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Many interconnected systems in the real world, such as power systems and chemical processes, are often composed of
subsystems. A decentralized controller is suitable for an interconnected system because of its more practical and accessible
implementation. We use the homotopy method to compute a decentralized controller. Since the centralized controller
constitutes the starting point for the method, its existence becomes very important. This paper introduces a non-singular
matrix and a design parameter to generate a centralized controller. If the initial centralized controller fails, we can change
the value of the design parameter to generate a new centralized controller. A sufficient condition for a decentralized
controller is given as a bilinear matrix inequality with three matrix variables: a controller gain matrix and a pair of other
matrix variables. Finally, we present numerical examples to validate the proposed decentralized controller design method.
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1. Introduction

Many systems in real phenomena have been modeled as
interconnected systems, such as power systems, chemical
processes, and communication networks. General
interconnected systems consist of some subsystems
which exchange information. In centralized control,
the construction of each local controller is based on
the information (state or output) of all subsystems.
Thus, if the information of some subsystems cannot be
obtained timely due to physical problems, it is difficult to
implement the local controller. In contrast, the concept
of decentralized control is that each local controller only
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uses the information of neighboring subsystems and itself.
Thus, the computation and implementation problem is
more accessible and more practical. This benefit is
crucial for many large-scale systems that must continue
to run even when some individual components fail. The
system dimension information structure constraints, and
delays in the accuracy of the transmitted information are
three main reasons for using the decentralized controller
(Siljak, 1991). These reasons reveal that decentralized
controllers are considered for large-scale systems.

In practical applications, full-state measurements are
not usually possible. Therefore, we use the output
feedback control to allow flexibility and simplicity of
decentralized controller implementation. Straka and
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Punčochář (2020) design and analyze the performance
of active fault diagnosis for large scale systems
with decentralized and distributed architectures. A
decentralized adaptive controller is proposed for a class of
uncertain interconnected systems with unknown modeling
errors and interactions (Cai et al., 2022), where the
proposed controller can ensure that all closed-loop
system signals are bounded by using backstepping
methods. Harno and Petersen (2014) demonstrate
that the decentralized controller can exploit known
nonlinearities and interconnections between subsystems
without treating them as uncertainties. A decentralized
state estimator is proposed by Liu and Yu (2018) for
spatially interconnected systems with arbitrary connection
relations, and an optimization problem based on
linear matrix inequalities (LMIs) is constructed for the
computations of improved subsystem parameter matrices.
The decentralized event-triggered controller is proposed
for a nonlinear interconnected system (Huo et al., 2021).

Zhai et al. (2013) construct a decentralized output
feedback controller for linear interconnected feedback
systems with quantized measurement outputs. The
interconnection involves output signals from its own
subsystems only. A two-level decentralized controller is
generated by Lavaei (2009), where the top level represents
the centralized controller. A new procedure for the design
of decentralized static and output-feedback tracking
controllers is presented for a class of interconnected and
disturbed Takagi–Sugeno systems. The decentralized
controller’s design conditions are given in terms of LMIs
via extended quadratic Lyapunov functions (Jabri et al.,
2020). Ben Amor and Elloumi (2018) proposed a method
to obtain a decentralized controller for an interconnected
system via resolving an LMI problem.

In some references (Zhai et al., 2001; Chen et al.,
2005; Benlatreche et al., 2008; Veselỳ and Thuan,
2011; Qu et al., 2014) BMIs are used to get a
decentralized controller. BMI solution techniques are
constantly being investigated since BMI formulations
have some advantages. When considering spectral
abscissa optimization, BMIs formulations can avoid a
nonsmooth objective function that is hard to handle
(Burke et al., 2002). BMI can yield less conservative
designs than LMI formulations (Chiu, 2017) and may
outperform LMI approaches that can fail to compute
the stability of Takagi–Sugeno (T–S) fuzzy systems
(Kiriakidis, 2001). A systematic way to solve the
BMI problem for dynamic output feedback controllers
is proposed by Javanmardi et al. (2021). The authors
decompose the original BMIs to a BMI problem and an
LMI problem, reducing the dimension and complexity
of the iterative algorithm. Ojaghi and Rahmani (2017)
present a robust controller to translate the underlying
matrix inequality to an LMI. Based on these results, the
linear nature of the LMI formulation makes it tractable

for finding the best solution.
Nonetheless, the transformation employs

conservative approaches that reduce the overall
performance by constricting the design area and settling
for a sub-optimal solution. A path-following approach
for calculating BMIs is set forth by Hassibi et al. (1999).
It is assumed that the open- and closed-loop systems are
different. However, the findings only apply to unknown
variables with a specific structure. To overcome the BMI
problem, a novel branch-and-bound approach is proposed
by Tuan and Apkarian (2000), in which the bilinear terms
are substituted with new variables, and the BMIs turn into
LMIs. According to these results, the computational cost
and conservatism of the optimization issue are both high.
Wang et al. (2018) use convex-concave decomposition
techniques to convert BMIs to LMIs; a strictly feasible
initial value is necessary, and the conservatism of the
optimization issue, in general, is high.

