
Int. J. Appl. Math. Comput. Sci., 2023, Vol. 33, No. 1, 57–70
DOI: 10.34768/amcs-2023-0005

IMPLICATIONS OF THE ARITHMETIC RATIO OF PRIME NUMBERS FOR
RSA SECURITY

ANDREY IVANOV a, NIKOLAI STOIANOV a,*

aC4I Systems
Professor Tsvetan Lazarov Bulgarian Defence Institute

2 Prof. T. Lazarov Blvd., 1592 Sofia, Bulgaria
e-mail: andry.g.ivanov@gmail.com,n.stoianov@di.mod.bg

The most commonly used public key cryptographic algorithms are based on the difficulty in solving mathematical problems
such as the integer factorization problem (IFP), the discrete logarithm problem (DLP) and the elliptic curve discrete log-
arithm problem (ECDLP). In practice, one of the most often used cryptographic algorithms continues to be the RSA. The
security of RSA is based on IFP and DLP. To achieve good data security for RSA-protected encryption, it is important to
follow strict rules related to key generation domains. It is essential to use sufficiently large lengths of the key, reliable gen-
eration of prime numbers and others. In this paper the importance of the arithmetic ratio of the prime numbers which create
the modular number of the RSA key is presented as a new point of view. The question whether all requirements for key
generation rules applied up to now are enough in order to have good levels of cybersecurity for RSA based cryptographic
systems is clarified.

Keywords: public key cryptography, RSA encryption, public key generation rules, kleptography, fusion of number balance.

1. Introduction

Created by Rivest et al. (1978), RSA is the first public
key cryptographic algorithm which continues to be the
most commonly used today. Up to March 2022 more than
85% from certificate authorities (CAs) guarantee their
root certificate‘s security by using the RSA encryption
and signing scheme. Approximately 10% of CAs combine
both RSA and the elliptic curve digital signature algorithm
(ECDSA) to protect their public key infrastructures (PKI).
This statement is based on our research, in which
we analyzed the root certificates stored in operating
systems (OSs) Windows, Android, and Linux. These
OSs are the most commonly used in the world. We
used in our research statistical results provided by the
Certificate Transparency Organization. This is why
RSA obviously continues to play a key role related
to the information security of our electronic resources,
which is why research on the cryptographic resilience
of RSA is so important. The correctness of public key
generation process and key management directly affects
the resilience of cryptographic systems (Dodis et al.,

*Corresponding author

2004; Alwen et al., 2009). All this makes key generation
pairs for the RSA algorithm very significant about the
security of information technologies that people use.

Over the years, many researchers have worked on the
tasks of finding vulnerabilities or creating mathematical
attack models to break the RSA-based cryptographic
systems, but so far no attack approach has been developed
which can break the RSA key with length of 2048 bits
or bigger in acceptable time. The algorithm which
implements key pair generation for RSA can be described
as follows. Two different prime numbers p and q
with a size approximately equal to nBits/2 each are
generated, where nBits is the desired key length in bits
(for example, nBits = 1024). We denote the result of
their multiplication with the number N (N = p · q).
Choose a small integer e and calculate d ≡ e−1

mod ϕ(N). This means that the numbers e and d satisfy
the congruence

e · d ≡ 1 mod ϕ(N),

where ϕ(N) is Euler totient function (Kaliski, 2011). In
the case when p and q are prime numbers, the result of
that Euler function is ϕ(N) = (p− 1) · (q− 1) that is the

mailto:andry.g.ivanov@gmail.com,n.stoianov@di.mod.bg

58 A. Ivanov and N. Stoianov

order of the multiplicative group Z∗
N . We call N the RSA

modulo number, e the exponent for encryption, and d the
exponent for decryption. The pair (d,N) is the private key
and pair (e,N) is the public key.

When a sender has to encrypt a message M , he/she
has to use the recipient’s public key. The mathematical
operation

C ≡ M e mod N (1)

is used as the encryption operation, where C is the
encrypted message. To decrypt the cyphertext C, the
recipient has to compute

Cd ≡ (M e)d ≡ M e · d ≡ M1 ≡ M (mod N),
(2)

where the last equality follows by Euler’s theorem
(Kaliski, 2011).

Other algorithms in public key cryptography widely
used to protect information are based on DLP (Gordon,
2011; Adj et al., 2018) and ECDLP (Yan, 2019;
Ahlswede, 2016). Signing data is a field in cryptography
which has a very important role for information security.
Such algorithms that implement this are ECDSA and the
digital signature algorithm (DSA) (Menezes et al., 1996).
Nowadays, many new approaches aim to improve digital
signature algorithms and signing schemes. One of these
new ways is the group signature scheme in the blockchain
(Devidas et al., 2021).

The difference between RSA and the others is that
in RSA large composite numbers are used when modulus
operations have to been calculated (Yasuda et al., 2012).
Among the most widely used cryptographic systems
based on DLP are the Diffie–Hellman key exchange
protocol (Diffie and Hellman, 1976), the El Gamal public
key cryptosystem (Elgamal, 1985), signature schemes
(Sako, 2011), etc. The mathematical challenge in DLP is
based on computing discrete logarithms in finite fields of
type Zp which consist of integers obtained by computing
modulo using a large prime number p. Given g, h ∈ Gp,
and p (prime number) the Discrete Logarithm Problem
consists in finding x (if it exists) such that

gx ≡ h mod p, (3)

where Gp is a multiplicative Abelian group with generator
g.

All used public key cryptographic algorithms are
implemented based on the use of at least one secret
parameter. In RSA-based systems, this secrecy is
achieved by the inability to calculate d by the equation

e · d + ϕ(N) · i = 1,

where e and N are known but ϕ(N) and i are difficult to
calculate or find by exhaustive search.

2. General attacks on RSA

Over the years, the attacks against systems using RSA
can be divided into three types. The first is based on a
side channel attack, the second on incorrect generation
of the private exponent and the third on decomposition
of large numbers into prime factors. To overcome the
weaknesses falling into the first two types, many additions
have been made into the systems which use RSA. Due to
that reason we have focused on exploring the possibility
of attacks based on improperly generated p and q numbers
or efficient factorization of modulusN which is part of the
RSA public key.

Factorization algorithms can be divided into two
groups: special-purpose and general-purpose. The
first group consists of algebraic-group factorization
algorithms, Fermat’s or Euler’s methods. The group
of general-purpose factoring algorithms, also known as
Kraitchik’s family algorithms (after Maurice Kraitchik)
(Bressoud and Wagon, 2000) has running time which
depends solely on the size of the integer to be factored.
The group of general-purpose algorithms includes the
quadratic sieve (QS), the general number field sieve
(GNFS), Shanks’s square forms factorization, etc.

The most general-purpose factoring algorithm are
based on the Fermat factorization method. In 1643
Fermat (Erra and Grenier, 2009) exposed an algorithm
to factor odd integers by writing them as a difference of
two squares. Fermat factorization is an iterative search
method. Suppose that an integer N is a composite odd
number that is not a perfect square. There is a one-to-one
correspondence between factorization of N = p · q,
where p > q > 0 and the representation of N in the
form t2 − s2, where s and t are non-negative integers.
To execute the Fermat factorization algorithm for values
of t ≥ �√(N)�+ 1, we compute t2 −N until we obtain
a perfect square of s: t2 −N = s2.

The quadratic sieve algorithm was invented by Carl
Pomerance in 1981 as an improvement to Schroeppel’s
linear sieve (Pomerance, 1982). The algorithm tries to
create a congruence of number x squared modulo N that
often leads to a factorization of N . The QS works in two
main phases of execution. The first one has to prepare
data that may lead to a congruence of squares and will be
used in the second phase. The second phase puts all the
data which were collected into a matrix and employs it
to obtain a congruence of squares. The first phase allows
the collecting process to be executed in parallel, but the
second phase requires large amounts of memory, and is
difficult to be parallelized efficiently.

How can we use congruence of squared numbers
modulo N to factorize it? If we find at least
one non-negative remainder of number x satisfying
congruence

x2 ≡ y2 mod N,

Implications of the arithmetic ratio of prime numbers for RSA security 59

we know that

x2 − y2 ≡ 0 mod N.

This means
(x − y) · (x + y) = N.

Hence we can calculate the factors of N by
computing q = GCD(x− y,N) and p = GCD(x+ y,N)
(if q < p).

The most important advantage of QS over the Fermat
factorization method is the fact that the square of a
congruence is more likely to find in a multiplicative
Abelian group GN than to find integers s and t which
satisfy t2 −N = s2. We can demonstrate how QS works
with an example.

Example 1. (Quadratic sieve) We have

3302 ≡ 570 mod 3 611,

5102 ≡ 108 mod 3 611,

1962 ≡ 2 036 mod 3 611.

