image (Liu et al., 2018a; Han
et al., 2019; Kowalski et al., 2014) and use a salient
map to indicate this significance (Andrysiak and Choras,
2005; Xie et al., 2018). The target detection algorithms
based on the HVS mechanism show robust capabilities in
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the signal-to-noise ratio improvement, background clutter
suppression and noise suppression. The local contrast
method (LCM) (Chen et al., 2014) exploits the HVS to
enhance the targets by calculating the contrast between the
central subblock and the surrounding subblocks, which
produces encouraging results. The relative local contrast
measure (RLCM) (Han et al., 2018a) makes real targets
prominent and suppresses all the types of interferences
simultaneously. The accelerated multiscale weighted
local contrast measure (AMWLCM) (Liu et al., 2018b)
not only takes advantage of the local contrast of the target
and the consistency of the background, but also takes into
account the imaging characteristics of the clutter edges,
which greatly reduces false alarms.

The multiscale local contrast measure using a
local energy factor (MLCM-LEF) (Xia et al., 2020)
measures the local contrast from two aspects: the
local dissimilarity and the local brightness difference.
Aghaziyarati et al. (2019) compensate the average
absolute gray difference (AAGD) (Deng et al., 2016)
disadvantages using cumulative directional derivatives.
The multiscale patch-based contrast measure (MPCM)
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Fig. 1. Flowchart of the proposed method.

(Wei et al., 2016) can increase the contrast between the
target and the background, which makes it easy to segment
a small target by simple adaptive thresholding method.
The high-boost-based multiscale local contrast measure
(HBMLCM) (Shi et al., 2018) proposed a high boost filter
to enhance the high frequency signal where the target may
appear and suppress the low frequency signal. Li et al.
(2019) combine the dual-window local contrast method
(DW-LCM) and the multiscale window IR patch-image
(MW-IPI) together, exploiting both local and nonlocal
priors. A local contrast measure based on infrared
gradient vector field (IGVF) features is employed in the
local gradient field feature contrast measure (LGFFCM)
Xiong et al. (2021).

In addition to the contrast mechanism, many other
properties (Zhang et al., 2019) can be used to enhance the
targets and discard clutters. Gradients, for instance, can
be utilized to enhance the contours and edges of objects in
the image. The local intensity and gradient (LIG) (Zhang
et al., 2018) can yield a target enhancement and clutter
suppression by calculating the local intensity and gradient
of the original infrared image. A difference between the
variances of the layers (Nasiri and Chehresa, 2017) in
the neighboring areas can also lead to effective detection
results.

However, it is still a challenge to robustly extract
small targets from a complex background with strong
clutter interference. In this paper, a subblock-based local
gradient measure is innovatively designed. It can suppress
strong clutter and pixel-sized noise simultaneously. Then,
a multiscale local gradient contrast method (LGCM)
is calculated from the subblock-based local gradient
measure; it can deal with different sizes of small targets
and achieve a favorable detection performance.

2. Methods

The flowchart of the proposed method is shown in Fig. 1.
First, the optimal scale is obtained by a multiscale salient
map. Then the subblock-based local gradient measure is

calculated with the optimal scale. Thirdly, the multiscale
LGCM is constructed utilizing the subblock-based local
gradient measure and salient map. Finally, an adaptive
threshold is applied to extract small targets.

2.1. Construction of the subblock-based local gradi-
ent measure. The input IR image can be regarded as
a two-dimensional discrete function. The image gradient
is actually the derivative of this two-dimensional discrete
function. The image gradient G is commonly defined as

G(i, j) = dx(i, j) + dy(i, j), (1)
dx(i, j) = I(i+ 1, j)− I(i, j), (2)
dy(i, j) = I(i, j + 1)− I(i, j), (3)

where I(i, j) is the gray value of the pixel (i, j), dx(i, j)
and dy(i, j) are the gradients in the x and y directions,
respectively.

The gradients of the targets exhibit isotropic
Gaussian characteristics, while the gradients of the
clutters with edges are generally consistent. Therefore,
the gradient characteristics can be integrated into the small
target detection to discard the clutter of edges.

For target (presented in Fig. 2(b), its gradient value
is relatively large, and almost all gradient vectors point to
its center. For the background with edges (presented in
Fig. 2(c)), although the gradient value is also large, the
direction is usually locally orientated. For the smooth
background, the gradient value is relatively small and
messy.

