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We consider the scheduling problem on unrelated parallel machines in order to minimize the total late work. Since the
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ciencies of all three approaches are evaluated through computational experiments.
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1. Introduction

The total late work (Y ) is a performance measure
which allows minimizing the size of tardy parts of jobs
(Błażewicz et al., 2019). Since the proposal of late
work in 1984 (Błażewicz, 1984), this measure has been
intensively studied for the cases of a single machine,
parallel identical machines and dedicated machines (see
the survey paper by Sterna (2011)). Scheduling models
with late work minimization are quite closely related
to the ones with early work maximization (Sterna and
Czerniachowska, 2017). When offline optimal solutions
are considered, the two types of models share the same
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essence. However, when approximation solutions are
constructed, they are distinguished with regard to problem
characteristics (Sterna, 2021).

In this paper, we focus on the basic problem
of scheduling jobs characterized by processing time
on parallel unrelated machines, which has been very
rarely studied in the literature in the context of late
work minimization. The total late work for unrelated
machines was investigated for more complex models
than the one studied in the presented paper. These
models, inspired by specific practical applications,
include additional constraints and parameters such as
precedence constraints, communication delays (Abasian
et al., 2014), release time, setup time and machine

mailto:lxb715@hotmail.com
mailto:wangwen.lut@outlook.com, chenxin.lut@hotmail.com
mailto:{malgorzata.sterna,jblazewicz}@cs.put.poznan.pl


286 X. Liu et al.

eligibility (Afzalirad and Rezaeian, 2016). For the
problems mentioned mathematical models were designed
and some meta-heuristic approaches proposed. In our
research we continue the more basic studies on the
unrelated machine scheduling problem with the total late
work reported by Wang et al. (2020), who proposed two
meta-heuristic approaches. The natural step was to design
exact algorithms for this problem.

The paper is organized as follows. In Section 2
we formally define the problem investigated within our
research and propose a mathematical programming model
for it. In Section 3 we comment on the computational
complexity of the problem with an arbitrary number
of unrelated parallel machines (R||Y ) and with a
fixed number of machines (Rm||Y ), proposing dynamic
programming for the latter case.

In Section 4 we present the branch-and-bound
algorithm for problem R||Y , describing its particular
components such as the encoding scheme, the branching
scheme, dominance rules, lower and upper bounds.
Section 5 is devoted to another exact algorithm based
on enumeration, namely, partitioning jobs into machines,
and scheduling them by the dynamic programming
algorithm. The practical efficiencies of all three
proposed approaches—the mathematical model and two
exact algorithms—were checked within the computational
experiments reported in Section 6. The research is
concluded in Section 7.

2. Problem definition

The paper concerns the problem of scheduling a set of
n jobs J = {J1, . . . , Jj , . . . , Jn} on a set of m parallel
unrelated machines M = {M1, . . . ,Mi, . . . ,Mm}. The
processing time of a job depends on the machine to which
it is assigned, so for each job Jj the vector [pij ] is
defined, where pij denotes the processing time of job Jj
on machine Mi (1 ≤ i ≤ m, 1 ≤ j ≤ n). The execution
of job Jj should be completed preferably before its due
date dj . If the job completion time Cj exceeds dj , the late
work Yj occurs for this job, which is equal to the size of
its part scheduled late, i.e., Yj = min{pij , max{0, Cj −
dj}}, assuming that Jj is assigned to Mi. The goal is
to minimize the total late work in the system, i.e., Y =∑n

j=1 Yj . In the reported research we study the problem
with an arbitrary number of machines, denoted as R||Y
by the three-field notation (Graham et al., 1979), as well
as its special case where the number of machines is fixed,
Rm||Y .