None of the integers 570, 108 and 2 306 is a perfect
square, but 570 · 2 306 ≡ 3302 · 1962 ≡ 42 mod 3 611
It follows that

(196 · 330)2 − 42 = k · 3 611.
Hence

k · 3 611 = (64 680 − 4) · (64 680 + 4)

= 64 676 · 64 684.
This is means

3 611 = GCD(64 676, 3 611) · GCD(64 684, 3 611),

3 611 = 23 · 157.
�

We looked at the classical possible ways to attack
public cryptography based on RSA, but there is a kind of
attack which could be made throughout using a back door
in the key generation process. To perform that kind of
attack, an attacker has to modify cryptographic primitives
in a such way that this could allow him to break the user
key using the only available victim’s public key.

Anderson (1993) proposed a back door in the
generator of the 512 bit RSA key. The security of the
leaking information throughout the hidden channel was
estimated as weak because Kaliski (1993) proposed a
method for breaking such kind of back door.

Young and Yung (1996) introduced the concept
of SETUP (secretly embedded trapdoor with universal
protection) attacks. They defined kleptography as an
extension to the SETUP concept. Using that mechanism,
important secret information leaks throughout a hidden

Algorithm 1. SETUP attack on RSA.
Require: (g, Y, P),m,K,W, e {e is a generated key

public exponent}
1: c1 := randombits(�m/2�)
2: z := gc1−W · Y −a·c1−b mod P
3: l := H(z)
4: l := l or 1
5: numb := −2
6: repeat
7: numb := numb+ 2
8: p := l + num
9: until p is prime

10: v := gc1 mod P
11: for i = 0; i < B2; i++ do
12: U := G(v,K + i)
13: RND := randombits(�m/2�)
14: T := [U][RND] {[U][RND] is bit concat.}
15: q := (T − r)/p
16: if q is prime then
17: break
18: end if
19: end for
20: N := p · q
21: d := e−1 mod ϕ(N)
22: return N, e, d

channel to the attacker. The attacker can use that
information to factorize efficiently the modulus number
N from the user’s key.

To perform a SETUP attack, the kleptographic
mechanism has to be embedded into hardware device
firmware or into a computer software product by a
developer or a person who participates in the development
of the cryptographic algorithm; such a person we will
call the attacker. According to the proposed SETUP
attack, the attacker uses his/her own public key (g, Y, P)
to protect important hidden information which is a part
of the generated user’s key, where number P is a prime
with size �m/2� and m is the key size which have to
be generated. The attacker keeps his/her private key x
secret. In the algorithm execution, a function G is used.
The result of the function is pseudorandom a = G(b, c).
This means that, when applied to the data b using the key
c, a value of a with a binary size equal to or greater than
P is produced. A non-secret symmetric key K is used in
the algorithm. That key is a part of the device firmware
or a computer software application. A hash function H
whose binary size result has to be greater than P is used
in the algorithm. The algorithm works with two constant
parameters B1 and B2 which have to limit execution of
some operations.

The pseudocode of the Young and Yung algorithm
(YY97) is shown as Algorithm 1. We have to mention that
the pseudocode steps correspond to the Young and Yung

60 A. Ivanov and N. Stoianov

algorithm described more descriptively in words in their
publication (Young and Yung, 1997).

We have to stress that the values of a, b and W in
row 2 of the above algorithm are not pointed in Young
and Yung’s publication (cf. Section 5). This means, that
the values of a, b and W are constants and they are part of
the attacker’s private key; otherwise, it is impossible the
attack successfully.

The maximum upper value of the range r (row 15
in Algorithm 1) is not pointed in Algorithm YY97. In
Step 12 of the YY97 algorithm (solve for q in the equation
[U][RND] = pq + r), r is an iterative variable. In that
case the YY97 speed execution depends on the count of
cycles limited from B1, B2 and r. In Appendix of the
paper by Young and Yung (1997) it is shown that the
average time of the 1024 bit public key generation is
approximately 154.4 seconds by using GNU MP library
version 1.3.2. The average time to generate such a key on
a PC is approximately 2 seconds. Based on that argument,
we could state that the algorithm of Young and Yung
cannot be used practically and could not be embedded in
RSA cryptographic systems. We state this because any
user of a hardware device or a software cryptographic
library will notice that key generation is slow and would
be suspicious that something is wrong. That would be
the reason which will lead to revealing the embedded
Kleptographic algorithm.

At present days some new Kleptographic algorithms
are created. They present good ideas and demonstrate
the danger power of Kleptography could be. One of
that algorithms was presented by Markelova (2021). She
presented ideas of SETUP attacks on RSA in two variants.
One of them is by using of elliptic curves as basis for the
attack.

3. Kleptography attack on RSA by a new
approach

In this part of the article, an idea for a new kind
of kleptographic algorithm will be described and the
importance of the rules for generating RSA keys and the
need to supplement them will be discussed. The idea is
based on a new way of representing whole numbers.

3.1. Mathematical fundamentals. To present how the
mathematical ratio of p and q impacts RSA security, we
will show a little bit different representation of N . Let
N = p · q = t2+r, hence N ≡ r mod t and t = �√N�.
Another representation which we will use is N + R =
(t+ 1)

2. From this we can derive

t2 + 2 · t+ 1 = N +R, (4)
2 · t− r = R− 1. (5)

The above formulas are easily represented as in
Fig. 1.

Fig. 1. Simple graphical representation of N = p · q.

Fig. 2. Combined graphical representation of Eqns. (4), (5) and
N = t2 + r.

If we represent multipliers p and q of N as p = t+ x
and q = t− y, where p > q (hence x > y), we can derive
the following equations:

N = (t+ x) · (t− y), (6)

N = t2 + t · x− t · y − x · y, (7)

N − t2 = t · (x− y)− x · y, (8)

r = t · (x− y)− x · y, (9)

t =
r + x · y
(x− y)

. (10)

The above formulas result in

p+ q = 2 · t+ x− y, (11)

p− q = x+ y. (12)

If we form a square with side length 1
2 (p+ q) and

from its area subtract the area of another square with side
length t, we get

(
p+ q

2

)2

− t2 = v,

hence (
p+ q

2

)2

= v + t2.

By definition, the modulo number N in the RSA key
is a composite number which is a product of two very big
prime numbers p and q. If they are prime and greater than
2 then these numbers are odd hence the sum of p and q is
even and 1

2 (p+ q) is an integer number.

Implications of the arithmetic ratio of prime numbers for RSA security 61

Fig. 3. Graphical representation of the connections between
p, q, t, x, y and m, which are introduced and derived in
the equations up to (15) and one new variable i = m+y.

The square with side 1
2 (p+ q) has a greater area than

the square with side t because, by definition, p > q,
hence x > y and if we refer to (11), we can deduce that
1
2 (p+ q) > t. It follows that

p+ q

2
= t+m. (13)

From (11) and (13) it is clear that

2 · t+ x− y

2
= t+m. (14)

Simplifying (14) yields

x− y = 2 · m. (15)

Figures 3 and 4 present more clearly all connections
between the equations above.

Denoting the sum of y and m as i = y + m and
taking a look at Fig. 4 where three zones are marked
with equal areas, we easily derive the formula which
is a representation of the composite number N as the
difference of two squares:

(t+m)2 − i2 = N. (16)

This formula looks the same as Fermat’s formula, which
represents a composite number by the difference of two
squares, but in it the new variablem is in use. Substituting
m = g + 1 in (15) yields

g =
x− y − 2

2
. (17)

Doing the same in (16), we get

(t+ g + 1)
2 − i2 = N. (18)

If we express i by equation i2 = (t+ g + 1)2 − N ,
the following simplified formula expressing i by g can be
derived:

i2 = (t+ 1)2 + 2 · g · (t+ 1) + g2 −N. (19)

Fig. 4. Graphical representation of N as the difference of two
squares: (t+m)2 and i2.

At the beginning N was expressed by equation N +R =
(t+ 1)2. If this is used to substitute N in (19),

i2 = g2 + 2 · g · (t+ 1) +R. (20)

From (20) it follows that if g = 0 then R is an exact
square.

Based on all derived formulas up to now, we could
state two things: (i) if t and R have firmed values
connected to a numberN then the value of that N depends
on the value of the variable g only; (ii) the minimal value
of g we will be attained when the difference between p
and q is equal to 2, which means g = 0.

By definition, we know the value of N and we
compute t and R because from the first defined formulas
it is known that t = �√(N)� or N mod t = r and
R = (t2 + 1) − N . As a consequence, we can deduce
that if we want to factorize N , we have to find out a
value of g. From all formulas above it is true that g is
in direct proportion of the difference of p and q. If the
composite number N has more than two factors, then we
will have a value of g for every pair of factors which,
after multiplication, have as a result the value equal to the
number N . As a consequence, we know that the lower the
value of g, the closer the values of the multipliers in the
pair of p and q.

The next example demonstrates what is the
difference between Fermat’s factorization and the way
described above through g.

Example 2. (Factorization of N : Fermat vs. finding g) If
we have to factorize N by the Fermat method, we have to
find the smallest number that is squared and added to N
to give an exact square. For N = 3 611 that number is 67

3 611 + 672 = 8 100 = 902.