The gradients obtained by (1)–(3) can be very
sensitive to differences between adjacent pixels, and
have a good positioning of edges and contours, but this
pixel-based gradient calculation is quite sensitive to noise.
In the pursuit of small target detection under a complex
background, pixel-based gradient calculation can easily
misinterpret noise as a target and give a false alarm.
Therefore, the pixel-based gradient calculation method is
extended to subblock-based gradient calculation in this
paper, and a subblock-based local gradient measure is
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(a) (b) (c)

Fig. 2. Gradient direction: original IR image with two squares (a), gradient direction of the target (zooming in on the lower square)
(b), gradient direction of the edges (zooming in on the upper square) (c).

proposed that fully utilizes the gradient characteristics of
small targets.

The specific calculations of the subblock-based local
gradient measure are as follows. Employing a sliding
window w (its size is 3p × 3p) move on the image from
left to right, top to bottom (as shown in Fig. 3(a)). Then
the sliding window w is divided into 9 subblocks on the
average, each subblock is recorded as B0, . . . , B8 (as
shown in Fig. 3(b)).

For each pixel, its gradient value ϕ(i, j) consists
of eight components coming from eight directions. The
gradient value in each direction ϕn(i, j), n = 1, . . . , 8 is
the gray value difference between its center subblock B0

and its surrounding subblock Bn(n = 1, . . . , 8).

ϕ(i, j) = [ϕ1(i, j), ϕ2(i, j), . . . , ϕ8(i, j)], (4)
ϕn(i, j) = IB0 − IBn, n = 1, . . . , 8, (5)
ϕn(i, j) = max(ϕn(i, j), 0), n = 1, . . . , 8. (6)

Here IB0, . . . , IB8 are the mean gray value of
subblocks B0, . . . , B8. The gray value of the target
subblock should be greater than the gray values of the
surrounding subblocks. Thus, removing the value of
ϕn(i, j) < 0 can effectively suppress the interference of
clutter and noise.

Then calculate the maximum and minimum values of
ϕn(i, j):

Gmax(i, j) =
8

max
n=1

(ϕn(i, j)), (7)

Gmin(i, j) =
8

min
n=1

(ϕn(i, j)). (8)

The subblock-based local gradient measure is
defined as the mean square of ϕn(i, j), which can be
calculated by the following formula:

G(i, j) =

⎧
⎨

⎩

1

8

8∑

n=1
ϕ2
n(i, j),

Gmin(i, j)

Gmax(i, j)
> λ,

0, otherwise,
(9)

where λ is a constant from the interval (0, 1) obtained
from experiments. In this paper, λ takes a value of 0.2.

The effectiveness of the proposed subblock-based
local gradient measure is discussed as follows:

1. If pixel (i, j) is a target pixel, then IB0 >
IBn, ϕn(i, j) has a relatively large positive value,
Gmin(i, j) ≈ Gmax(i, j), and consequently, its value
of G(i, j) is relatively large. Therefore, the target
pixel is enhanced.

2. If pixel (i, j) is an edge pixel, its gradient
components in different; directions are quite
different thus Gmin(i, j) < λ · Gmax(i, j) and then
G(i, j) is zero. Therefore, many edge pixels are
discarded. Of course, in order not to miss any
target, the value of λ will not be large, some edge
points will have the value of G(i, j), but its gradient
component in each direction will not be greater than
the gradient component of the target point, so that the
value G(i, j) of edges will be smaller than the value
G(i, j) of the target. In this way, it will be eliminated
in the subsequent screening.

3. If pixel (i, j) is a strong noise point, its single-point
gray value may be as large as that for the target, and
the difference with respect to surrounding points is
also relatively large, but in this paper subblocks are
utilized as the basic units for calculation. After the
mean calculation of the whole subblock, the value of
IB0 is rarely affected by the single-point noise; thus,
the strong noise point can also be suppressed.

4. If pixel (i, j) is a gently changing background, then
IB0 ≈ IBn and bothϕn(i, j) andG(i, j) will be very
small.

In the above introduction of the subblock-based local
gradient measure, every value is calculated based on the
pixel (i, j). But in practice, calculating all these formulas
pixel by pixel (using the for loop) is inefficient and
time-consuming. It is recommended to calculate each
value based on the whole map. For an IR image with
size m×n, when calculating the mean gray value of each
subblock, we calculate maps IB0, . . . , IB8. Map IB0, for
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Fig. 3. Sliding window w (its size is 3p× 3p): movement of sliding window w (a), subblocks in sliding window w (b).
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Fig. 4. Flowchart of the subblock-based local gradient measure.

instance, has a size of m×n and each point in it is the IB0

value of the current pixel. In the same way, we can realize
parallel processing and make the algorithm more efficient.

Based on this idea, the corresponding flowchart of
the subblock-based local gradient measure is shown in
Fig. 4.