The problem considered can be formulated as an
integer programming model (denoted as IP), based on
the following decision variables xijk where 1 ≤ j ≤ n,
1 ≤ k ≤ n, and 1 ≤ i ≤ m:

xijk =

⎧
⎪⎨

⎪⎩

1 if job Jj is scheduled in position k

on machine Mi,

0 otherwise,

min
n∑

j=1

max
1≤i≤m
1≤k≤n

xijk

·min

⎧
⎨

⎩

pij ,

max{0,
k∑

r=1

n∑

s=1
xisrpis − dj}, (1)

m∑

i=1

n∑

k=1

xijk = 1, 1 ≤ j ≤ n, (2)

n∑

j=1

xijk ≤ 1, 1 ≤ i ≤ m, 1 ≤ k ≤ n, (3)

n∑

j=1

xij(k+1) ≤
n∑

j=1

xijk ,

1 ≤ i ≤ m, 1 ≤ k ≤ n− 1, (4)

xijk ∈ {0, 1}, 1 ≤ i ≤ m,

1 ≤ j ≤ n, 1 ≤ k ≤ n. (5)

We minimize the total late work defined with the
formula (1). Late work for a job is never negative,
so if job Jj is scheduled on Mi in position k, its late
work contributes to the criterion value, otherwise the
formula for the late work is multiplied by zero (xijk =
0) and it is irrelevant for the objective function value.
To determine the completion time of job Jj , we sum
the processing times of jobs in position k and preceding
positions (r = 1, . . . , k) on the same machine Mi, so
we sum the processing time of Jj and its predecessors
on machine Mi (if any, s = 1, . . . , n). The formula (2)
ensures that each job Jj is assigned to exactly one position
on exactly one machine, which means that each job must
be scheduled, while the formula (3) guarantees that each
position on particular machines is occupied by at most one
job. Due to the formula (4), positions of jobs assigned to
each machine form a continuous sequence, i.e., position
k + 1 can be occupied by a job only if k is occupied.
As we have mentioned, all decision variables are integers
according to the formula (5).

The above presented mathematical model allowed
us to compare the efficiencies of the exact approaches
dedicated for the problem considered with the efficiency
of a mathematical programming solver, namely, Gurobi
(see Section 6 for details).
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3. Problem complexity
The problem with an arbitrary number of unrelated
machines, R||Y , is strongly NP-hard (Garey and Johnson,
1979), since the corresponding problem with identical
machines and a common due date, P |dj = d|Y , is
already strongly NP-hard (Chen et al., 2016). For this
reason, to construct optimal solutions, we have to use
methods of exponential time complexity such as the
branch-and-bound method proposed in Section 4, or other
methods based on enumeration of all possible solutions as
the approach given in Section 5.

Furthermore, because the problem with two identical
machines and a common due date P2|dj = d|Y is
already NP-hard in the weak sense (Chen et al., 2016),
the model with unrelated machines Rm|dj = d|Y is
also NP-hard. Moreover, we claim that the principle of
the dynamic programming method designed for problem
Pm|dj = d|Y proposed by Chen et al. (2020a) is also
valid for problem Rm|dj = d|Y . We revise this method
adjusting it to the specificity of problem Rm|dj = d|Y ,
and propose a dynamic programming algorithm, denoted
by DPm. We will further use this algorithm as a lower
bound technique in our branch-and-bound algorithm for
problem R||Y described in Section 4.

Let the function f(j, E1, E2, . . . , Em) denote the
minimal total late work for the first j jobs in the input
sequence scheduled on m machines, where the early parts
of these jobs are executed for at most E1, E2, . . . , Em

units on machine M1, M2, . . . , Mm, respectively. Then
DPm runs as in Algorithm 1.

In the same way as in the work of Chen et
al. (2020a), DPm guarantees to obtain an optimal
schedule for Rm|dj = d|Y in O(ndm) time, which is
pseudo-polynomial when m is fixed. Therefore, we have
the following theorem.

Theorem 1. Problem Rm|dj = d|Y is NP-hard in the
weak sense.

Proof. Problem Rm|dj = d|Y is NP-hard since its
special case P2|dj = d|Y is NP-hard (Chen et al., 2016),
and Rm|dj = d|Y can be solved in pseudo-polynomial
time. �

4. Branch-and-bound algorithm
Due to the strong NP-hardness of problem R||Y ,
determining optimal solutions requires exploring the
whole space of problem solutions in exponential time.
In order to perform the searching process efficiently, we
propose a branch-and-bound algorithm, B&B. The B&B
method divides the problem space according to a certain
branching scheme adjusted to the chosen representation of
the problem solutions. It explores particular subproblems,
and the quality of solutions which could be obtained by

solving these subproblems is estimated by a lower bound.
The quality of the optimal solution is estimated by an
upper bound. Some subproblems can be discarded if
their lower bounds exceed the upper bound or they are
dominated by other subproblems. The whole exploration
process can be modelled with a searching tree. In the
following subsections we present particular components
of the proposed branch-and-bound algorithm for problem
R||Y .