If we use our known values for t andR, through increasing
the value of g by 1 starting from 0 and using that to

62 A. Ivanov and N. Stoianov

calculate i by (20), we will get that for g = 29 and i = 67,

t = �√3 611� = 60,

R = (60 + 1)2 − 3 611 = 110,

i2 = 292 + 2 · (60 + 1) · 29 + 110 = 4 489

i = 67.

�
The example demonstrates that by Fermat’s method

we will have different steps of searching for a proper
value of i than to find the value of g. That statement is
a consequence of (20).

We think that there is one essential question: Is there
a way to decrease the value of g?. The answer is ‘yes’.
This could be done by multiplying N by n = a · b and if
a/b ≈ p/q as a consequence of M = n · N = p · q · a · b
then we will have gM < gN . Even if the values of the
relationship do not match completely, �a/b� = �p/q� and
the value of gM could be 0. In other words, we will have
a new bigger composite number M with factors a · p ≈
q · b = f for which �a · p

q · b � ≈ c, where c 	 q < p and
gM < gN .

If we could find gM easier than gN and factorize M ,
then we can use the greatest common divisor calculation
between N and factor f of M , and in this way we can
obtain the values of p or q.

As a conclusion, we could say that the mathematical
ratio of p to q is very essential to the security of systems
which are based on RSA. The algorithm of finding a
proper mathematical ratio of p to q which leads to
decreasing g to very small values and that allows integer
factorization will be called Fusion of Number Balance.

The process of key generation for RSA cryptographic
systems follows several rules. We will consider official
standards of two organizations: NIST (2019) and ETSI
(2007). These standards regulate processes of RSA key
generation. In the description of the rules, we will denote
by nBits = l/2 the half of the binary size l of N .

First in SP 800-56Br2 of the NIST recommendations
(page 37), we can find the following rules:

1. Primes p and q have to be truly prime numbers.

2. The sizes of p and q have to be in the range
]
2nBits−1, 2nBits

[
.

3. Primes p and q have to be generated in different
integer intervals to guarantee that the distance
between them is really big in the binary
representation,

|p− q| > 2nBits−100.

4. Let N be the product of p and q.

In the second recommendation source, TS 102 176-1
V2.0.0 of ETSI in Annex C entitled “Generation of RSA
modulus”, we can find the following rules of generating
number N :

1. Choose a random prime number p in the range
]
2nBits−15, 2nBits+15

[
.

2. The sizes of p and q have to be in the range
[
2nBits−1

p
,
2nBits

p

[
.

3. If the condition 0.1 < | log2 p − log2 q| < 30 is not
satisfied, go back to the first step.

4. Let N be the product of p and q.

Rules of RSA key primitives generation are
also provided by ENISA. The document considers
requirements for RSA key domains Smart et al. (2014,

Table 1. Example of RSA key domains with a low value of
n = a · b.

q

D29438CF85A6BE8549CB656EB89D0C0462100D3
772EE9983D0C153A201CF9A260F2254552F66DD
F9A7E543F0183551FC28E9358259F40C30B4288
C376AA4FECACD8A8FE86E7BFCBE518373770682
9755FA574B7E9AA39DAAD4346B18A4B573E3F26
9B593FEED02BF22A859F70F1FEDB37C3F6D18ED
498F1C319B408CD6FFC3DD

(size 1024 bits)

p

EDAF6345987F5AA44C34E84067BC34760CF8375
5141F254E210956A6A26AAC54B18FDAC5269DA5
BD1307F8B1C3BF7107F6FB692AC62434BEECF1B
2E21999FA27F95507B7D79EEC3471D1E2CB4E00
8614326A076F971B36C1684CA8DD7AEA1EEEA26
C64416BBB50A501A1C390FAA69E2D17239EF314
141A6AFE3E820920DF5475

(size 1024 bits)

N

C3837D9385F40FCECBF8D332BD166778D44A107
EE8738FED8CD291797AB9666AE09590C1AC6807
5ADE94F8D2620E52D8F8B84DDD090B566E0533B
7F0A3AE4B83204E23C0C6E1F048D8F24326FE8D
1E7095984C7F5ABB40F26E9FB81878665686CAF
C1246AF5ADBB0ACFD65998A7C4A436C65BDF3EB
6474355CD005D21AA3F34B6AE783F7D2DCBBD5B
453BB0A4EED599BE49F1FC2200687FE552130A3
0BC193840B969365C73D65D9076150B1EF1C8D8
F342CEB0BF5AE5DA538BA06D340C3EA7DBBECFC
73C94A597B73A5A24AFEAEEF4BBACA5A5C66512
92909748AC217C5DD4C6A789B76383CEB568EE4
CE0C9491288BFFFB76424B10726298AC14F66CAC0801

(size 2048 bits)

p-q

1B1B2A7612D89C1F026982D1AF1F2871AAE82A1
DA1308BCA50480304A09B122EA26D866FF736C7
C36B22B4C1AB8A1F0BCE1233A86C30288E38C92
6AAAEF4FB5D2BCA77CF6922EF76204E6F54477D
EEBE3812BBF0FC77991694183DC4D634AB0AB00
2AEAD6CCE4DE5DEF96999EB86B0799AE431DA26
CA8B4ECCA3417C49DF9098

(size 1021 bits)

Implications of the arithmetic ratio of prime numbers for RSA security 63

Section 3.5). They are similar to those described and
considered by the ETSI standard.

There are two variants of attacks which could affect
negatively RSA cryptographic systems security harder
than attacks or the mathematical basis of the algorithms.
One of these ways concerns processes of public key
generation. In the next part of the paper we will clarify
how, according to us, all rules connected to key generation
process which are enumerated above are not enough. This
will be achieved by using mathematical basics described
at the beginning of this section and will emphasize the
importance of reliable and correct public key generation.

Table 1 contains domains of the RSA key example
which presents highlights the importance of g.

RSA key domains presented in Table 1 satisfy all
criteria of NIST and ETSI standards but we will use
the value of number N to show how important the
mathematical ratio of p to q. We used the values of p and
q from Table 1 and calculated gN . That value of gN is as
follows:

gN

68FF4F9CB155A0990D31735E53E3EC68CC287239
77C4070BD4D45D81D3418BE962D7ACADCE71939C
7C8CB78C7FFD995EAE18E4B7D8CEE8672AE350F9
6EFD568B7BE5088B46C582452166DE1521DD9B16
FEC7258372F419AF7033A3C83C5156715EE97DBD
775FDC00AE8DFAEAD9996E6A7A541C24C861A3A3
2E98B5B84C5843

Applying the algorithm Fusion of Number Balance
to N , after 41 minutes of its execution on a computer
(i5 10th generation based CPU) we obtained a value of
n = DD62427(dec:232137767). With that value of n we
calculated the new number M = n · N . That M has
gM = 0, which means that we can calculate iM through

i2M = (tM + gM + 1)2 −M. (21)

Equation (21) can be used as a detector of gM . If gM
has a proper value we could find a value of i2M which has
to be an exact square. Hence it is possible to calculate a
multiplier f of M :

f = qM = tM − iM + 1. (22)

To obtain the factor of N we have to calculate the GCD of
the values N and f :

z = GCD(N, f). (23)

If we do all calculations with parameter values equal
to our example numbers above, we will get the following:

Algorithm 2. Fusion of Number Balance.
Require: N,Un, Ug

1: for n = 0; i < Un; n++ do
2: M := N · n
3: tM := �√M�
4: for gM = 0; i < Ug; gM ++ do
5: l := (tM + gM + 1)

2 −M

6: iM := �√l�
7: if i2M = l then
8: f := tM − iM + 1
9: z := GCD(N, f)

10: return z
11: end if
12: end for
13: end for
14: return 0

n DD62427

M

A9138E7BDD03F2271A1A1EA309F834D96BFFA02F
D7E8AEF0A92BE66D7513FF2CF64F73E16CBB115A
825874F8A88300539D6680D1F4214CFCF1D9D110
C378A363A6CEAA7962E4868A21F81883BDFAB3FC
97D41629F06EAFDC1EF925A72CA5499E8BE9EB93
CF6EC891C35CA39B7462589143E9335FF111D22D
6F75B5EED7F072952A9CAC1BEB36E7708D7A9681
FAEF9A139AFC4879C9C3D71650C54EE92C9FECD0
834601A52DD70052579258C4D0EA5CA0C9D99A35
B5EB7E29EBA5E003C2ED5F8D2788881DE9DC8A43
0FB13C562AE0DA04817868C23F869667DEFDD0CA
DB95A8D518C965423EA69CB41FD1802D3E4B9360
CD89E89952AEC365FC3A7677EAD6D097D2B5C27

tM

3403022429B7D650B5E10FD69FF33226D9248CF3
B11034C4D1C0B02324C881C7E47EEFAA664C3D55
98DB1D8EBE4AB376F32ED1EA692DCA3ECB8F7FD9
F4042EBAA15278595DC1F9C615EC22B5E708A357
096C2DB28E3BE7826097CE6FBF369D56CE30E20C
44D8144CAB946AF088A957DAF3F13E774723CA2B
EBB4A3AA895E7E7DE29B

iM 585BAD

f

3403022429B7D650B5E10FD69FF33226D9248CF3
B11034C4D1C0B02324C881C7E47EEFAA664C3D55
98DB1D8EBE4AB376F32ED1EA692DCA3ECB8F7FD9
F4042EBAA15278595DC1F9C615EC22B5E708A357
096C2DB28E3BE7826097CE6FBF369D56CE30E20C
44D8144CAB946AF088A957DAF3F13E774723CA2B
EBB4A3AA895E7E2586EF

z

D29438CF85A6BE8549CB656EB89D0C0462100D37
72EE9983D0C153A201CF9A260F2254552F66DDF9
A7E543F0183551FC28E9358259F40C30B4288C37
6AA4FECACD8A8FE86E7BFCBE5183737706829755
FA574B7E9AA39DAAD4346B18A4B573E3F269B593
FEED02BF22A859F70F1FEDB37C3F6D18ED498F1C
319B408CD6FFC3DD

The obtained value of z is equal to the factor value q
of N .