In contrast to LMIs, there are crossing terms between
two matrix variables in BMIs. As such, computations
over BMI constraints are more complicated than LMI
constraints. Accordingly, we need a reasonably efficient
method to obtain the solution. A homotopy method
is proposed by Zhai et al. (2001) to get a feasible
solution of BMI for the decentralized controller problem.
The homotopy method works by fixing one group of
variables and solving for the other variables from the
LMI. This method is similar to alternate minimization
(AM), which has more simplicity and effectiveness than
other BMI methods (Javanmardi et al., 2022). The
initial point in that method is the value of the centralized
controller. Therefore, the existence of a suitable
centralized controller is essential. In the work of Zhai
et al. (2001), the initial value of the centralized controller
is obtained by considering only constant free parameters
whose singular values are less than γ. Chen et al. (2005),
assumed that no uncertainty exists and eliminated the
bilinear term so that BMI became an LMI. The initial
centralized controller for the double homotopy approach
was obtained with some existing method (Gahinet and
Apkarian, 1994) by Qu et al. (2014).

In this paper, we formulate the decentralized
output feedback controller using a BMI. The homotopy
algorithm is used to solve the BMI. To find a suitable
initial centralized controller K for which the algorithm
converges, we introduce a nonsingular H matrix and a
design parameter β. The introduced H matrix inspired
by De Oliveira et al. (1999) as well as Chang and Yang
(2014) can help us to obtain K using LMIs. In our
method, the first step is generating a random value of
the design parameter β and solving the LMI of the
centralized controller. Then with the homotopy algorithm,
a decentralized controller is computed. In this case, the
procedure is repeated using a different β if the algorithm
does not find a decentralized controller. This method will
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be applied to two cases: a numerical example and a storey
building system.

Notation. The notation of Rn generally regards n × 1
column vectors or 1 × n row vectors. A zero matrix or a
null matrix is a matrix in which all entries are zero, and
is denoted by 0. A block diagonal matrix whose diagonal
blocks are X1, X2, . . . , Xn in order, is represented by the
notation diag{X1,X2, . . . ,Xn}. We use X < 0 (X > 0)
notation to represent a symmetric negative (resp., positive)
definite matrix. The � notation in a symmetric matrix
denotes the entry implied by symmetry.

The L2 norm of a vector v(k) is defined as√∑∞
j=0 v

T (j)v(j), and L2[0,∞) denotes the set of all
time-varying vectors that have finite L2 norms.

Let S be the transfer function of a discrete-time
system. The H∞ norm of S is defined as the supremum
(minimal upper bound) of the largest singular number of
its transfer function over the unit circle:

‖ S ‖∞= sup
ω∈[−π,π]

σ̄
(
S(ejω)

)
,

where the σ̄ notation represents the maximum singular
value. The H∞ norm for a dynamic system captures how
a measurable signal in L2 with finite energy is amplified
at the monitored output of the system.

An element-wise multiplication of two matrices
with the same dimension is called Hadamard product.
In addition, the Hadamard product is commutative,
associative, and distributive,

T � U = U � T ,

T � (U � V) = (T � U)� V ,
T � (U + V) = T � U + T � V ,

T � 0 = 0� T = 0,

(kT )� U = T � (kU) = k(T � U),

where the � notation is the Hadamard product operator
and T ,U ,V ,0 are matrices of the same dimension, k ∈ R.

2. System description and problem
formulation

Consider a linear interconnected system consisting of N
subsystems. For the i-th subsystem, we define

xi(k + 1) =

N∑
j=1

Aijxj(k) +B1iwi(k) +B2iui(k),

zi(k) = C1ixi(k) +D11iwi(k) +D12iui(k),

yi(k) = C2ixi(k) +D21iwi(k),

(1)

where i = 1, 2, . . . ,N is the index number of subsystems,
xi(k) ∈ R

ni is the state variable of the i-th subsystem,

Fig. 1. Diagram of an interconnected system.

wi(k) ∈ R
ri is the disturbance of the i-th subsystem,

ui(k) ∈ R
mi is the control input of the i-th subsystem,

zi(k) ∈ R
pi is the controlled output variable of the i-th

subsystem, yi(k) ∈ R
qi is the measurement output of the

i-th subsystem. The matrices Aij , B1i, B2i, C1i, C2i,
D11i, D12i, and D21i are constant with appropriate sizes.

As shown in Fig. 1, S1, S2, . . . , SN represent the
subsystems. A node in the graph represents a subsystem.

The interconnection between subsystems in system
(1) is defined by a directed graph and represented as an
adjacency matrix L = [�ij ]N×N defined by

�ij =

{
1 if there is an edge from Sj to Si,

0 otherwise.
(2)

Consider the decentralized static output feedback
controller for the linear interconnected system. The
decentralized controller of the i-th subsystem is described
as

ui(k) =

N∑
j=1

Kij�ijyj(k), (3)

where Kij ∈ R
mi×qj are decentralized controller gains to

be determined. By applying the decentralized controller
(3) to the linear interconnected system (1), we have

xi(k + 1) =

N∑
j=1

Aijxj(k) +B1iwi(k)

+B2i

N∑
j=1

Kij�ijyj(k)

=

N∑
j=1

Aijxj(k) +B1iwi(k)

+B2i

N∑
j=1

Kij�ij (C2jxj(k) +D21jwj(k))



86 H.N. Fadhilah et al.

=

N∑
j=1

Aijxj(k) +B2i

N∑
j=1

Kij�ijC2jxj(k)

+B1iwi(k) +B2i

N∑
j=1

Kij�ijD21jwj(k),

zi(k) = C1i xi(k) +D11iwi(k)

+D12i

N∑
j=1

Kij�ijyj(k)

= C1i xi(k) +D11iwi(k)

+D12i

N∑
j=1

Kij�ij (C2jxj(k) +D21jwj(k))

= C1ixi(k) +D12i

N∑
j=1

Kij�ijC2jxj(k)

+D11iwi(k) +D12i

N∑
j=1

Kij�ijD21jwj(k).

