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Fractional time-invariant compartmental linear systems are introduced. Controllability and observability of these systems
are analyzed. The eigenvalue assignment problem of compartmental linear systems is considered and illustrated with a
numerical example.
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1. Introduction

In positive systems inputs, state variables and outputs
take only nonnegative values. Examples of positive
systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns,
storage systems, compartmental systems, water and
atmospheric pollution models. A variety of models having
positive linear behavior can be found in engineering,
management science, economics, social sciences, biology
and medicine. An overview of the state of the art in
positive systems theory is given by Farina and Rinaldi
(2000) as well as Kaczorek (2002).

The eigenvalue and invariants assignment by state
and output feedbacks was investigated by Busłowicz
(2008; 2012) as well as Farina and Rinaldi (2000).
Positive linear systems with various fractional orders
were addressed by Kaczorek (2010; 2011a; 2011b),
Kaczorek and Rogowski (2015), as well as Sajewski
(2016). Selected problems in the theory of fractional
linear systems were investigated in the or monographs
by Kaczorek (2011a) as well as Kaczorek and Rogowski
(2015). Stability of discrete-time fractional linear systems
with delays was investigated by Ruszewski (2019).

In this paper fractional compartmental time-invariant
linear systems will be introduced and analyzed.

In Section 2 the basic definitions and theorems
concerning fractional and positive linear systems are
recalled. The fractional compartmental linear systems are
introduced in Section 3. Controllability and observability

of fractional compartmental linear systems is analyzed
in Section 4 and the eigenvalue assignment problem in
Section 5. Concluding remarks are given in Section 6.

The following notation will be used: R, the set of
real numbers; R

n×m, the set of n × m real matrices;
C, the field of complex numbers; Z+, the set of
nonnegative integers; Rn×m

+ , the set of n × m matrices
with nonnegative entries and R

n
+ = R

n×1
+ ; Mn, the set

of n×n Metzler matrices (real matrices with nonnegative
off-diagonal entries); In, the n× n identity matrix.

2. Preliminaries
Consider the fractional continuous-time linear system

dαx

dtα
= Ax+Bu, 0 < α < 1, (1a)

y = Cx, (1b)

where x = x(t) ∈ R
n, u = u(t) ∈ R

m, y = y(t) ∈ R
p

are the state, input and output vectors, respectively, A ∈
R

n×n, B ∈ R
n×m, C ∈ R

p×n and

dαx(t)

dtα
=

1

Γ(1− α)

∫ t

0

ẋ(τ)

(t− τ)α
dτ,

ẋ(τ) =
dx(τ)

dτ

(1c)

is the Caputo fractional derivative and

Γ(z) =

∫ ∞

0

tz−1e−t dt, R(z) > 0 (1d)
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is the gamma function (Kaczorek, 2011a; Kaczorek and
Rogowski, 2015).

Definition 1. (Kaczorek, 2011a; Kaczorek and Rogowski,
2015) The fractional continuous-time linear system (1a)
and (1b) is called (internally) positive if x(t) ∈ R

n
+,

y(t) ∈ R
p
+, t ≥ 0 for any initial conditions x(0) ∈ R

n
+

and all inputs u(t) ∈ R
m
+ , t ≥ 0.

Theorem 1. (Kaczorek, 2011; Kaczorek and Rogowski
2015) The fractional continuous-time linear system (1a)
and (1b) is positive if and only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ . (2)

Definition 2. (Kaczorek, 2011a; Kaczorek and Rogowski,
2015) The positive fractional continuous-time system
(1a) and (1b) for u(t) = 0 is called asymptotically sta-
ble if

lim
t→∞x(t) = 0 for any x(0) ∈ R

n
+. (3)

Theorem 2. (Kaczorek, 2011; Kaczorek and Rogowski
2015) The fractional positive continuous-time linear sys-
tem (1a) and (1b) for u(t) = 0 is asymptotically stable if
and only if one of the following equivalent conditions is
satisfied:

1. All coefficients of the characteristic polynomial

pn(s) = det[Ins−A]

= sn + an−1s
n−1 + · · ·+ a1s+ a0

(4)

are positive, i.e., ai > 0 for i = 0, 1, . . . , n− 1.

2. There exists a strictly positive vector λT =
[ λ1 · · · λn]

T , λk > 0, k = 1, . . . , n such that

Aλ < 0 or λTA < 0. (5)

Theorem 3. The fractional positive system (1a) and (1b)
is asymptotically stable if the sum of the entries of each
column (row) of the matrix A is negative.