4.1. Solution representation and the searching pro-
cess. Following the idea proposed by Chen et al.
(2020b) and Wang et al. (2020), we use an integer
vector with n + m − 1 elements to present a feasible
schedule of problemR||Y . This vector contains n positive
numbers (1, . . . , n) to indicate each job, and m − 1
negative ones

( − (m − 1), . . . ,−1
)

to separate the jobs
into m subsequences corresponding to subschedules on
particular machines. Without loss of generality, we let all
the negative numbers be sequenced in descending order.
For example, for n = 9 jobs and m = 4 unrelated
machines, the schedule represented by the encoding
(3, 8, 7,−1, 9, 2,−2, 6, 4,−3, 1, 5) is shown in Fig. 1.

Consequently, the exploration process of B&B can
start from an empty array, and a searching tree can be
constructed step by step. Each non-leaf node in this tree
(partial schedule) has several successors (child nodes).
To construct such a successor, the branching scheme first
copies the encoding from its parent. Then it selects one of
the feasible numbers, which does not appear in the current
encoding, and puts it into the first available position.
As a result, all the feasible complete schedules can be
represented by leaf nodes.

To increase the efficiency of the searching process,
we proposed a truncation rule to avoid unnecessary
explorations. If all the negative numbers, but not all the
positive ones, have appeared in a current encoding, the
problem in that state (i.e., in that search tree node) can
be simplified to a single machine (namely, machine Mm)
scheduling problem for a smaller instance, containing
only unscheduled jobs. Therefore, we can run the
dynamic programming method proposed by Potts and
Van Wassenhove (1992) for the single machine problem

JM J J

JM J

M J J

M J J

Fig. 1. Illustration of solution encoding.
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Algorithm 1. DPm.
1: Set initial conditions f(0, E1, E2, . . . , Em) = 0 for 0 ≤ Ei ≤ d, 1 ≤ i ≤ m.
2: Calculate the recurrence function that

f(j, E1, E2, . . . , Em) = min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f(j − 1, max{0, E1 − p1j}, E2, . . . , Em) + max{0, p1j − E1},
f(j − 1, E1, max{0, E2 − p2j}, . . . , Em) + max{0, p2j − E2},
. . . ,

f(j − 1, E1, E2, . . . , max{0, Em − pmj}) + max{0, pmj − Em}
for 1 ≤ j ≤ n, 0 ≤ Ei ≤ d, 1 ≤ i ≤ m.

3: Determine the optimal total late work as f(n, d, d, . . . , d).

1||Y to obtain an optimal schedule for the last machine
without further explorations. For the sake of completeness
we re-call this dynamic programming below, denoted as
DP1 in the remaining part of the paper. Since DP1 is
applied for jobs on machine Mm, in this method the job
processing time pj corresponds to its processing time on
machine Mm, i.e., pj = pmj (1 ≤ j ≤ n).

Let f(j, t) denote the minimum total late work
for the first j jobs, when the last early or partially
early one among them is complete at time t (0 ≤
t ≤ bj , bj = min

{∑j
i=1 pi, maxi=1,...,j{di + pi −

1}}). Then DP1 runs according to the recursion process
in Algorithm 2, with the time consumption of O(n ·
min

{∑n
j=1 pj , maxj=1,...,n{dj + pj}

}
) as proved by

Potts and Van Wassenhove (1992).
To further increase the efficiency of the

branch-and-bound algorithm, we propose several
dominance rules, which can help us to discard some
partial solutions that are dominated by other ones.
Suppose that σ is an uncompleted encoding, while h and
k are two integers such that 1 ≤ h, k ≤ n and h, k /∈ σ.
Then we can construct two successors of σ, denoted
as σ′ = σhk and σ′′ = σkh. Note that, according
to the characteristics of the encoding presented above,
L′

i = L′′
i for 1 ≤ i ≤ m, where L′

i and L′′
i are the

loads of machine Mi in σ′ and in σ′′, respectively.
Let Y (x) be the total late work of a (partial) schedule

x. We claim that, if one of the two following conditions is
satisfied:

(i) Y (σ′) < Y (σ′′),

(ii) Y (σ′) = Y (σ′′) and h < k,

then σ′′ is dominated by σ′, which means that σ′′ could
be removed from the searching tree without further direct
exploration.