(4)

Equation (4) is the closed-loop system of the i-th
subsystem. To describe the closed-loop system in a
compact form, we collect the state xi, the disturbance wi,
and the controlled output zi as

x =
[
xT
1 · · · xT

N
]T ∈ R

n,

n = n1 + · · ·+ nN ,

w =
[
wT

1 · · · wT
N
]T ∈ R

r,

r = r1 + · · ·+ rN ,

z =
[
zT1 · · · zTN

]T ∈ R
p,

p = p1 + · · ·+ pN .

(5)

For the coefficient matrices of each subsystem, we
collect them as

A =

⎡
⎢⎣
A11 · · · A1N

...
...

. . .
AN1 · · · ANN

⎤
⎥⎦ ∈ R

n×n,

B1 = diag{B11, · · · , B1N } ∈ R
n×r,

B2 = diag{B21, · · · , B2N } ∈ R
n×m,

m = m1 + · · ·+mN ,

C1 = diag{C11, · · · , C1N } ∈ R
p×n,

C2 = diag{C21, · · · , C2N } ∈ R
q×n,

q = q1 + · · ·+ qN ,

D11 = diag{D111, · · · , D11N } ∈ R
p×r,

D12 = diag{D121, · · · , D12N } ∈ R
p×m,

D21 = diag{D211, · · · , D21N } ∈ R
q×r,

(6)

and for the interconnection matrix, we collect the
interconnection coefficient �ij as

LD =

⎡
⎢⎣
�11Jm1,q1 · · · �1NJm1,qN

...
. . .

...
�N1JmN ,q1 · · · �NNJmN ,qN

⎤
⎥⎦ , (7)

where LD ∈ R
m×q is the interconnection matrix of the

decentralized controller and Jm,q is a matrix of size m×q
where the entries are one.

By substituting (5)–(7) to the closed-loop system (4),
we get the compact form of the closed-loop system as

x(k + 1) = (A+B2 (LD �K)C2)x(k)

+ (B1 +B2 (LD �K)D21)w(k)

z(k) = (C1 +D12 (LD �K)C2)x(k)

+ (D11 +D12 (LD �K)D21)w(k).

(8)

The unknown quantity in the formulation (8) is
matrix K , whereas the other matrices are obtained from
(1). In this paper, the control problem is to design
a decentralized controller such that the following two
conditions are satisfied:

1. The closed-loop system (8) is asymptotically stable
when w(k) = 0.

2. The closed-loop system has a prescribed level γ of
H∞ noise attenuation, i.e., under the zero initial
condition,

∞∑
k=0

zT (k)z(k) < γ2
∞∑
k=0

wT (k)w(k),

is satisfied for any nonzero w(k) ∈ L2[0,∞).

If the above statements are satisfied, we say that
the system (8) is asymptotically stable with the H∞
performance γ.

3. Centralized controller
In this section, we discuss a method to design a centralized
output feedback controller for linear interconnected
systems. Each subsystem receives the information from
itself and all other subsystems. In the centralized
controller, the controller gain K is a full matrix. We
can replace LD in (8) with LF , where LF is the
interconnection of the centralized controller, represented
by the m× q matrix of ones which leads to

LF �K = K. (9)

The closed-loop system for the centralized controller
is

x(k + 1) =(A+B2KC2)x(k)

+ (B1 +B2KD21)w(k)

z(k) =(C1 +D12KC2)x(k)

+ (D11 +D12KD21)w(k).

(10)
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Our centralized controller result is obtained by using
a matrix decoupling technique with the introduction of a
non-singular H matrix and a design parameter β, which
enables us to derive new LMI conditions to guarantee
that the system (10) is asymptotically stable with the
H∞ performance γ. De Oliveira et al. (1999) expand
the discrete Lyapunov condition for stability analysis by
introducing a new matrix variable. As a result, a linear
matrix inequality is obtained in which the Lyapunov
matrix is not involved in any product with the dynamic
system matrix. Based on simulations, it is claimed that
such a method does not result in conservativeness due
to the presence of the extra degree of freedom provided
by the introduction of the matrix. Chang and Yang
(2014) use an extra non-singular matrix to eliminate the
coupling term. Simulations suggest that for static output
feedback controllers this approach significantly relaxes
the conservativeness of the existing ones.

The proposed nonsingular matrix is intended to
give some more flexibility for improving the iterative
computation of the algorithm (Li et al., 2011). The
nonsingular matrix H also maintains two identical
conditions of consensuality and nonnegativity. In
addition, the system matrices, controller gain, and
Lyapunov matrices are separated in the conditions, which
makes parameterization easier (Liu et al., 2021). The
following preliminary lemma is used to deal with the
output feedback controller design.

Lemma 1. (Chang, 2014) The system (10) is asymptot-
ically stable with the H∞ performance γ if there exist a
symmetric matrix P > 0 and matrix H such that

[
P11 �
P21 P22

]
< 0, (11)

where

P11 =

[
−P 0
0 −γ2Ir

]
,

P21 = H

[
A+B2KC2 B1 +B2KD21

C1 +D12KC2 D11 +D12KD21

]
,

P22 = −H −HT +

[
P 0
0 Ip

]
.