Proof. Using (5), we obtain

Aλ =

⎡
⎢⎣

a11 . . . a1n
...

. . .
...

an1 . . . ann

⎤
⎥⎦
⎡
⎢⎣

λ1

...
λn

⎤
⎥⎦

=

⎡
⎢⎣

a11
...

a1n

⎤
⎥⎦ λ1 + · · ·+

⎡
⎢⎣

an1
...

ann

⎤
⎥⎦ λn <

⎡
⎢⎣

0
...
0

⎤
⎥⎦

(6)

and the sum of the entries of each column of the matrix A
is negative since λk > 0, k = 1, . . . , n. The proof for the
rows is similar. �
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Fig. 1. Compartmental system: i-th subsystem.

3. State equations of fractional linear
compartmental systems

Consider the compartmental continuous-time system
consisting of n compartments (cf. Fig. 1). Let xi = xi(t),
i = 1, . . . , n be the amount of a material of the i-th
compartment, Fij ≥ 0 be the output flow of the material
from the j-th to the i-th compartment (i �= j), F0i ≥ 0
be the output of the material from the i-th compartment
to the environment ui = ui(t), be the input flow of the
material from environment to the i-th compartment. It is
assumed that the input material is mixed immediately with
the material being in the compartment.

From the material balance of the i-th compartment
we have the following fractional differential equations:

dαx(t)

dtα
=

n∑
j=1
j �=i

(Fij − Fji)− F0i + uj (7)

for i = 1, . . . , n, where dαx(t)/dtα is the fractional
derivative of xi of order α.

It is assumed that the flow Fij depends linearly on
xj , i.e.,

Fij = fijxj for i �= j; i, j = 1, . . . , n, (8)

where fij is a coefficient depending (in a general case) on
xj and the time instant t.

The compartmental system is linear if fij is
independent of xj and it is additionally time-invariant if
fij is independent of t.

From (7) and (8) for i = 1, . . . , n we obtain the state
equation of the linear compartmental system in the form

dαx

dtα
= Fx+Bu, (9)

where

x =

⎡
⎢⎣

x1

...
xn

⎤
⎥⎦ ∈ R

n, u =

⎡
⎢⎣

u1

...
un

⎤
⎥⎦ ∈ R

n,
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F =

⎡
⎢⎣

f11 . . . f1n
... . . .

...
fn1 . . . fnn

⎤
⎥⎦ ∈ R

n×n
+ , B = [In] ∈ R

n×n
+ ,

− fjj ≥
n∑

j=1
j �=i

fij ≥ fij ≥ 0

for i �= j, l, j = 1, . . . , n.

Note the following:

1. at each time instant the output flow of a compartment
cannot be greater than the whole mass of material
inside the compartment;

2. the sum of the entries of every column of the matrix
F is not positive;

3. the matrix F is a particular case of the Metzler
matrix, F ∈ Mn, since fij ≥ 0 for i �= j and
i, j = 1, . . . , n.

Note that, if F0i > 0,i = 1, . . . , n, then from (9)
it follows that the sum of entries of every column of the
matrix F is negative and by Theorem 3 the fractional
compartmental linear system is asymptotically stable.
Therefore, the following result has been demonstrated.

Theorem 4. The fractional compartmental linear system
(9) with F0i > 0, i = 1, . . . , n, is asymptotically stable.

The output equation of the compartmental system has
the form

y = Cx, C ∈ R
p×n. (10)

From (9) and (10) it follows that the compartmental
system is a particular case of the positive fractional
continuous-time linear system.

4. Controllability and observability of
standard and compartmental linear
systems

Consider the linear system described by the equations

ẋ = Ax+Bu, (11a)
y = Cx, (11b)

where x ∈ R
n, u ∈ R

m, y ∈ R
p are the state, input and

output vectors, respectively, and A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n.

Definition 3. The linear system (11a) and (11b) (or the
pair (A, B)) is called controllable in time [0, t1] if there
exists an input u(t) for t ∈ [0, t1] which steers the state of
the system from any initial state x(0) ∈ R

n to any given
final state xf , i.e., x(t1) = xf .