We write down the algorithm Fusion of Number Bal-
ance with the pseudocode of Algorithm 2. It uses three
input parameters, the number N , an upper limit number
Un for n and an upper limit number Ug for gM . As a
mathematical basis, Eqns. (21)–(23) are used.

Algorithm 2 is not a general factorization algorithm,
which means that it cannot be used to perform an effective

64 A. Ivanov and N. Stoianov

attack against all generated RSA keys, but it can probably
be used to quickly crack a significant number of them,
and this raises a big question: Should we add a new rule
to evaluate the mathematical ratio of p to q in standards
related to the key generation process for RSA-based cryp-
tographic systems?

3.2. Kleptographic algorithm. Everything we have
described so far has forced us to think about whether,
how and to what extent this can affect the security and
resilience of RSA based cryptographic systems. One
of the questions we asked ourselves was whether it was
possible to create a kleptographic algorithm based on a
predetermined fixed mathematical ratio of p to q which
would be known only on the developer of a cryptographic
system (we will call this developer an attacker). As a
result, we created a kleptographic algorithm which will be
described in this section. We called it gBasedKleptoRSA2.

The functionality of gBasedKleptoRSA2 is divided
into two base phases. The first includes the attacker’s key
parameters which we can call the domains of her key. This
is neither a symmetric nor an asymmetric key, because the
attacker does not use a cryptographic algorithm to protect
the data which leak throughout a hidden channel. The
carrier of the information that will allow the attacker to
factorize quickly a compromised domain N of an RSA
key will be the user’s public key certificate. The security
of the hidden channel which helps the attacker to be
invisible is based on a very big value of the ratio of p to q,
which is known in advance to her only. These parameters
of the attaker’s key could be used no matter what RSA
key size has to be created by the cryptographic system key
generator (1024 bit size or lager). After these parameters
have been created, the attacker puts part of them into
hardware firmware or in a software library as a set of
constants. The parameters which are used in this phase
are the following:

1. Number l which determines the base length in bits
of the other parameters it has to be in the range
126, . . . , 192;

2. Base parameters a and b with random values and
approximately l bit length. The binary size difference
between a and b have to be less than 4 bits
(|bitsize(a)− bitsize(b)| < 4);

3. Base “modifier” integer K which has binary size l−
63;

4. Map matrix Rx,y which is a two-dimensional array
with 9×9 elements and each contains two values ash
and bsh (Rx,y = R[x, y][ash, bsh]). Each of them
is in the range −4, . . . , 4 (ash, bsh ∈ −4, . . . , 4).
Each combination of ash and bsh is unique (see
Appendix A);

Algorithm 3. Generate base parameters for
gBasedKleptoRSA2.
Require: l, a, b, Rx,y {bitsize(a)− bitsize(b) < 4}

1: K := RandomBigInteger(l− 63)
2: S[0][a] := a
3: S[0][b] := b
4: for i = 1; i < 81; i++ do
5: Dsh := RandomRange(32 .. 54)
6: Z := K shl Dsh

7: x := i div 9
8: y := i mod 9
9: if R[x, y][ash] ≥ 0 then

10: S[i][a] := (a shl R[x, y][ash]) + Z
11: else
12: S[i][a] := (a shr R[x, y][ash]) + Z
13: end if
14: if R[x, y][bsh] ≥ 0 then
15: S[i][b] := (b shl R[x, y][bsh]) + Z
16: else
17: S[i][b] := (b shr R[x, y][bsh]) + Z
18: end if
19: end for
20: Du := RandomRange(216 .. 232)
21: return S,Du

5. Parameter Dsh which is an integer in the range
32, . . . , 54.

As a result of that first phase two parameters are
generated:

1. a constant Du with a size of approximately 32 bits;

2. a table S with 81 rows which contain pairs a and b
with a bit length approximately equal to l (plus or
minus 4 bits relative to l).

The attacker uses all parameters above to produce
table S. She will put S and Du into the hardware device
or software library which are created to be RSA key
generators.

It is important to stress that all the following
algorithms do not use procedures for fast generation of
prime numbers when large random numbers are created.
We will use two functions of random number generation.
The first one RandomBigInteger(int x), generates
a big integer number with x bit size. The second,
RandomRange(lo..hi), generates randomly an integer in
the range lo, . . . , hi where the maximum value is 232 − 1.

The algorithm of generating S and Du is presented
by the pseudocode of Algorithm 3.

Algorithm 3 of RSA key generation uses the
following input parameters: k (key size, i.e., 1024, 2048
etc.), S, Du, e (public exponent), da and db, where the
values of last two parameters are results of functions

Implications of the arithmetic ratio of prime numbers for RSA security 65

Algorithm 4. Generate RSA kleptographic key domains.
Require: k, S,Du, e, da, db

1: l := bitsize(S[0][b])
2: u := RandomBigInteger((k/2)− l)
3: m := RandomRange(0..80)
4: for i = 0; i < 81; i++ do
5: f := (m+ i) mod 81
6: d := (u−Du) · (u +Du) · S[f][a] · S[f][b]
7: if bitsize(d) = k then
8: Da := RandomRange(1..171) shl da
9: p := NextPrime((u−Du) · (S[f][a] +Da))

10: Db := RandomRange(1..171) shl db
11: q := NextPrime((u+Du) · (S[f][b] +Db))
12: if p < q then
13: z := p
14: p := q
15: q := z
16: end if
17: break
18: end if
19: end for
20: N := p · q
21: d := e−1 mod ϕ(N)
22: return N, p, q, d

Ga(id, time) and Gb(id, time), i.e., da = Ga(id, time)
and db = Gb(id, time). The input parameters of
these functions are the identifier of the certificate and
the start date of validity. They have different results
when their input parameters are the same. Results
of functions Ga and Gb are in the range 1, . . . , 103.
In the next algorithm we will use another function
NextPrime(BigInteger x). That function returns the
value of the next prime number bigger than x.

The algorithm of RSA key generation by
gBasedKleptoRSA2 is represented as Algorithm 4.

The formulas for p and q which are used in
Algorithm 4 are as follows:

p = (u−Du) · (S[f][a] +Da) + rp, (24)

q = (u +Du) · (S[f][a] +Db) + rq. (25)

The algorithm ends when suitable values for S[f][a]
and S[f][b] are found, i.e., the product of p and q has a
bit length equal to the needed key size. The product of
rp and rq is the count of iterations which are needed to
generate the final key domains. This is the biggest part of
key generation time because for each iteration rp and rq
the primality test is performed.

Several examples of RSA generated key domains
with different key sizes from 1024 to 4096 bits are
presented in Appendix B. In the generation process for
all keys contained in Appendix B, the same table S was
used as a key generation parameter.

Algorithm 5. Factorization of compromised RSA key.
Require: S,N, e, da, db

1: for i = 0; i < 81; i++ do
2: for wL = 1; wL < 172; wL++ do
3: aV := S[i][a] + (wL shl da)
4: for wH = 1; wH < 172; wH ++ do
5: bV := S[i][b] + (wH shl db)
6: n := aV · bV
7: M := n · N
8: t := �√M�
9: z := (t+ 1)2 −M

10: i := �√z�
11: if i2 = z then
12: f := t− i+ 1
13: q := GCD(f,N)
14: p := N div q
15: d := e−1 mod ϕ(N)
16: return p, q, d
17: end if
18: end for
19: end for
20: end for
21: return p = 0, q = 0, d = 0

The next algorithm, represented as Algorithm 5,
contains the steps of execution which the attacker makes
in order to decompose N (the modulo number of the
compromised RSA public key). To perform a successful
attack, an attacker needs three things: the contents of the
table S, Du and the certificate, which is the user’s public
key. When the attacker obtains a user certificate, she first
calculates da = Ga(id, time) and db = Gb(id, time) and
then performs the steps of Algorithm 5. It is important to
note that this is applicable when the bit size of the product
of a and b is less than the half of the key length.