From (11), P22 < 0 guarantees that H is
nonsingular. We can rewrite P21 in (11) to move the
centralized controller gain K outside as follows

H

[
A+B2KC2 B1 +B2KD21

C1 +D12KC2 D11 +D12KD21

]

= H

[
A B1

C1 D11

]
+H

[
B2KC2 B2KD21

D12KC2 D12KD21

]

= H ˜̃A+H ˜̃BK ˜̃C,

(12)

where

˜̃A =

[
A B1

C1 D11

]
, ˜̃B =

[
B2

D12

]
,

˜̃C =
[
C2 D21

]
.

(13)

Next, we define V = UK , where U is a nonsingular
matrix. Then we can rewrite the matrix inequality (11) as
[

P11 �

H ˜̃A+ ˜̃BV ˜̃C P22

]

+

[
0
I

]
(H ˜̃B − ˜̃BU)U−1V ˜̃C

[
I 0

]

+
[
I 0

]T ˜̃CTV TU−T (H ˜̃B − ˜̃BU)T
[
0
I

]T
< 0.

(14)

The following results are needed to deal with the
above matrix inequality.

Lemma 2. (Zhou and Khargonekar, 1988) The follow-
ing inequality holds for matrices X , Y , and J > 0 with
appropriate sizes:

XY + YTX T ≤ XJX T + YTJ −1Y.

Lemma 3. (Chang and Yang, 2014) The following condi-
tion is satisfied for scalar β and matrices T , Q, Y , and A
with appropriate sizes:

[
T �
YA −βY − βYT + β2Q

]
< 0 (15)

if and only if

T +ATQA < 0. (16)

According to Lemma 2, the matrix inequality (14)
holds if the following condition is satisfied for a positive
definite matrix Z:

[
P11 �

H ˜̃A+ ˜̃BV ˜̃C P22

]
+

[
0
I

]
Z

[
0
I

]T

+
[
I 0

]T ˜̃CTV TU−T (H ˜̃B − ˜̃BU)T

× Z−1(H ˜̃B − ˜̃BU)U−1V ˜̃C
[
I 0

]
< 0.

(17)

For the matrix inequality (17), by using Lemma 3
with

T =

[
P11 �

H ˜̃A+ ˜̃BV ˜̃C P22

]
+

[
0
I

]
Z

[
0
I

]T
,

A = U−1V ˜̃C
[
I 0

]
,

Q = (H ˜̃B − ˜̃BU)TZ−1(H ˜̃B − ˜̃BU),

Y = U,
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and by substituting T , A, Q and Y into (15), we obtain
the following matrix condition:

⎡
⎢⎣

P11 � �

H ˜̃A+ ˜̃BV ˜̃C P22 + Z �

V ˜̃C 0 Π

⎤
⎥⎦ < 0, (18)

where Π = −βU − βUT + β2(H ˜̃B− ˜̃BU)TZ−1(H ˜̃B−
˜̃BU) and β is the design parameter. Next, the Schur
complement is applied to (18), which results in

⎡
⎢⎢⎢⎣

P11 � � �

H ˜̃A+ ˜̃BV ˜̃C P22 + Z � �

V ˜̃C 0 −βU − βUT �

0 0 βH ˜̃B − β ˜̃BU −Z

⎤
⎥⎥⎥⎦ < 0.

(19)

Scalar β, P > 0, Z > 0, V , and nonsingular
matrices U , H are to be determined. The centralized
controller K is obtained by

K = U−1V. (20)

We suppose that a centralized controller always
exists, which means that we can adjust β to obtain
the decentralized controller. Moreover, the solution of
(20) will be used as the initial value to compute the
decentralized controller for linear interconnected systems.

4. Decentralized controller via the
homotopy method

In this section, we will design a decentralized static output
feedback controller for linear interconnected systems so
that the closed-loop system is asymptotically stable. To
design conditions of decentralized H∞ controllers for the
closed-loop system (8), we need the following result.

Lemma 4. The system (8) is asymptotically stable with
the H∞ performance γ if there exist a symmetric matrix
P > 0 and a matrix H such that

[
P11 �
P�21 P22

]
< 0, (21)

where P�21 = H
(
˜̃A+ ˜̃B(LD �K) ˜̃C

)
and P11, P22 are

defined in (11).

For the proof, see Appendix.

Using the same discussion as in the previous section,
we can rewrite (21) in Lemma 4 defining

F (LD,K, P,H)

=

⎡
⎢⎢⎣

[
−P 0
0 −γ2Ir

]
�

H ˜̃A −H −HT +

[
P 0
0 Ip

]

⎤
⎥⎥⎦

+

[
0
I

]
H ˜̃B(LD �K) ˜̃C

[
I 0

]

+
[
I 0

]T ˜̃CT (LD �K)T ˜̃BTHT

[
0
I

]T
< 0,

(22)

where ˜̃A, ˜̃B, and ˜̃C are in (13). Then we obtain the
following result.

Theorem 1. System (8) is asymptotically stable with the
H∞ performance γ if there exist a matrix K , a symmet-
ric positive-definite matrix P and a nonsingular matrix H
such that

F (LD,K, P,H) < 0. (23)

Because there are multiplication terms among more
than two unknown matrices in (23), we can see that it
is a BMI problem. We employ the homotopy method
suggested by Zhai et al. (2001) to solve (23). The initial
step of this method consists in computing the centralized
controller, as described in Section 3. At the next step, we
solve the BMI by fixing one of the variables alternately.
Consider the homotopy function as follows:

Hom(K,P,H, σ)

= F ((1− σ)LF + σLD,K, P,H),

(24)

σ ∈ [0, 1] being a real number. Depending on σ, the
matrix function (24) can be written down in the following
manner:

Hom(K,P,H, σ) =

{
F (LF ,K, P,H), σ = 0,
F (LD,K, P,H), σ = 1.