Theorem 5. (Kaczorek, 2011; Kaczorek and Rogowski,
2015) The linear system (11a) and (11b) is controllable if
and only if one of the following conditions is satisfied:

rank[ B AB . . . An−1B ] = n (12)

or
rank[ Ins−A B ] = n (13)

for all s ∈ C.

Definition 4. (Kaczorek, 2011a; Kaczorek and Rogowski,
2015) The linear system (11a) and (11b) (or the pair
(A, C)) is called observable if it possible to find a unique
initial value x(0) knowing the output y(t) and input u(t)
of the system.

Theorem 6. The linear system (11a) and (11b) is ob-
servable if and only if one of the following conditions is
satisfied:

rank

⎡
⎢⎢⎢⎣

C
CA

...
CAn−1

⎤
⎥⎥⎥⎦ = n, (14)

rank

[
Ins−A

C

]
= n, (15)

for all s ∈ C.

Now let us consider the fractional compartmental
linear system (1a) and (1b).

Definition 5. (Kaczorek, 2011a; Kaczorek and Rogowski,
2015) The fractional compartmental linear system (1a)
and (1b) (or the pair (A, B)) is called reachable in time
[0, tf ] if the exists an input u(t) for t ∈ [0, tf ] which
steers the state of the system from zero initial conditions
to the given final state xf , i.e., x( tf ) = xf .

A matrix A ∈ R
n×n is called monomial if in each its

row and in each its column only one entry is positive and
the remaining entries are zero.

Theorem 7. The fractional compartmental linear system
(1a) and (1b) is reachable if the matrix

Rf =

∫ tf

0

eAτeA
T τdτ (16)

is monomial. The input which steers the state of the system
to xf = x(tf ) is given by

u(t) = eA
T (tf−t)R−1

f xf ∈ R
n
+, 0 ≤ t ≤ tf . (17)

Proof. If the matrix (16) is monomial then its inverse
matrix R−1

f ∈ R
n×n
+ and the input (17) is nonnegative.
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Taking into account that x(0) = 0 and using (17), we
obtain

x(tf ) =

∫ tf

0

eA(tf−t)Bu(τ) dτ

=

∫ tf

0

eA(tf−τ)eA
T (tf−τ) dτ R−1

f xf = xf

(18)

since B = In.
Therefore, the input (17) steers the state of the system

from x(0) to xf = x( tf ). �

Theorem 8. The fractional compartmental positive lin-
ear system (1a) and (1b) is reachable in time [0, tf ] if and
only if the matrix A ∈ Mn is monomial.

Proof.
(Sufficiency) If A ∈ Mnis monomial then eAt ∈ R

n×n
+ is

also monomial. In this case the matrix

Rf =

∫ tf

0

eA(tf−τ)eA
T (tf−τ) dτ =

∫ tf

0

eAτeA
T τ dτ

(19)
is monomial.

(Necessity) From the Cayley–Hamilton theorem
(Kaczorek, 2011a; Kaczorek and Rogowski, 2015)
we have

eAτ =

n−1∑
i=0

ci(t)A
i, (20)

where ci(t),i = 0, 1, . . . , n − 1 are some nonzero
functions of time depending on the matrix A.

Using (20) we obtain

xf =
[
B AB . . . An−1B

]
⎡
⎢⎢⎢⎣

v0(tf )
v1(tf )

...
vn−1(tf )

⎤
⎥⎥⎥⎦ ,

(21a)
where

vi(tf ) =

∫ tf

0

ci(τ)u(tf − τ) dτ, i = 0, 1, . . . , n− 1.

(21b)
Therefore, for given xf ∈ R

n
+ it is possible to find a

nonnegative vi(tf ) for i = 0, 1, . . . , n− 1 if and only if

rank[ B AB . . . An−1B ] = n. (22)

Note that for the nonnegative (21b) it is possible to find a
nonnegative u(t) ∈ R

m
+ . This completes the proof. �

Observability of fractional positive compartmental
linear systems is defined in a similar way as for standard
positive liner systems. It depends only on the matrices
A and C (it is independent of the matrix B). Therefore,

instead of system (1), we shall consider the fractional
positive compartmental linear system

dαx

dtα
= Ax, 0 < α < 1, (23a)

y = Cx (23b)

where x ∈ R
n, y ∈ R

p and A ∈ Mn, C ∈ R
p×n
+ .