If the attacker is successful, the result of this
algorithm are values of (p, q, d) greater than zero and
this is true if the input parameter N is a part of
the compromised RSA key which is generated with
predefined S and Du; otherwise, the result is (p = 0, q =
0, d = 0).

In cases when half of the key size (k) is smaller than
the product of af and bf (af = S[f][a] and bf = S[f][b]),
we will use another algorithm to obtain factors p and q.
When this is true, u < af and u < bf . We have

N ≈ ((u −Du) · af + rp) · ((u +Du) · bf + rq)

= (u2 −D2
u) · af · bf + (u−Du) · af · rq

+ (u+Du) · bf · rp + rp · rq.
Hence

u ≈ �
√
Ndiv ai · bi�. (26)

This means that the result of the computation u =
�√Ndiv af · bf� − Du is a float value on the least

66 A. Ivanov and N. Stoianov

significant bit if u << af · bf (the least significant bit of u
can be 0 or 1). As a consequence, if half of the key size (k)
is smaller than the product of af and bf , then the attacker
could obtain p = (u−Du) · (S[f][a]+Da shlda), where
calculation is performed for every Da ∈ {1, . . . , 171}
combined with all pairs af and bf . If the multiplier p is
found, then N mod p = 0.

3.3. Finding if gBasedKleptoRSA2 could be hidden.
In order to exist and be used in practice, a kleptographic
algorithm must have characteristics that allow it to go
unnoticed. That is why we have to analyze whether it is
possible to detect gBasedKleptoRSA2 if it is embedded
into cryptographic systems.

If a kleptographic algorithm is not hidden enough,
the first feature which could be obvious is the domain
generation time of a key. If there is an abnormal time
difference of key generation between non-kleptographic
and kleptographic algorithms that could be a reason to
suspect something is wrong in the key generating tool, this
will raise the question of whether kleptography is used in
it.

To estimate the generation time through
gBasedKleptoRSA2, we performed more than 2000
key generations with lengths from 1024 to 4096. In
that process we used two S tables S1 and S2. The root
parameters a and b which were used to create table S1

had a length of 152 bits each and for S2 this was 232
bits. We made a comparison of the average times of key
generation through gBasedKleptoRSA2 and the openSSL
library (version 1.1.1h22 Sep 2020). For key generations,
the same computer was used. The results of performed
tests are as follows:

• 1024 bit key:

– using: S1 362 ms, S2 293 ms

– openSSL 285 ms

• 2048 bit key:

– using: S1 2.04 sec, S2 1.7 sec

– openSSL 350 ms

• 4096 bit key:

– using: S2 33 sec

– openSSL 911 ms

We have to emphasize that in the openSSL library
an RSA key is generated trough fast prime number
generation algorithms. That is why an obvious time
difference exists when 2048 and 4096 bit keys are
generated. If other cryptographic tools are used instead of
openSSL, the time required to generate 1024 and 2048 bit
keys is comparable to that of gBasedKleptoRSA2. That

sets a task for future work to find out why openSSL owns a
feature like that. One of the possible reasons could be that
the intervals where p and q are generated are not random
enough. This could lead to of set of limited mathematical
ratios of p to q. As a consequence, if that is found, then
Fusion of Number Balance can be used for factorization.

The next part of our analysis concerns the possibility
of finding a pair of ai and bi. If this is proven,
it is enough to state that the kleptographic algorithm
gBasedKleptoRSA2 is embedded into the system which
we analyze. To do that, we need to have one pair p and q
from a key produced by the system which we analyze and
to generate (171 · 103)2 · 81 = 25 127 639 289 other keys
by the same system. We have to do that to be sure that we
have a 100% possibility to find out the same ai, bi, da, db,
Da and Db in other keys which are being used in obtaining
our base pair p and q. This is the first difficulty because if
a single 1024 bit key generation time is the lowest one 290
ms the that will take 84 340 days (231 years). Of course, if
the key generation process is parallelized, this would take
less time but money investments have to increase. For
example, the Microsoft cloud HSM could be rented for
about $4.85 per hour or the IMB cloud HSM will cost
$1250 per month. This is not a big investment for an
organization but it needs to invest one million dollars to
perform that amount of key generation per week.

The next difficulty is a bigger obstacle. We have to
perform 25 127 639 289 checks of GCD(wi, wj) = A to
find out an existence of at least one value for A which
has at least 126 bit length. In that calculation i
= j
and wx = px − rx, where px is an RSA key domain
parameter (a factor of Nx) and the maximum value rx
is the difference between px and previous prime number
lower than px. All calculations described above took at
least 10 min for 1024 bit key when i5 10th generation with
60% load and 2.7GHz maximum clock is used. The time it
will take for this analysis to be successful will be 478 075
years.

Here is the place to recall that the values of Da and
Db are in the range 1, . . . , 171 and theses of da and db are
in the range 1, . . . , 103. These ranges could be bigger.
The time required for an attacker to factorize N for a
1024-bit key with these parameters is less than 10 seconds,
for a 4096 bit-key is less than 35 seconds. These are very
small values of time for attack execution.

All the parameters related to gBaseKleptoRSA2
make it dangerous if used in an RSA cryptographic
system, and we can say that it is very likely to remain
hidden if no serious analysis is done on the keys generated
by such a system.

Speaking of kleptography and after the introduction
of gBasedKleptoRSA2, we want to draw attention to a
study entitled “The million key question—Exploring the
origins of RSA public keys”, which was done by Czech
team developers (Svenda et al., 2016). In their study,

Implications of the arithmetic ratio of prime numbers for RSA security 67

they evaluated the process of RSA key generation. They
have investigated over 39 hardware devices and software
libraries. One of the results shows a very interesting
fact. Among all analyzed tools only the Microsoft key
generation tool has a good probability distribution of the
most significant byte of the prime p and its corresponding
prime q. A bad distribution could be a sign of a poor ratio
of p to q. This may be due to a hidden unintentional form
of kleptography, which is as consequence of the prime
number generating principle. In other words, this could be
due to the use of fast generating prime numbers algorithms
for example. But all the results mentioned could be a sign
of very dangerous vulnerability which affects seriously
resilience of RSA based cryptographic systems.

4. Conclusion
Based on our experience in the field of information
security and our knowledge in number theory, we aim
to increase the cryptographic security of systems that
people use widely. The presented approach to security
assessment on one of the most commonly used encryption
algorithms aims to focus efforts on creating algorithms
that will increase the security of RSA based cryptographic
systems. We have to stress that the suggested algorithm
Fusion of Number Balance is not a factorization algorithm
in general.

This article shows the need for new requirements
and rules to be part of worldwide standards for RSA key
generation. These new rules should serve to prevent the
creation of RSA keys that are easy to attack as a result
of a small mathematical ratio of p to q. Without such a
new part of the rules, it is very possible that a form of
kleptographic attack is part of existing systems based on
RSA. This may be due to the desire to use algorithms
to quickly generate large prime numbers, which is a
consequence of wanting the key generation process to
be as fast as possible. Practically speaking, if a form
of kleptographic attack based on the idea described by
gBasedKleptoRSA2 is implemented in a cryptographic
system, the information security of the organization in
which this system is operated seriously threatens its
security and work resilience.

Our future efforts will be to develop an algorithm
which will increase RSA security by suggesting a better
calculated ratio of p to q. The other future work will
include an improvement of the algorithm which deals with
estimation of the probable ratio of p to q and will aim at
speeding up Fusion of Number Balance.

Acknowledgment
This work has been funded by the European Union’s
Horizon 2020 Research and Innovation Programme under
the grant agreement no. 830943, the ECHO (European

Network of Cybersecurity Centres and Competence Hub
for Innovation and Operations) project.

References
Adj, G., Canales-Martínez, I., Cruz-Cortés, N.,

Menezes, A., Oliveira, T., Rivera-Zamarripa, L.
and Rodríguez-Henríquez, F. (2018). Computing
discrete logarithms in cryptographically-interesting
characteristic-three finite fields, Advances in Mathematics
of Communications 12(4): 741–759.

Ahlswede, R. (2016). Elliptic curve cryptosystems, in
A. Ahlswede et al. (Eds), Hiding Data Selected Top-
ics: Foundations in Signal Processing, Communications
and Networking, Vol. 12, Cham, pp. 225–336, DOI:
10.1007/978-3-319-31515-7_4.

Alwen, J., Dodis, Y. and Wichs, D. (2009). Leakage-resilient
public-key cryptography in the bounded-retrieval model, in
S. Halevi (Ed.), Advances in Cryptology, CRYPTO 2009,
Springer, Berlin, pp. 36–54.

Anderson, R.J. (1993). Practical RSA trapdoor, Electronics Let-
ters 29(11): 995.

Bressoud, D.M. and Wagon, S. (2000). Course in Computational
Number Theory, Key College Publishing, Emeryville.