4.2. Upper bound. At the beginning of the searching
process, to estimate the value of the optimal total late
work, the initial upper bound has to be determined.
For this purpose, we chose the meta-heuristic method
proposed for problem R||Y in the previous study on
this model (Wang et al., 2020). In the work of Wang

et al. (2020), two approaches were given: tabu search
(TS) and a genetic algorithm (GA). According to the
preliminary experiments (in Appendix), we found that,
for small size instances (which can be finally solved by
the exact methods proposed in this paper), TS and GA
shared almost the same performance from the solution
quality point of the view. However, TS required less time
than GA. Therefore, we chose the tabu search method to
generate the initial solution, i.e., the initial upper bound of
the B&B algorithm (see the work of Wang et al. (2020)
for details on TS).

During the exploration of the solution space, the
upper bound should be updated to reflect the quality of
the best solution obtained so far. To improve the upper
bound, for an uncompleted solution, which is represented
by the encoding of a non-leaf node on the searching
tree, we construct several feasible (complete) solutions by
applying some simple heuristic strategies. If the criterion
value of the best solution among these heuristic solutions
(i.e., with the minimum total late work) is better than the
current upper bound, this bound is replaced.

We propose nine such strategies, all of which are
two-step approaches and can be denoted as A-B. In
the first step A, we sort the unscheduled jobs in a
specific order, while in the latter phase B, we assign the
unscheduled jobs to one of the machines according to a
specific rule. The rules used to order jobs in phase A are
as follows:

• EDD (earliest due date first, i.e., non-decreasing
order of dj),

• SPT (smallest processing time first, i.e.,
non-decreasing order of pj = 1

m

∑m
i=1 pij ,

• LPT (largest processing time first, i.e.,
non-increasing order of pj).

The rules applied in phase B are as follows:

• MinC: assign a selected job to a machine with the
minimum makespan,

• MinY : assign a selected job to a machine to keep
the minimum current total late work,
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Algorithm 2. DP1.
1: Set f(0, 0) = 0 and all other initial values to be infinite.
2: Calculate the recurrence function that

f(j, t) =

{
min{f(j − 1, t− pj) + max{t− dj , 0}, f(j − 1, t) + pj}, t < dj + pj ,

f(j − 1, t) + pj , t ≥ dj + pj .

for 1 ≤ j ≤ n, 0 ≤ t ≤ d.
3: Determine the optimal total late work as mint=0,...,bn{f(n, t)}.

Algorithm 3. Lower bound.
1: Based on the current encoding, calculate the total late

work of the scheduled jobs (denoted as Ys), as well as
the load of each machine (denoted as Li, 1 ≤ i ≤ m).
Denote the set of unscheduled jobs as Ju, and let d̂ =
max
Jj∈Ju

{dj}.

2: For an auxiliary instance of problem Rm|dj = d̂|Y
run DPm to get an optimal solution for a set of jobs
Ju and a common due date d̂ on m machines, and to
get the optimal value Yu for this auxiliary instance.
Note that the range of parameter Ei in DPm is re-set
to be 0 ≤ Ei ≤ max{d̂ − Li, 0} for 1 ≤ i ≤ m,
since there are some jobs already scheduled on Mi.

3: Return Ys + Yu as the lower bound of this partial
solution.

• MinP : assign a selected job (say Jj) to machineMk

so that k = arg min1≤i≤m{pij}.

Summing up, by combining the above mentioned
rules A and B we proposed the following nine
heuristics for updating the upper bound within our
B&B: EDD-MinC, EDD-MinY , EDD-MinP ,
SPT -MinC, SPT -MinY , SPT -MinP , LPT -MinC,
LPT -MinY and LPT -MinP .