(25)

We can rewrite the decentralized controller design
problem in (25) as an inequality as follows:

Hom(K,P,H, σk) < 0. (26)

Based on (26), we need to set the initial value of
K , or P and H to reduce the BMI to an LMI. Since
there is no multiplication between P and H in (22),
we decide that P and H are always given as an initial
value and solved simultaneously. For example, when
σk = 0, we can set the initial value of K by using the
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centralized controller (20) to solve for P and H . Next,
for σk = 1, we can use P and H that we computed in
the previous step to determine the decentralized controller
LD � K . Because decentralized controllers are a
subset of centralized controllers we suppose that the
initial centralized controller always exists for the same
control performance γ. We note that nonconvergence
of the algorithm for some centralized controller does
not generally indicate that the decentralized controller
problem has no solution (Zhai et al., 2001).

For more details, the homotopy method to solve
the decentralized control problem will be written as
Algorithm 1. A step can be considered feasible as
Algorithm 1 if a solution to the matrix inequality (26)
exists.

Algorithm 1. Homotopy algorithm for the decentralized
controller.

1: Generate β randomly.
2: Compute matrix variables P , H and centralized

controller gain K .
3: Set k := 0, K0 := K , P0 := P , and H0 := H
4: Initialize a positive integer M where the upper bound

is Mmax, e.g., M := 2 and Mmax := 210.
5: while k < M and M ≤ Mmax do
6: set σk+1 := (k + 1)/M
7: Compute a solution K of LMI

Hom(K,Pk, Hk, σk+1) < 0
8: if Step 7 is feasible then
9: Set Kk+1 := K

10: Compute a solution P and H of LMI
Hom(Kk+1, P,H, σk+1) < 0, then set Pk+1 :=
P and Hk+1 := H

11: Set k := k + 1
12: else
13: Compute a solution P and H of LMI

Hom(Kk, P,H, σk+1) < 0
14: if Step 13 is feasible then
15: Set Pk+1 := P and Hk+1 := H
16: Compute a solution K of LMI

Hom(K,Pk+1, Hk+1, σk+1) < 0, then
set Kk+1 := K

17: Set k := k + 1
18: else
19: Set M := 2M , P2k := Pk, H2k := Hk,

K2k := Kk

20: Set k := 2k
21: end if
22: end if
23: end while
24: if k = M then
25: Matrices KM , PM , and HM are a solution of (23).
26: else
27: Return to Step 1.
28: end if

Remark 1. The original problem is a BMI with P ,
H , and K . There is no coupling between γ and these
variables. In consequence, it is possible to consider the
optimization problem to minimize γ subject to (23).

Remark 2. Because we solve at most three LMIs in each
iteration in Algorithm 1, the total computed LMIs is 3M
for a given division number M . If the original problem
is feasible, we can expect the algorithm will succeed for
M large enough. It is commonly recognized that LMIs
can be solved very efficiently by using the MATLAB LMI
toolbox.

Remark 3. Notice that the algorithm executes the
homotopy method again by using different β if there is
no solution by using the current value of β.

5. Numerical examples
Example 1. In this part, we shall apply the homotopy
algorithm to compute the decentralized static output
feedback controller. Consider a linear discrete-time
system with four subsystems and the interconnection
between subsystems shown in Fig. 2 by a directed graph.

In this case, S1 has three state variables, while
S2, S3, and S4 have two state variables. The control
inputs and measurement outputs in each subsystem have
the same dimension equal to 2. Based on Fig. 2, the
connection between four subsystems is represented as

L =

⎡
⎢⎢⎣
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎦ . (27)

Due to the self loop in every node, we can fill the
diagonal of the interconnection matrix with ones. Based
on (27), we know that S1 can use the information from
S2, S2 can use the information from S3, S3 can use the
information from S4, and S4 can use the information from
S1. For the coefficient matrices of each subsystem, we
have the original interconnected system in (28)–(35).

Fig. 2. Interconnection of four subsystems.
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 1.00 0.57
0.30 0.60 0.30
0.40 −0.40 0.47

1.00 0
0.81 0
1.00 0.01

0 0.01
0.50 0
0 0.08

−0.75 0
0.08 0.70
1.00 −0.23

0.01 0.05 −0.07
0.77 0 0

0.51 1.00
−0.21 0.34

0.10 0
0 0.20

0 0.01
0.80 0

0 0 0.23
0.01 0.68 −1.00

1.00 0
1.00 0.96

−0.60 0.50
0.30 0.60

0 0.03
0 1.00

0.01 0 0
1.00 0.01 0.04

−0.06 0
−0.02 0.54

0.70 0
0 0.10

1.00 0.06
0.45 −0.10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (28)

B1 = diag

⎧
⎨
⎩

⎡
⎣
−0.11 0.14
0.03 0.03

−0.014 −0.05

⎤
⎦ ,

[
−0.02 0.14
−0.05 −0.05

]
,

[
−0.16 0.11
−0.02 0.07

]
,

[
0.02 −0.06
0.18 0.03

]⎫⎬
⎭ , (29)

B2 = diag

⎧
⎨
⎩

⎡
⎣
−0.87 0.64
−0.78 2.05
−0.34 0.79

⎤
⎦ ,

[
−1.07 −0.55
−0.20 −0.29

]
,

[
1.18 0.99
0.37 0.60

]
,

[
−0.79 −1.35
0.93 0.79

]⎫⎬
⎭ , (30)