2.2. Multiscale LGCM calculation. In the previous
description, the size of the window w is 3p × 3p and the
size of each subblock in the window w is p× p. For each
pixel (i, j), different p leads to different G(i, j). In the
ideal case, the closer the size of subblock p is to the target
size, the larger the gradient value and the larger G(i, j)
can be obtained. But in reality, the target size is usually
unknown, and in the same image, targets of different sizes
may appear. Thus, a multiscale LGCM is necessary.

Firstly, inspired by the RLCM (Han et al., 2018a),
the salient map of image I is calculated as

P =
8

min
n=1

( IB0

IBn
IB0 − IB0

)
. (10)

IB0, . . . , IB8 are the mean gray values of subblocks
B0, . . . , B8, respectively, which are the same as defined
previously.

The salient map is commonly exploited in the target
detection method utilizing a human vision system. It can
significantly improve the signal-to-noise ratio of the target
and discard noise by calculating the contrast between the
central subblock and surrounding subblocks.

For the s-th scale (s = 1, . . . , L, where L is the
number of scales been used), calculate its salient map
Ps. Then select the maximum Ps(i, j) for each pixel
(i, j) as the value of the multiscale salient map Pms(i, j),
and record the scale sP (i, j) that maximizes the value of
Pms(i, j):

Pms(i, j) =
L

max
s=1

(Ps(i, j)). (11)

According to the definition of the Society of
Photo-optical Instrumentation Engineers (SPIE), an
infrared target with an area not larger than 9 × 9 is called
an infrared small target (Zhang et al., 2003); thus L is
usually not too large. In this paper, the value of L is 4,
when the values of scale are 1, 2, 3 and 4, and those of p
are 3, 5 ,7 and 9.

Then, for the s-th scale, calculate its subblock-based
local gradient measure G(i, j). Since the optimal
scale for each local area generally corresponds to the
local maximum salient map, the value of the multiscale
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Table 1. Dataset information.
Dataset Size Description

Dataset 1 128× 128 comparatively smooth sky background with heavy noise
Dataset 2 300× 200 weak targets under strong light and heterogenous background
Dataset 3 250× 200 heavy sky clutter background with edges
Dataset 4 128× 128 complex background with strong clutter blocks
Dataset 5 128× 128 targets of different sizes with heavy noise
Dataset 6 200× 150 complex changing background with heavy clutters

Table 2. Parameter description for ten methods in the experiments.
Method Description

MEXMED window size: 9× 9
MLCM-LEF α = 0.5, h = 0.2, size of windows: [1× 1, 3× 3, 5× 5, 7× 7, 9× 9]

MPCM window size: [3× 3, 5× 5, 7× 7, 9× 9]
AMWLCM window size: [3× 3, 3× 4, 4× 3, 4× 4, 4× 5, 3× 5, 5× 3, 5× 4, 5× 5]

LCM window size: [3× 3, 5× 5, 7× 7, 9× 9]
RLCM Scale = 3, K1 = [2, 5, 9], K2 = [4, 9, 16]

HBMLCM window size: [3× 3, 5× 5, 7× 7, 9× 9]
MS-AAGD internal window sizes: [3× 3, 5× 5, 7× 7, 9× 9], external window sizes: 19× 19

LIG K = 0.2, N = 19
Ours window size: [3× 3, 5× 5, 7× 7, 9× 9]

subblock-based local gradient measure is G(i, j) under
the optimal scale sP (i, j) at each pixel (i, j),

Gms(i, j) = Gs(i, j). (12)

where scale s(i, j) = sP (i, j).
Finally, the multiscale LGCM is defined as

LGCM = Gms × Pms. (13)

2.3. Thresholding. In the resulting map of LGCM,
the target will be the most salient; the it can be detected
through a simple threshold (Han et al., 2020). The
adapting threshold in this paper is defined as

Th = k × μLGCM, (14)

where μLGCM is the mean value of nonzero values in the
LGCM, k being a constant value.

3. Experiments and a discussion
In this section, six infrared image datasets are utilized to
test the performance of the proposed method. The specific
datasets information is summarized in Table 1. All the
experiments are conducted on a computer equipped with
8 GB memory and a 2.8 GHz Intel i7 processor. The code
is implemented in MATLAB R2016a software.

3.1. Detection performance of the LGCM. To
illustrate the effectiveness of the proposed method, Figs. 5
and 6 show the original images and detection results of

image samples in six datasets. We exploit the same
parameter values for all the sequences. All the data in
Figs. 5 and 6 are normalized to the range from 0 to 255.