Devidas, S., Rao Y.V., S. and Rekha, N.R. (2021).
A decentralized group signature scheme for privacy
protection in a blockchain, International Journal of Ap-
plied Mathematics and Computer Science 31(2): 353–364,
DOI: 10.34768/amcs-2021-0024.

Diffie, W. and Hellman, M. (1976). New directions in
cryptography, IEEE Transactions on Information Theory
22(6): 644–654, DOI: 10.1109/TIT.1976.1055638.

Dodis, Y., Franklin, M., Katz, J., Miyaji, A. and Yung, M.
(2004). A generic construction for intrusion-resilient
public-key encryption, in T. Okamoto (Ed.), Topics in
Cryptology, CT-RSA 2004, Springer, Berlin/Heidelberg,
pp. 81–98.

Elgamal, T. (1985). A public key cryptosystem and a signature
scheme based on discrete logarithms, IEEE Transac-
tions on Information Theory 31(4): 469–472, DOI:
10.1109/TIT.1985.10570748.

Erra, R. and Grenier, C. (2009). The Fermat factorization
method revisited, Cryptology ePrint Archive, Report
2009/318, https://eprint.iacr.org/2009/31
8.pdf.

ETSI (2007). Electronic signatures and infrastructures
(ESI): Algorithms and parameters for secure electronic
signatures. Part 1: Hash functions and asymmetric
algorithms, TS 102 176-1—V2.1.1, European
Telecommunications Standards Institute, Valbonne, h
ttps://www.etsi.org/deliver/etsi_ts/10
2100_102199/10217601/02.01.01_60/ts_10
217601v020101p.pdf.

Gordon, D. (2011). Discrete logarithm problem, in H.C.A. van
Tilborg and S. Jajodia (Eds), Encyclopedia of Cryptogra-
phy and Security, Springer, Boston, pp. 352–353, DOI:
10.1007/978-1-4419-5906-5_445.

https://eprint.iacr.org/2009/318.pdf
https://eprint.iacr.org/2009/318.pdf
https://www.etsi.org/deliver/etsi_ts/102100_102199/10217601/02.01.01_60/ts_10217601v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/102100_102199/10217601/02.01.01_60/ts_10217601v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/102100_102199/10217601/02.01.01_60/ts_10217601v020101p.pdf
https://www.etsi.org/deliver/etsi_ts/102100_102199/10217601/02.01.01_60/ts_10217601v020101p.pdf

68 A. Ivanov and N. Stoianov

Kaliski, B. (2011). Euler’s totient function, in H.C.A. van
Tilborg and S. Jajodia (Eds), Encyclopedia of Cryptogra-
phy and Security, Springer, Boston, pp. 430–430.

Kaliski, B.S.J. (1993). Anderson’s RSA trapdoor can be broken,
Electronics Letters 29(15): 1387–1388.

Markelova, A.V. (2021). Embedding asymmetric backdoors
into the RSA key generator, Journal of Computer Vi-
rology and Hacking Techniques 17(1): 37–46, DOI:
10.1007/s11416-020-00363-x.

Menezes, A.J., Van Oorschot, P.C. and Vanstone, S.A. (1996).
Handbook of Applied Cryptography, CRC Press, Boca
Raton.

NIST (2019). Recommendation for pair-wise key establishment
using integer factorization cryptography, NIST SP 800-
56Br2, National Institute of Standards and Technology,
Gaithersburg, DOI: 10.6028/NIST.SP.800-56Br2.

Pomerance, C. (1982). Analysis and comparison of some integer
factoring algorithms, in H.W. Lenstra and R. Tijdeman
(Eds), Computational Methods in Number Theory, Math
Centrum, Amsterdam, pp. 89–139.

Rivest, R. L., Shamir, A. and Adleman, L. (1978). A method for
obtaining digital signatures and public-key cryptosystems,
Communications of the ACM 21(2): 120–126, DOI:
10.1145/359340.359342.

Sako, K. (2011). Digital signature schemes, in H.C.A. van
Tilborg and S. Jajodia (Eds), Encyclopedia of Cryptogra-
phy and Security, Springer, Boston, pp. 343–344.

Smart, N., Rijmen, V., Gierlichs, B., Paterson, K., Stam, M.,
Warinschi, B. and Watson, G. (2014). Algorithms, key
size and parameters report 2014, European Union Agency
for Network and Information Security (ENISA), Brussels,
https://www.enisa.europa.eu/publicatio
ns/algorithms-key-size-and-parameters-
report-2014.

Svenda, P., Nemec, M., Sekan, P., Kvasnovsky, R., Formanek,
D., Komarek, D. and Matyas, V. (2016). The million-key
question—Investigating the origins of RSA public keys,
25th USENIX Security Symposium (USENIX Security 16),
Austin, USA, pp. 893–910.

Yan, S.Y. (2019). Cybercryptography: Applicable Cryptography
for Cyberspace Security, Springer, Cham, chapter “Elliptic
curve cryptography”, pp. 343–398.

Yasuda, M., Shimoyama, T., Kogure, J. and Izu, T. (2012). On
the strength comparison of the ECDLP and the IFP, in
I. Visconti and R. De Prisco (Eds), Security and Cryptog-
raphy for Networks, Springer, Berlin, pp. 302–325.

Young, A. and Yung, M. (1996). The dark side of “black-box”
cryptography or: Should we trust capstone?, in N. Koblitz
(Ed.), Advances in Cryptology, CRYPTO’96, Springer,
Berlin/Heidelberg, pp. 89–103.

Young, A. and Yung, M. (1997). Kleptography: Using
cryptography against cryptography, in W. Fumy (Ed.),
Advances in Cryptology, EUROCRYPT’97, Springer,
Berlin/Heidelberg, pp. 62–74.

Andrey Ivanov is an engineer. He graduated
in automated management systems from P. Volov
Higher Military Artillery School in Shumen, Bul-
garia, in 2000. His main research interests focus
on cryptography and cybersecurity.

Nikolai Stoianov is an assistant professor and a
deputy director of the Professor Tsvetan Lazarov
Bulgarian Defence Institute. In 2003 he received
a PhD degree in the Institute for Perspective Re-
search for Defence (IPRD), G.S. Rakovski Na-
tional Defence College. He is an expert in com-
munication and information systems and infor-
mation protection. In 2020 he graduated in strate-
gic management of defence and the armed forces
from G.S. Rakovski National Defence College.

Appendix A

Matrix Rx, y : 9× 9 values:

0 1 4 5 8
0: [0, 0] [0, 1] ... [0, 4] [0,-1] ... [0,-4]
1: [1, 0] [1, 1] ... [1, 4] [1,-1] ... [1,-4]

: :
4: [4, 0] [4, 1] ... [4, 4] [4,-1] ... [4,-4]
5: [-1, 0] [-1, 1] ... [-1, 4] [-1,-1] ... [-1,-4]

: :
8: [-4, 0] [-4, 0] ... [-4, 4] [-4,-1] ... [-4,-4]

Appendix B

ID: 1 1024 bit size generation time: 156 ms

q

6E2F8AECBE4C50A206B9F6427D9247EE240EE43
7615736B822C7E8C36FFD77749B424903EF72E1
048C0606EFB6C4AF8C8108534D68A96DE43961F
35198E31EFD

(size 511 bits)

p

167902C95E4646A4A703E15F01C8E2F6BA918B8
94D025C9007E96A66B5B1828135FF112740C055
F03113EDAAAA115348DD28BDA58ECD0A52FA163
275B64992FCB

(size 513 bits)

N

9AC2B9C0D3E22C8D4A635AFE84A2B6511A30578
47664FD7638CA1AFABE8D906F3A5D010F0C3E8B
969101FA5EA119AEA4F3CC043CFBA05CDAFB07B
7E3BBBEF9D43F09F1E5D9CEFBC2F999BF31FEE3
33386B194E439C9BE1BADF1BF4854C397EC5CB2
FC430076EF45D5DF88DD627FAE7D2D43D962687
2B3D29D320938D47FF059F

(size 1024 bits)

p-q

F960A1A9261819A869841FAD9EFBE77D8509D45
D6ECE92485BCEBDA7EB1AB09EC4AEC9701C927D
FE8538D3BAEA5085015183870B8427374B68013
409CBB610CE

(size 512 bits)

https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014

Implications of the arithmetic ratio of prime numbers for RSA security 69

ID: 2 1024 bit size generation time: 250 ms

q

417386A7E084955B94BF33983102AA263A8C01E
4FE36899182C148B9805375F3B3ABC28296B0B6
881FAB8EF8928B9E001032EBA199FFAC1BF3A4D
FCB43353B71

(size 511 bits)

p

281D3C6E65D0E7DEBB9CB8813F5FAF9887F8122
ABA1FF099436F5C2FF89E9F6B1A03A47EA6AE26
0F3211E37ACF61593BBC8D264057542F5FFF58D
0A71410A129D

(size 514 bits)