C1 = diag

⎧
⎪⎨
⎪⎩

⎡
⎣
0.08 0.10
0.10 −0.10
0.06 0.20

⎤
⎦
T

,

[
−0.80 0.11
0.10 0.20

]T
,

[
0 −0.10

0.10 −0.20

]T
,

[
−0.14 0.05
0.10 −0.20

]T
⎫
⎪⎬
⎪⎭

, (31)

C2 = diag

⎧⎪⎨
⎪⎩

⎡
⎣
1.00 −2.00
1.00 0.50
0 1.00

⎤
⎦
T

,

[
−0.20 0

0 1.00

]T
,

[
1.00 0.50
0 2.00

]T
,

[
1.00 −3.00
0 1.00

]T
⎫⎪⎬
⎪⎭

, (32)

D11 = diag

{[
0.05 0.45
0.05 0.32

]
,

[
0.27 0.07
0.05 −0.14

]
,

[
0.05 −0.05
−0.27 0.32

]
,

[
−0.05 −0.32
0.09 0.36

]}
, (33)

D12 = diag

{[
−0.01 0.08
−0.10 −0.01

]
,

[
−0.01 −0.01
−0.09 0.02

]
,

[
0.02 0.02
0.10 −0.01

]
,

[
0.01 0.01
0.11 −0.01

]}
, (34)

D21 = diag

{[
−0.20 0.10
−0.20 −0.10

]
,

[
−0.20 −0.01
−0.10 0.30

]
,

[
0.01 0.01
0.02 −0.01

]
,

[
0.01 0.10
0.02 −0.01

]}
, (35)

K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.6411 0.0910 0.0039 −0.0882 0.0855 0.1052 −0.2008 0.0553
−0.1483 −0.0303 0.0836 −0.1122 −0.2555 −0.0308 −0.6377 −0.1625
0.0393 −0.0062 −0.2086 0.4213 0.1252 0.0274 0.0777 −0.0158
0.1108 −0.0454 0.0664 0.3300 −0.1288 0.0301 0.2842 0.0534
−0.1349 −0.0228 −0.0730 0.1402 0.2085 −0.1161 −0.2731 −0.0487
−0.1485 0.0267 0.1969 −0.3391 0.1266 −0.1977 −0.5512 −0.2408
−0.1195 0.0949 0.1331 −0.2358 −0.1152 0.0175 −0.5067 −0.0907
0.0158 0.0027 −0.0830 0.1136 0.3543 −0.0042 0.1358 −0.1242

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (36)
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Fig. 3. Response of the discrete-time system.

The eigenvalues of the state matrix A in (28) can be
used to check the stability of the original system.

The state matrix A is unstable because the absolute
value of some eigenvalues is greater than 1. Therefore,
to stabilize the linear interconnected system (28)–(35),
a decentralized controller will be designed using the
homotopy algorithm. To get the initial value for the
algorithm, we need to compute a full matrix for the
centralized controller K firstly. We compute K by using
(20). Based on the simulation, we obtain the centralized
controller K with given β = 1.1 and γ = 1.5 as in (36).

We get the asymptotic stability of the closed-loop
system since the absolute value of all eigenvalues is
smaller than 1 and the H∞ disturbance attenuation level
of a centralized static output feedback controller (36) is
0.5845 < 1.5.

Next, we use the homotopy method to compute
the decentralized static output feedback controller. The
decentralized controller KD for the linear interconnected
system (28)–(35) with a specified structure is represented
in (37). We know that the specified structure of
decentralized controller KD in (37) is similar to the
structure of the Laplacian graph in (27). The H∞
disturbance attenuation level of decentralized controller
(37) is 0.6034 < 1.5.

Figure 3 displays the plots of the simulated time
response of the closed-loop system to the disturbance
input w(k) = e−0.01k sin(0.01πk), k = 0, 1, 2, . . . , 1000
with duration of 1000 seconds (1000 iterations). By
giving a disturbance input to the closed-loop system, we
can observe that the plots of the outputs converge to zero
quickly enough. �

Example 2. In recent years, there has been a lot of
interest in the technology for managing the construction
of multi-storey structures. However, as we all know,

the storey construction system has several issues, such
as lowering structural reaction, speed, displacement,
acceleration, and force in the face of disturbances like
earthquakes, high winds, and other disasters.

The matrix equation of motion of the structural
system is represented by

Mq̈(t) +Dq̇(t) + Cq(t) = Ew(t) +Gu(t), (38)

where q(t) ∈ R
n is the vector of displacements relative

to the ground, the mass, spring, and damper matrix
coefficients of the storey building system are M , C, and
D, respectively, whereas u(t) ∈ R

m is a force vector,
and w(t) ∈ R

r is an external disturbance. The matrices
E ∈ R

n×r and G ∈ R
n×m represent external disturbance

and control force coefficients, respectively.
A disturbance like an earthquake ground acceleration

w(t) ∈ R
r and active control force vector u(t) ∈ R

m

are applied to the system (38). In this case, the external
disturbance w(t) is assumed to be one-dimensional, and
the control forces between adjoining floors are specified
as u(t). A positive control force is described as moving
the floor above the device to the right and moving the floor
below the device to the left.

The external disturbance and the control force
location matrix for a five-storey building are defined as
(Wang et al., 2009)

G =

⎡
⎢⎢⎢⎢⎣

1 −1 0 0 0
0 1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
, E = −M

⎡
⎢⎢⎢⎢⎣

103

103

103

103

103

⎤
⎥⎥⎥⎥⎦
.