4.3. Lower bound. In a branch-and-bound algorithm,
the lower bound is used to cut the redundant branches
and avoid unnecessary explorations. Briefly, if the lower
bound of a non-leaf node on the searching tree exceeds
the current upper bound, this node, as well as its sub-tree,
could be discarded, and direct explorations on it could be
omitted.

In this paper, we get the lower bound of an
uncompleted solution based on the dynamic programming
approach presented in Section 3, i.e., DPm. For the
scheduled jobs, we calculate their total late work based on
the current encoding, while for the unscheduled jobs, we
reduce the problem to a common due date version and use
DPm to obtain an optimal solution. Finally, the sum of
the two mentioned values is returned as the lower bound
of this partial solution. More precisely, the lower bound is
calculated with the procedure in Algorithm 3.

4.4. Frame of the branch-and-bound algorithm.
Combining the techniques described above, we obtain the
branch-and-bound approach in Algorithm 4.

5. Enumeration algorithm
In a parallel system, which can be modelled by the
discussed problem R||Y , a solution could be regarded as
the division of all jobs to m disjoint sub-sets, which then
are assigned to m machines to be executed separately. In
this case, the processing time of Jj on Mi (i.e., pij) is
fixed when the partition is completed. To calculate the
total late work in the whole system, we can calculate the
criterion values for each machine separately, and then add
them together.

Therefore, we propose an enumeration algorithm
for problem R||Y , called PDP (partition and dynamic
programming). The main idea of PDP is as follows.

1. Run an enumeration process to generate all the
possible partitions for the jobs.

2. For a particular partition, the original problem R||Y
is reduced to m instances of the single machine
problem 1||Y , so we can run DP1 (Potts and
Van Wassenhove, 1992) m times to solve them
individually.

3. Add m values of the total late work obtained by
DP1 for particular machines to determine the final
criterion value of this partition.

4. Choose the optimal one among all the possible
partitions as the final output.

To control the enumeration process, we use an
n-element integer array Arr to represent a particular
partition, where each element in Arr stands for a job.
The value of this element lays in the range of [1, m],
representing the machine assignment for this job. For
example, when n = 9 and m = 4, the encoding (4, 2,
1, 3, 4, 3, 1, 1, 2) means the following partition:

M1: {J3, J7, J8};

M2: {J2, J9};

M3: {J4, J6};
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Algorithm 4. Branch-and-bound (B&B).
1: Get an initial upper bound by TS, denoted as UB;
2: Construct an empty queue Q for exploration;
3: Create a root node with an empty encoding, and push it into Q;
4: while (Q �= φ) do
5: Pop the first node (denoted as FN ) from Q;
6: if (all m-1 negative integers have appeared in FN ’s encoding) then
7: Run DP1 to schedule the remaining jobs optimally on Mm;
8: Calculate the criterion value of this completed solution, denoted as Yf ;
9: if (Yf < UB) then

10: Replace UB by Yf ;
11: end if
12: else
13: Put FN ’s successors (if any) into a temporary set T ;
14: for each node SN in T do
15: Calculate SN ’s upper bound (denoted as c) with the nine heuristics;
16: if c < UB then
17: Replace UB by c;
18: end if
19: if (SN ’s lower bound < UB and SN is not dominated) then
20: Put SN into Q for further exploration;
21: end if
22: end for
23: end if
24: end while
25: Output UB and its schedule as the final solution;

Algorithm 5. Constructor(index).
1: if (index == n) then
2: Calculator(Arr); {Arr is completed, so a

particular partition is constructed. Then we
Calculate the optimal criterion value for this
partition.}

3: else
4: for (i = 1 to m) do
5: Arr[index] = i;
6: Constructor(index + 1); {We construct Arr by

each element.}
7: end for
8: end if

M4: {J1, J5}.

(But the exact orders of the jobs on each machine are not
represented.) Then, the enumeration of all the possible
partitions could be obtained by the recurrence process in
Algorithm 5.

To calculate the optimal criterion value for a
particular partition (denoted as P , which is represented by
a completed array Arr), we need to run DP1, proposed
by Potts and Van Wassenhove (1992) and recalled in
Section 4.1, m times. Unfortunately this process is
time-consuming despite the fact that DP1 is a very fast

method. To avoid unnecessary executions of DP1, a lower
bound of P can be used as a truncating method.