N

A418693C95458629B39CEB0EF7E54E1036FEBBF
1EB0CF8B147E33F7E176B4AFD39B767EBA85C66
3AA458059BAE847495391FBD90F87A525F66DB4
1614081569FFAB9FD4B97FC82C06A5D7AC795BA
E8B5124E23E49607406A2BE9CD593B5919ED7C5
732FBCE93E9393C45ADBE5A09718D7BD74159E0
B0EFA5FEE9556EF93D664D

(size 1024 bits)

p-q

24060403E7C89E890250C547BC4F84F6244F520
C6A3C88002B4347A46099680BDEC8E8567D431A
A6B0172A8B46389F5BBB89F7863DB4349E401E8
2AA5FDD4D72C

(size 514 bits)

ID: 3 2048 bit size generation time: 1523 ms

q

282F500ADB641C6E1E3A1EAD896F1723BD3D1411B9FB
F5CD86199D82EDC9D3BF46D0F7296AE83724952B50DC
FC89E77A690E7E501040EB8D6F9B7F3C968B39B91D15
E4AF9AE7EF8C02E439335ADBEA8F95D289F9D1CA58EF
34DB9BA65C7DFB7A1D7AF347185E3BE1DA742EF52D66
D43AAA7D9269E7DC98C76ECEF20A2BEF5697

(size 1022 bits)

p

4191052CAC4DC232D487F3291C109EF834FD9D911D70
C3BE8A4973DD120B5B435746D16D8480283113131F29
7792C697B60EDC7BE0007DEB2BDE65AE1ED02BB80B63
DB4DAEB9EB159B3724859E9AEB79790A3ADA69D17F70
B162B78E8AC4584894C6A49C8322C09163D07C97BB08
DA162FE39E1452E201CB73C2EB487860DE233

(size 1027 bits)

N

A4AC6EF0798A590EDBC8C3895AC5CCE715251F4BB8DB
E431EED37F8DC2635448FF4E733E4154978415B3F4CE
0B5D9F3DE9BA36E798020B375CF8908D48199BEDBB7E
D49C8C3B6F42335FD455478F4C13D0F0A9DCE86C79B8
63930449649362FC7F78F2793141B07A591563C97AC1
040B570A6C4505BB2CE7D474E5109A3A294D88721D88
64B9EC4FF5D2514EDE84A1F98592ED45708D542AB7B9
D31C8B05CD33290F67E5B7718D34C93D0EEA019E143A
C324CDB7DFA6A19EEDD9AAFF36343366929BA28D3115
9A448F785493C73DFE289550E13DCC36C3C88DF54654
A9294B204A2E05FBF39F285664E373D2067519F17D61
CC3571D3A440C9A58AEB7ACA8E15

(size 2048 bits)

p-q

3F0E102BFE97806BF2A4513E4379AD85F929CC5001D1
0461B1E7DA04E32EBE0762D9C1FAEDD1A4BEC9C06A1B
A7CA28200F7DF496DEFC6F3254E4ADBA5567781C7992
7D02B50B6C1CDB08E0F268ED2CD07FAD123ACCB4D9E1
BE14FDD424FC7890F2EEF568119CDCD3462939A86832
6CD2853BC4EDB464383EFCD5FC27D5A1E8B9C

(size 1026 bits)

ID: 4 2048 bit size generation time: 1859 ms

q

97866EF5B259F782BAFF2D9896B7054A24256CB4585F
CB0686F33E8140F9A10120362A1AD5770DA0D6C2F60E
EA141EB867B2C0A510F9ACCFD47E62C44C63CA5FF490
2AC264D14FDC6D6D9BD5E61FE3FF6F75A8E188158B02
01E69C0B4D8BAE8E89D56592306DF085C9F1232AD907
38EEFE535E43F4E26EC41273D721E309695B

(size 1024 bits)

p

17378890FB02C3E47840057B5967C07AE35BE472FB77
E223C0E51238499BC0DAB853E91CA59DF1059CD09010
864FA9595218DEAC2742D5398EB787CBF5B10FC8C5D3
84F0CF4F172C1B9F5DC1E53E6274C4DB9EC3C55918C5
EABF33EF295459F1F2DEEAF04EA7BF8A44523B3735F3
DDFF6F428F6F3E8562EE099FD279A14D03EFB

(size 1025 bits)

N

DBDF2AF24F2C94F6F3243B848D039E6EB0393287FF63
20EE7F2518D078980B021BC3E76360F7576C0E5515DD
4D21880271412FF623A285047A28D69EA9783293D202
4D3FF9B524A6AE2AE26288B7DFA1D86DEFD452374687
C4EB2C85DBD698D9CD36CAF360500257F668D1747572
A5F1C4FEE9B226FE9850C3C47679C8F494DA8F66096F
4B00A1C3E8B43ED9C971AD2241E81F1C571567AD4BA0
ED054049E8E06E65BEA7B16E8DA91828AF6CC5EA5E48
081F6CE7878FA2A7CC06F8B795E0A31543D9932FA6E0
CDDD1D2AFE9C00C7901555FDFB3E334530C525EF692A
93067B70F23876C469CD6CAA0C8A6497C873509C995A
17DA13F63F811B9894D497AE5639

(size 2048 bits)

p-q

DBF21A19FDD246C4C9012A1CFFC502641198DA7B5F1E
5735875DE50358C26CAA650867AF846802B8F6460AF9
7AE676DCB9DB2A1D6333A6C916FA19FB0EAD322C68A8
244A902022E54C8840486DC6434CDE44435ACD7C015C
AA0CA2E747B9F090A4194972BA0E081E7B3290488636
A707F5D598AFF373C01C8789507831C6D5A0

(size 1024 bits)

ID: 5 2048 bit size generation time: 1407 ms

q

52574FDA16AF6CED61C27A2271B2D8F1313AD570E51E
6E0F6D329CB8058B6E3D20AECD2DB199C1044C480F12
417220A454C9B3683CB76F76A678E2A67D615E73F50E
8FA5B62627C940B13B73B931CFE7D95007529A9A011C
FD0E46BD22A387291AE4599F09E43B0DBF1C7D62612F
574AA288B6627959E9A69564C91012C9FBE7

(size 1023 bits)

p

21965FEDB3780DABC59E49DC2E6E509F82580FAE84B7
3E162D2C675FC3EB0C6B1B84F96602FD219A59A3D0DD
CA3BCAF8A71CC24FCBBF491763476BCD53563DD59325
A9FF80D9A35DA86C1D8CCCE2AAD4E08D4833ED44C5EB
86278A45D7E03CF43E8CC9F68E6308753DDA5D64FFBB
14121403CD1EFDAA92EE1BD0F8F55D6D663AD

(size 1026 bits)

N

ACD9F4EC1E66D4F218D180D9B5720B4DAF36DD88FCA4
D919CB5E0992850EE4020214BE00F168FF39C1B74C16
D92B2E940C220E75DF1C55A2EC80251AFB4C37838726
EFEC1B350BDA671A6626C74E32E3403D5D1CE0ADD802
BA118F1707BAD05DB9D997457D14F3F3B38A89BB8F1A
CDD3BF7549FBBF8B8180895044453D127087FBB99EB2
4A2FC588BE277D7D538DC62FF59A9C11F97729BB054E
62472F05058B2AD0B1483576065FAABE7E7F077D4AEF
4DA7801BCF61C824B29FD6B78174D2760DD1352E441B
6A57D5E3E5B072CD102133C57BB2FE8C2AFF9DA31300
7B4EAD59144E614585387049F9CD9AA93D41A7BBBECA
8113B6215157D051513F7C03901B

(size 2048 bits)

p-q

1C70EAF0120D16DCEF82223A075323106F4462577665
573536593D9443925587497A0C9327E3858A14DF4FEC
A624A8EE61D0271947F3D21FF8DFDDA2EB8027EE53D4
C105257740E1146109D5914F8DD662F847BEC39B25D9
B656A5DA05B60481ACDE845C9DC4C4C461E8958ED9A8
1E9D69DB41B8D614F453B27AAC645C40C67C6

(size 1025 bits)

70 A. Ivanov and N. Stoianov

ID: 6 4096 bit size generation time: 3828 ms

q

2E22F5E3104A7D9C56FA5DCAED770D4C9EB833F7C9DC
5E85F0F5135967B5BB6034BCDC25E7417BE246099192
DFE612E1D7AACB3B7734D8E3778F0DB6CCCFEA5536F0
75F3AE87679C995551777FEC9DD9C3A219C28F51C731
C792149AB7E04CADF597483B1E246FA272756D100341
35CA6F61974D2C45CB3F05CED8ED3028D3D538E6D66F
897DD35BF64AA3B80077A66C590564BBDFB01332AAEB
94D7F357C2FB82D632A0654D4F96DE4607A31BD16DEC
208663EF9248FD815CF45D1C4A83CDDD87A2BFA245DF
ABACA4545DADC3497ED58A6413159734979AC3383BF8
CD87E35391AD9BEF45C0377F08297451334D82D4F60E
3D16F42ADA18A16935B6A7298A7F