The first and second rows of Figs. 5 and 6 display the
representative original images from six datasets as well as
their corresponding three-dimensional mesh maps. To get
a better view, real targets are highlighted by square boxes.
All the images have interferences such as cloud, strong
Gaussian noise, trees, a mountain and so on. Targets in
some images are even submerged by clutters. All those
factors have a great impact on the detection procedure.
However, after the calculation of the LGCM, targets with
different sizes are all precisely screened out in the third
rows of Figs. 5 and 6. Results in the fourth rows of Figs.
5 and 6 reveal that most backgrounds are discarded, and
all the targets are enhanced with a greater signal-to-noise
ratio.

3.2. Comparison with other methods. The proposed
method is compared with other nine methods, including
MaxMedian (Deshpande et al., 1999), MLCM-LEF (Xia
et al., 2020), MPCM (Wei et al., 2016), AMWLCM (Liu
et al., 2018b), LCM (Chen et al., 2014), RLCM (Han
et al., 2018a), HBMLCM (Shi et al., 2018), MS-AAGD
(Aghaziyarati et al., 2019) and LIG (Zhang et al., 2018).
The parameters of these methods are used as these
authors’ suggestions. The specific parameters of all the
methods in the experiments are listed in Table 2.

In order to objectively evaluate the performance of
the proposed LGCM method, several commonly used
measurement metrics such as the signal-to-clutter ratio
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Fig. 5. Original images in the first row, mesh maps for the original images in the second row, detection results in the third row, and
mesh maps for the detection results in the fourth row: Dataset 1 (a), Dataset 2 (b), and Dataset 3 (c).

gain (SCRG), background suppression factor (BSF),
correct detection probability (PD), false alarm rate
(PFA) and average running time are compared in the
following. The receiver operating characteristic curve
(ROC) represents the varying relationship of the PD and
PFA.

Comparison of SNRG and BSF. As a general rule,
SNRG determines how much a method has enhanced the
target. The higher the BSF in a method, the higher clutter
suppression in the result image. In this part, the values of
SNRG and BSF of ten methods are compared.

Six images shown in Figs. 5 and 6 are used to
calculate the values of SNRG and BSF. For the image with
more than one target, the average SCRG and the average
BSF are implemented to represent the SNRG and BSF of
this image.

In Fig. 7, it can be seen that all the methods can
enhance the targets. However, the SNRG values of the
proposed method are higher than for most of the methods.
It is known that the higher the SNRG, the easier the targets
can be detected. It is demonstrated that the proposed
method can distinguish targets and the background easily
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Fig. 6. Original images in the first row, mesh maps for the original images in the second row, detection results in the third row, and
mesh maps for the detection results in the fourth row: Dataset 4 (a), Dataset 5 (b), and Dataset 6 (c).

on various scenes.

Noise and background clutter are the sources of false
alarms in the small target detection. A good performance
on the BSF can effectively reduce the false alarm rate.

In Fig. 8, the values of log(BSF) of the proposed
method are far greater than for any other methods. This
proves that the proposed method can discard a background
with edges, trees, rocks and random noise.

Computation efficiency. As we can see in Fig. 9,

the proposed method can achieve striking results with
acceptable calculation time. The reasons are as follows.

Firstly, the proposed method is inspired by the
RLCM, while it is more efficient than the RLCM, since
it omits time-consuming steps of sorting and seeking
the maximum value. Secondly, the proposed method
calculates each value based on the whole map (as
described in detail in Section 2), which makes the method
capable of parallel processing.
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Fig. 10. ROCs for ten methods: Dataset 1 (a), Dataset 2 (b), Dataset 3 (c), Dataset 4 (d), Dataset 5 (e) and Dataset 6 (f).

However, in order to suppress the noise and clutters
better, the local gradient and local intensity are utilized
in our method, which leads to a slightly longer time
consumption than the MEXMED, LCM and several other
methods.

Comparison of ROCs. For each dataset, we added
random Gaussian noise with the same intensity to every
image, and implemented Monte Carlo simulations to get
ROC results. The final ROC is obtained by changing the
segmentation thresholds for each dataset.

In Fig. 10, compared with other nine baseline
methods, the proposed method can achieve the best
detection performance with good robustness on all

datasets. This is because it can significantly enhance the
targets (have bigger SNRG) and discard complex clutters
(have bigger BSF).

4. Conclusion

In this paper, a multiscale local gradient contrast method
for small target detection under a complex background
has been proposed. First, a subblock-based local gradient
measure has been designed, which can suppress a complex
background with all types of clutter. Then, a multiscale
salient map has been obtained to get an optimal scale.
Finally, the multiscale LGCM is calculated by exploiting
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both the local gradient and local intensity. Experiments
on six datasets demonstrate that the proposed method
can achieve higher SNRG and BSF values, and exhibit
encouraging performance in detection accuracy.
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