For a particular machine Mi (1 ≤ i ≤ m), we
can extend the due dates of the jobs assigned to it to
the largest due date among these jobs (say, d̂i). In this
way, we reduce the problem on Mi to an instance of
1|dj = d̂i|Y . The optimal criterion value for this instance
is equal to min{0, Li − d̂i}, where Li is the current
makespan (workload) of Mi. Therefore, the value of
min{0, Li − d̂i} could be considered a lower bound of
the total late work of jobs assigned to machine Mi. More
precisely, a lower bound of a particular partition P can be
calculated as follows:

LBP =

m∑

i=1

min{0, (
∑

Jj∈Mi

pij − max
Jj∈Mi

{dj})}, (6)

where Jj ∈ Mi means that job Jj is assigned to machine
Mi. Furthermore, to use this lower bound effectively, an
upper bound is also needed for comparison. Therefore,
similarly as in our B&B, as described in Section 4.2, we
run the tabu search method TS by Wang et al. (2020) to
generate an initial solution, which allows determining an
initial upper bound value.

Combining the techniques described above, we
obtain the following enumerative algorithm PDP , as
shown in Algorithms 6 and 7.
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Algorithm 6. Partition and dynamic programming (PDP).
1: Get an initial upper bound by TS, denoted as UB;
2: Constructor(0); {Start the recurrence process. For

each completed array Arr, call Calculator(Arr) to
determine the criterion value.}

3: Output UB and its schedule as the final solution.

Algorithm 7. Calculator(Arr).
1: Decompose Arr to get a particular partition P ;
2: Calculate P ’s lower bound LBP ; {The process is

truncated when LBP ≥ UB.}
3: if (LBP < UB) then
4: Run DP1 m times to get the optimal criterion value

of P , denoted as OPTP ;
5: if (OPTP < UB) then
6: Replace UB by OPTP ;
7: end if
8: end if

6. Computational experiments
The efficiencies of all the methods proposed in the paper
were evaluated in computational experiments. We used
the data set generation scheme from Wang et al. (2020),
which was originally proposed by Lin et al. (2006) to
construct the benchmark set for a late work scheduling
problem. The job processing time pij was randomly
generated from a uniform distribution over [1, 10]. Then
we adopt the mean processing time of Jj , i.e., pj =
1
m

∑m
i=1 pij , to generate the job due dates. After sorting

the jobs in the non-decreasing order of pj , the k-th
job’s due date was randomly generated from (pk, pk +
1

mβ

∑k
h=1 pn−h+1], in which β ∈ {3, 5, 7}. Parameter

β can be treated as the due date tightness controller.
The two exact algorithms proposed in the paper,

B&B and PDP , were implemented with the C++
language in the IDE of Visual Studio 2017. Moreover, we
solve the mathematical model IP formulated in Section 2
by Gurobi 9.1.1, through an interface of Visual Studio. All
the experiments were performed on a laptop with an Intel
Core i7-10510U 1.80 GHz CPU and 16 GB DDR3 RAM.

Since all the exact approaches (B&B, PDP and
IP ) solve the problem optimally, we focus on their time
efficiencies, i.e., on the execution time. Due to the
limitation on the problem instance sizes, which can be
solved by IP , in the first phase of our experiments we
set m ∈ {2, 3} and n ∈ {7, 8, 9, 10, 11}. For
each combination of (m, n, β), we generated 30 random
instances. The average running time of B&B, PDP
and IP for small size instances are shown in Table 1.
Note that the results of B&B and PDP are displayed in
milliseconds, while the ones for the mathematical model
IP are shown in seconds, since this technique is much
slower than the former two methods. Moreover, we

Table 1. Execution time of all approaches for small instances.
m n B&B [ms] PDP [ms] IP [s]

2

7 5.5042 0.1456 1.0458
8 7.0701 0.2309 4.0724
9 7.9352 0.3728 29.3449

10 8.9827 0.5492 137.2843
11 15.0333 0.9035 862.0528

3

7 7.0925 0.5595 0.7985
8 13.0382 1.4298 3.5893
9 22.5270 4.3527 12.2574

10 33.4528 14.5336 52.4253
11 65.2029 37.2883 505.2788

omitted parameter β in Table 1, since it has no influence
on the mathematical model. Its influence on B&B
and PDP is analysed in the further part of this section
separately.