(size 2046 bits)

p

4B470A28F736AFB3D698F83565570AF0C7B661EE42AC
BF92FE4D52FBC79562923AA4667AA89DC38590DFFB10
3E5D92022523DF0D2EDDFF8D35B1396FA8689D17B82C
C79937028E94A16C105023CCC92AA5E6699456C0BD7E
AC94C9F28026ADECCE73EBFC48DC433312DF7FDBFF12
A048CE57FEB6BD642D8B0E98AB7011E04FF0321A76C9
4747144EC8FF3E815A46D4BD8A8BC4C1BB5970888A37
1764BD32FC37022FBA4F0D77337482670FBBBA92A508
EDA285CF7930B7BC5FA68BFB7EF6309137AE9C066CCC
72962C31D8269EC9B2ABDF7A0BAB65AB6979B590ED4B
2B3C7A453519A783205F73412BDF94707BCCEC8C920D
2029DF7A6CC055CB8D77FD1407DE5

(size 2051 bits)

N

D910B90775E37DB5A357496C8A03ADD2594115C15F73
7ADC38C2C4D9B19DB19500684948E9856B6B1949A013
6AA817C5D8B75C89269B7C10B5DF48ADC6C106AED5F8
5A050930C4518CF1C85DD9FBD5B84DFAE1F44D6D59D0
B49B8CC1AB7E942D45E6F3584396A20A3E41F27DD273
89B05765567C266241A9D4FA95058067ABF9976D3F7F
8F1C73475EFF342B53F42ECA82A13E78EAD6F936FE4A
44B701507E2852E23464734F3D49A29EF64AE5A6946D
71C6DCD42DE09D0ABD60A094F52DAE83BE3F12A11884
4C2FCD09C2BB85772A1728DE8FE51E8265F3E0678AF4
38B72A768AD81DD6894A903C54CA8462E8028DC653D8
DDBC161D02EF7D5064D84C5750CF9462D1462F961FD8
30A7E538EFCE0ED9D42FC1065F2B312E0B56227830EF
34E64EA0A81258B51EF26A365A3B3B4FBB74CA8D5608
670B5F51834D051BF1103ABA09432E8B59435FBBFECB
62E1FB4381291DDF2382C4FD49A6722786BF1384BA7F
547B05D5B0CAA3E6E6ED987A2B77233B30068AB3A847
8D37BDBCBF8AC1B1C7D6CA5A1FE1009F1C52FFE07CC3
9D9237672BCF7B2AFEBACE400DBE6B815D49300E9C57
029F11E0EF38C91A8B3738F0556BAF3D0CCDBADA4D35
4D4F4F770FD1559DC1DA6AD128CED4A744B85036C762
BDAB5A11D8C3CF59523FE05810AEEFCA191AE6C616F9
512A9456DB0F1898B6FA58492D1997735CF2661D4EAE
4E781F88E69B

(size 4096 bits)

p-q

4864DACAC63207DA11295258B67F9A1BFDCADEAEC60E
F9AA9F3E01C6311A06DC375898B84A29ABC76C7F61F7
105F30D407A93259776AB1FEFE3848943B9B9E7264BD
C039FC1A181AD7D6BB38ABCDFF4D09AC47F82DCBA10B
901BA8A8D4A8A921EF1A777896F9FC38EBB8290AFEDE
8CEC2761E541EA9FD0D71E3BBDE13EDDC2B2DE8C0962
4EAF3719099A9445DA3F5A56C4FB6E75FD5E6F555F88
5E173DFD80074A02572507225E7B1482AF4188D58E2A
2B9A1F90800C27E449D74629BA4DF3B35F34700C486E
77DB61EC924BC2951ABE86D3CA7A0C382000095D698B
9E63FC0FFBFECDC42C036FC93B5CFD2B6898145F42AC
3C587037BF1ECBB4FA1C92A16F366

(size 2051 bits)

ID: 7 4096 bit size generation time: 3547 ms

q

4B7D924158A52D138BB8300A49E8785756D34FBC7E68
072696DD3AD1C3B411AD705B7F3D32D032947AB93922
D9939E6C4D8D7E7BC594A23EE2610F7A809F92C43BBF
7A09DE172051AD234071F68813F4F196BDDCE784D045
B27D39D45196EDD23BB437E854D1954DDC3583BB8680
2E6E4AD9ED78C82EF630088CD3BEF10BD4E7196D00B1
16443A80C26D5C578C6CDC135664908B0B4FC0F200DC
ADCE277656C7FFA6CCD89471A0B415AFFD6C4249736E
CF0173D39E28F8F276193D57D1F11F19A49877F2746F
64F540DC95BEAB0CCF49809715B9F4BE3E665A5D26BD
204DE8A4446473951F6EF646CA3F1FC8C12A112BC43E
2EE0ED98ADEFEB91C797B79098F5

(size 2047 bits)

p

2E4461D75820652D109ECD574C16F41E350BE2179C5C
45043D396182F65DDAB585A13525D671EDE7C65E5033
5A347376E6DB370BE5BF8D6A6BA1705BAC18CC3E091A
8C013900943CDA7E867325959ACBC38D04AE10666920
BD717FC0947CBBB2BCD5955FA55131AEB1FA3DE52759
96DA6D7C9DD8413ADCBBC467468E58D1471C50662D20
9D63FEBD192731B285AEEFBD25D5C5AFF7C8876CC539
1AC4D9D6452BDF8A7946CAC5BBF9A508FA6A8C057125
54E3E1FC4BF6F6BD33216DBB164FBAF7424F74576589
53C092246472963B7EECAA238BFD247ED23181EF4150
E5F6C9626191742166EEE05DB7EF8832C074437F3A36
673A0AE75A501128AD0845568405B

(size 2050 bits)

N

DA4BA7CAC268940186A7FB57E4C2D449560246135BFA
1F12A4A859B2EFD4DB65A4284D98575635199788ECCC
2D0A13F4C84D768FCE061992E09C20A4F98B1AEDC3CA
2D2371E65124DF53D65D6D543E5109090D1386C80678
21B1B13F8D754BB8DEFE4C282EBE3144CE9703525518
AC0184908327E6E1B14050839E03D7A504FBC18DABD6
9A581BAFBD3F88BCCFC28CDF8D826EC2085D657E0BD7
82A2126F7EBBBA5051FDF2CA482D79624A346F8DE472
4F31206FC37536FB530A654ABD07E5AD6615BB850DDE
0A04F0BA9A582A2C38F85600A2D6DB99739B4BD9A287
1C9A4F7D35B64C4707FD5A4C66FD9150154A05763AE5
03AFE77B7F60C97A88CB77728E9788235A89E725470B
9C6E278F4A7B009A125D8CA931B1CED67A796545661E
80C6C8021C326443C70E34C8968E71C1FDD22FF78BAA
99CD83B559D441657022E1BDB10BC76AC6AC5E24CCD0
33179DD4B8D4A74A02BABCBF39E6D8EF586E40446AD4
4C98D013CC226D262DFF2E845978C3C494D2A099F5BE
586420D26BB7F9768E61F3DE77EDA2AFEEF4005975F6
1363F88109B75093B10B3D34637ED4CAC3A013BB9B2F
6BCC9B7CB34D9069A7F9439EFB3048D847210EC1CBD8
E1602DAB9E0288D3B83ACB0E4E2B03EE2DE03B9C814A
13340AC4B423ACDC12F791295A0F19B1675269D90DCF
C6FB2F970E0C9D62DE0F26E8120E5EF07797B9B47535
64ADE32B9F17

(size 4096 bits)

p-q

298C88B34296125BD7E34A56A7786C98BF9EAD1BD475
C491D3CB8DD5DA22999AAE9B7D320344EABE7EB2BCA1
2C9B399022025F24296643467D7B5F64040ED311C55E
94609B1F2237BFAC526C062D198C747398D041EE1C1C
6249AC234F634CD5991A51E120041859D436E5A96EF1
93F388CEFF00B4B7ED58C3DE795269C089CDDECF5D15
8BFFBB150D005BED0CE821FBF06F7CA747138B5DA52B
4FE7F75EDFBF5F900C79417EA1EE63ADFA93C7E0D9EE
67F3CABF1214672E0BBFD9E59930A905A805ECD83E42
5D713E169B16AB8AB1F8121A1AA18532EE4B1C496EE5
13F1EAD81D4B2CE814F7F0F94B4B96363461A26C7DF2
844BFC0DCF71126F908EC9DD7A766

(size 2050 bits)

Received: 7 March 2022
Revised: 14 October 2022
Accepted: 9 November 2022

	Introduction
	General attacks on RSA
	Kleptography attack on RSA by a new approach
	Mathematical fundamentals
	Kleptographic algorithm
	Finding if gBasedKleptoRSA2 could be hidden

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [597.600 842.400]
>> setpagedevice