We can rewrite (38) in the state space realization as

ẋ(t) = Ax(t) +B1w(t) +B2u(t), (39)

where x(t) ∈ R
n is the state variable, A is a 2n × 2n

system matrix, B1 is a 2n× r matrix; in this case we use
a one-dimensional disturbance r = 1, and B2 is a 2n×m
matrix,

x(t) =

[
q(t)
q̇(t)

]
,

A =

[
0 I

−M−1C −M−1D

]
,

B1 =

[
0

M−1E

]
,

B2 =

[
0

M−1G

]
.

To reflect that the control force and the disturbance
are constant during the sampling period T , we define

u(t) = u(kT ), (40)
w(t) = w(kT ), (41)
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LD �K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.5086 0.0837 −1.5509 −0.1594 0 0 0 0
0.1795 −0.0794 −0.2367 −0.1887 0 0 0 0

0 0 −0.8726 0.5190 −0.1425 −0.1944 0 0
0 0 0.2950 0.5954 0.3767 0.4037 0 0
0 0 0 0 −0.2056 0.7499 4.2245 1.6906
0 0 0 0 0.7455 −1.1822 −5.7127 −2.1745

−0.9827 0.0790 0 0 0 0 −3.3340 −0.9380
0.6910 0.0157 0 0 0 0 2.6377 0.6702

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

Fig. 4. Illustration of connection of a five-storey building sys-
tem.

where kT ≤ t < (k + 1)T . The solution of the state
equation of motion (39) can be given as

x(t) =eA(t−t0)x(t0)

+

∫ t

t0

eA(t−θ)B2u(θ) dθ

+

∫ t

t0

eA(t−θ)B1w(θ) dθ.

Let t0 = kT , t = (k + 1)T , and τ = (k + 1)T −
θ. One can obtain the following discrete-time system
equation of motion:

x((k + 1)T ) =A(T )x(kT )

+ B1(T )w(kT ) + B2(T )u(kT ),

where

A(T ) = eAT ,

B1(T ) =

∫ T

0

eAτ dτB1,

B2(T ) =

∫ T

0

eAτ dτB2.

For convenience, the discrete-time system equation
of motion can be represented as in system (1).

In this case, the homotopy algorithm is used for
five-storey building systems. Each storey building is
characterized as a subsystem, represented in Fig. 4 by
a node. The edges in the directed graph describe the
connections within a five-storey building.

For the particular values of the matrices, we have

M = 103

×

⎡
⎢⎢⎢⎢⎣

215.2 0 0 0 0
0 209.2 0 0 0
0 0 207.0 0 0
0 0 0 204.8 0
0 0 0 0 266.1

⎤
⎥⎥⎥⎥⎦
,

D = 103

×

⎡
⎢⎢⎢⎢⎣

650.4 −231.1 0 0 0
−231.1 548.9 −202.5 0 0

0 −202.5 498.6 −182.0 0
0 0 −182.0 466.7 −171.8
0 0 0 −171.8 318.5

⎤
⎥⎥⎥⎥⎦
,

C =

⎡
⎢⎢⎢⎢⎣

260 −113 0 0 0
−113 212 −99 0 0
0 −99 188 −89 0
0 0 −89 173 −84
0 0 0 −84 84

⎤
⎥⎥⎥⎥⎦
× 106,

where M is expressed in kg, D in N/(m/s), and C in
N/m. The original system of the five-storey building
is asymptotically stable. To show the interconnection
between storeys we write the matrix A in (43).
The relationship between storeys is represented as the
interconnection matrix

L =

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦
. (42)

The centralized and decentralized H∞ controllers are
obtained in (44)–(45), respectively.
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A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.03 −0.00
−0.00 0.08

0.12 0.14
0.19 0.16

−0.06 −0.00
0.00 −0.00

−0.00 −0.00
−0.01 −0.00

−0.00 0.00
0.00 0.01

0.13 0.19
0.15 0.17

0.13 0.07
0.07 0.12

0.22 −0.00
0.37 −0.00

−0.00 −0.00
0.00 0.00

0.00 0.00
−0.00 0.00

−0.05 0.00
4.48 −0.64

0.17 0.28
0.94 1.75

0.36 0.00
−2.80 −0.02

0.00 0.00
−0.00 0.13

0.00 −0.00
0.15 −0.07

−0.66 5.10
0.98 1.42

1.41 0.30
4.61 −2.87

−3.39 −0.00
−1.54 0.13

0.09 0.19
0.20 0.14

0.16 −0.00
0.06 0.21

1.84 0.31
−2.26 −2.67

−2.90 2.71
−1.20 −0.84

−1.09 0.15
2.94 −0.05

0.17 0.06
−0.00 0.17

0.13 0.37
0.28 0.37

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

K = 10−3 ×

⎡
⎢⎢⎢⎢⎣

−0.1620 0.0040 −0.0022 −0.0010 −0.0040
0.0030 −0.1541 −0.0010 −0.0017 −0.0016
0.0022 −0.0060 −0.0707 0.0062 −0.0074
−0.0018 0.0018 0.0009 −0.0790 0.0003
−0.0008 −0.0059 −0.0385 −0.0092 −0.0948

⎤
⎥⎥⎥⎥⎦
, (44)

LD �K =

⎡
⎢⎢⎢⎢⎣

−0.1300 −0.0125 0 0 0
0 −0.1420 0.0295 0 0
0 0 −0.3627 −0.0027 0
0 0 0 −0.3261 0.1549
0 0 0 0 −0.1643

⎤
⎥⎥⎥⎥⎦
. (45)
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Fig. 5. Response of the five-storey building system.