The solution to (23a) has the form

x(t) = Φ0(t)x0, (24a)

where

Φ0(t) =
∞∑
k=0

Aktkα

Γ(kα+ 1)
(24b)

is a Mittag-Leffler matrix (Kaczorek, 2011a; Kaczorek
and Rogowski, 2015).

Definition 6. The fractional positive compartmental
linear system (23) is called observable on the interval
(0, tf ) if knowing the output y(t) on the interval [0, tf ] it
is possible to find (compute) uniquely the initial condition
x0 = x(0).

Theorem 9. The fractional positive compartmental lin-
ear system (23) is observable on the interval (0, tf ) if and
only if the matrix

Φ0
T (t)CTCΦ0(t) ∈ R

n×n
+ (25)

is monomial.

Proof. Substituting (24a) into (23b), we obtain

y(t) = CΦ0(t)x0. (26)

Note that [Φ0
T (t)CTCΦ0(t)]

−1 ∈ R
n×n
+ if and only if

the matrix (25) is monomial. In this case, from (26) we
obtain

x0 = [Φ0
T (t)CTCΦ0(t)]

−1Φ0
T (t)CT y(t) ∈ R

n
+ (27)

since Φ0
T (t)CT y(t) ∈ R

n×n
+ for y(t) ∈ R

p
+. �

5. Eigenvalue assignment in the fractional
compartmental linear systems

Consider the fractional compartmental system (9a) with
the state feedback

u = Kx, (28)

where K ∈ R
n×n.

Taking into account that B = In and using (28), we
obtain

dαx

dtα
= Acx, (29)

where
Ac = A−K. (30)
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For a given matrix A and the desired closed-loop matrix
Ac from (30) we obtain

K = A−Ac. (31)

Therefore, we have the following result.

Theorem 10. For the fractional compartmental system
(9a) there always exists a state feedback (28) such that the
matrix Ac of the closed-loop system has the set of desired
eigenvalues.

Example 1. The system matrix A of the fractional
compartmental linear system has the form

A =

⎡
⎣ 0 1 0

0 0 1
−2 −5 −4

⎤
⎦ (32)

and its eigenvalues are s1 = s2 = −1, s3 = −2, since

det[I3s−A] =

∣∣∣∣∣∣
s −1 0
0 s −1
2 5 s+ 4

∣∣∣∣∣∣
= s3 + 4s2 + 5s+ 2

= (s+ 1)2(s+ 2).

(33)

Compute the feedback matrix K ∈ R
3×3 such that

the eigenvalues of the closed-loop system matrix A are
s̄1 = −3, s̄2 = −4, s̄3 = −5.

Note that the desired matrix Ac can be chosen in
different forms.

Case 1. The matrix Ac has the same Frobenius canonical
form as the matrix (32),

Ac1 =

⎡
⎣ 0 1 0

0 0 1
−60 −47 −12

⎤
⎦ (34)

since (s+ 3)(s+ 4)(s+ 5) = s3 + 12s2 + 47s+ 60.
In this case, using (31)–(33), we obtain

K1 = A−Ac1

=

⎡
⎣ 0 1 0

0 0 1
−2 −5 −4

⎤
⎦−

⎡
⎣ 0 1 0

0 0 1
−60 −47 −12

⎤
⎦

=

⎡
⎣ 0 1 0

0 0 1
58 42 8

⎤
⎦ .

(35)

Case 2. The matrix Ac has the diagonal form

Ac2 =

⎡
⎣ −3 0 0

0 −4 0
0 0 −5

⎤
⎦ . (36)

In this case we have

K2 = A−Ac2

=

⎡
⎣ 0 1 0

0 0 1
−2 −5 −4

⎤
⎦−

⎡
⎣ −3 0 0

0 −4 0
0 0 −5

⎤
⎦

=

⎡
⎣ 3 1 0

0 4 1
−2 −5 1

⎤
⎦ .

(37)

Note that the above considerations can be extended to the
output feedbacks. �

6. Concluding remarks
Fractional compartmental time-invariant linear systems
have been analyzed. Basic definitions and theorems
concerning fractional time-invariant standard and
positive linear systems have been recalled. Fractional
compartmental linear systems were introduced and
analyzed in Section 3. Controllability and observability
of standard and compartmental linear systems were
considered in Section 4 and the eigenvalue assignment
problem of compartmental linear systems in Section 5.
Concluding remarks were given in Section 6. The
considerations can be extended to the discrete-time
fractional linear systems.
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