The H∞ norm of the decentralized H∞ controller is
1.0026, where γ = 1.5. In this simulation, we simulate
the five-storey building system responses to w(k) =
e−0.01k sin(0.01πk), k = 0, 1, 2, . . . , 1000, cf. Fig. 5.

Each trajectory in Fig. 5 represents the response of
one of the five system outputs to the w(k) signal applied
to all inputs. Based on the simulation results, there is no
different path between the outputs. This result happens
because the original system is asymptotically stable. We
can observe that the system state converges to zero very
quickly. �

6. Conclusions

In this paper, we introduce a method to generate
a new centralized controller. The new centralized
controller is used when the homotopy method does not
solve the BMI. Based on the simulations, the proposed
method can synthesize a decentralized controller for
some interconnected systems. Although the simulation
shows good results, the algorithm’s initial values use the
centralized controller solution. However, the solution of
the centralized controller may not exist. Therefore, in our
future research we will address this issue. We are also
interested in applying this technique to other problems.
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Appendix

Proof of Lemma 4

In this case, we use the following quadratic Lyapunov
function to assure the internal stability of (8):

V(k) = xT (k)Px(k), P > 0. (A1)

Define the following function:

g(z(k), w(k)) = ‖z(k)22 − γ2‖‖w(k)‖22
= zT (k)z(k)− γ2wT (k)w(k),

(A2)

and the result of the total difference is

V(k + 1)−V(k) + g(z(k), w(k))

=V(k + 1)−V(k)

+ zT (k)z(k)− γ2wT (k)w(k)

=xT (k + 1)Px(k + 1)− xT (k)Px(k)

+ zT (k)z(k)− γ2wT (k)w(k)

= ((A+B2(LD �K)C2)x(k)

+ (B1 +B2(LD �K)D21)w(k))
T
P

× ((A+B2(LD �K)C2)x(k)

+ (B1 +B2(LD �K)D21)w(k))

− xT (k)Px(k)

+ ((C1 +D12(LD �K)C2)x(k)

+ (D11 +D12(LD �K)D21)w(k))
T

((C1 +D12(LD �K)C2)x(k)

+ (D11 +D12(LD �K)D21)w(k))

− γ2wT (k)w(k)
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=ηT (k) ([A+B2(LD �K)C2 B1

+B2(LD �K)D21]
T

P [A+B2(LD �K)C2B1

+B2(LD �K)D21]

+ [C1 +D12(LD �K)C2 D11

+D12(LD �K)D21]
T

[C1 +D12(LD �K)C2 D11

+D12(LD �K)D21] + P11) η(k),

where

η(k) =

[
x(k)
w(k)

]
.

Next, we obtain the following inequality:

∞∑
k=0

(V(k + 1)−V(k) + g(z(k), w(k))) < 0, (A3)

for any η(k) �= 0, if (A4) holds. We have

[
A+B2(LD �K)C2 B1 +B2(LD �K)D21

]T
P
[
A+B2(LD �K)C2 B1 +B2(LD �K)D21

]

+
[
C1 +D12(LD �K)C2 D11 +D12(LD �K)D21

]T
[
C1 +D12(LD �K)C2 D11 +D12(LD �K)D21

]

+ P11 < 0.
(A4)

By substituting

P11 =

[
−P 0
0 −γ2Ir

]

and applying the Schur complement (Zhang, 2006) to
(A4), we get

⎡
⎢⎢⎣

[
−P 0
0 −γ2Ir

]
�

˜̃A+ ˜̃B(LD �K) ˜̃C −
[
P−1 0
0 Ip

]

⎤
⎥⎥⎦ < 0. (A5)

Suppose that

−G = −
[
P 0
0 Ip

]
.

We see that −G−1 is the (2,2)-th element of (A5).
To eliminate the inverse terms in (A5), we pre- and
post-multiply the matrix inequality by diag{In+r, H} and
its transpose, respectively. We get

⎡
⎢⎣

[
−P 0
0 −γ2Ir

]
�

H
(
˜̃A+ ˜̃B(LD �K) ˜̃C

)
−HG−1HT

⎤
⎥⎦ < 0. (A6)

Note that (H − G)G−1(H − G)T ≥ 0, G > 0
leads to HG−1HT + G ≥ H + HT , which implies that
−HG−1HT ≤ −H − HT + G that is equal to P22 in
(21).

The above discussion implies that, if (21) is true, then
we obtain (A3). Whenw(k) = 0, from (A3) it follows that

V(k + 1) < V(k) (A7)

for any positive k and nonzero x(k), which means that
V(k) is monotone decreasing. Since the lower bound of
V(k) is zero, this implies that V(k) → 0; thus x(k) →
0. This result shows that the closed-loop system (8) is
asymptotically stable.

Next, for w(k) �= 0 we can rewrite (A3) as

∞∑
k=0

(V(k + 1)−V(k))

+

∞∑
k=0

zT (k)z(k)− γ2
∞∑
k=0

wT (k)w(k) < 0,

which yields

V(∞) −V(0)+ ‖ z ‖22 −γ2 ‖ w ‖22< 0.

(A8)

Since V(0) = 0 and V(∞) → 0, for any nonzero w(k) ∈
L2[0,∞) we obtain ‖z‖22 < γ2‖w‖22. This completes the
proof.
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