From the results in Table 1 we can see that the
Gurobi solver needs significantly more time than the two
exact algorithms proposed in this paper. The experiments
showed that the dedicated methods, designed for and
adjusted to the specific scheduling problem, are much
more efficient than the general purpose mathematical
programming solver. Moreover, comparing these two
methods, we can observe that for small instances the
algorithm PDP based on enumeration was more efficient
than the more sophisticated approach B&B based on
branching and bounding.

To further reveal the performances of B&B and
PDP , in the second phase of the computational
experiments, we extended the size of problem instances.
We generated instances with n ∈ {20, 22, 24, 26, 28}
whenm = 2, and n ∈ {15, 16, 17, 18, 19}whenm = 3.
Moreover, we constructed instances for m = 4, and set n
to be in {11, 12, 13, 14, 15}. In the same manner as in
the first phase of experiments, we generated 30 instances
for each combination of parameters (m, n, β). In Table
2 we show the average execution time of B&B and PDP
(in seconds). Due to the limitation of the computation
resources, we restricted the running time of the algorithms
to less than 300 seconds.

In order to analyze the results in Table 2 more
accurately, we aggregated them from the viewpoints of the
instance size resulting from the values n, m and the values
of parameter β. Figures 2–4 present the average execution
time of the two algorithms with respect to the number
of jobs n for the fixed number of machines m = 2, 3
or 4, respectively, while Fig. 5 shows the performances
of B&B and PDP for different values of parameter β
controlling the due date tightness.

It can be seen from Figs. 2–4 that the execution time
of B&B and PDP both increase with the growth of
the instance size, which is easy to explain based on the
complexities of both algorithms (which are exponential
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Table 2. Execution time of B&B and PDP for large instances.
m n β B&B (s) PDP (s) m n β B&B (s) PDP (s) m n β B&B (s) PDP (s)

2

20
3 5.4903 0.3647

3

15
3 1.5344 1.8069

4

11
3 1.0206 0.5168

5 5.3339 0.3404 5 1.3426 1.9437 5 0.9825 0.4993
7 2.4351 0.3206 7 0.5686 1.9150 7 0.6986 0.4760

22
3 14.1122 1.5182

16
3 2.9218 5.9247

12
3 5.4469 1.9794

5 5.7445 1.3769 5 2.6444 5.5628 5 4.7871 2.2728
7 5.6124 1.3194 7 1.3234 5.6538 7 4.6274 2.4861

24
3 28.8911 6.3401

17
3 13.3276 17.3073

13
3 17.4023 8.9590

5 5.5365 6.1304 5 1.7117 17.1001 5 16.8323 9.3804
7 1.4005 6.2543 7 1.5791 17.0923 7 7.7800 9.9208

26
3 150.7031 27.5088

18
3 22.2063 52.9445

14
3 62.4160 37.0048

5 41.6710 29.6821 5 13.4402 51.7056 5 30.8229 36.0513
7 31.9849 38.6486 7 1.8716 52.8370 7 24.7598 36.6852

28
3 231.6608 68.5266

19
3 28.7785 163.6490

15
3 60.3573 128.6590

5 39.5873 63.3783 5 24.8810 179.7591 5 57.2731 133.5407
7 3.6135 62.7664 7 7.9166 198.7653 7 52.5165 140.8052

in n). However, the growth of B&B’s running time
is slower, compared with the rate observed for PDP .
Therefore, for small instances (e.g., m = 2 and n ≤ 28,
or m = 4 and n ≤ 14), PDP runs faster than B&B,
whereas when the instances turn to be large, the advantage
of B&B is more visible. Due to the limitation of
computation resources, we had to restrict the experiment
scale. But it is conjectured that, when there are enough
resources to solve large-scale instance, B&B will be a
considerably more effective method than the approach
based on enumerating PDP .

However, from Fig. 5 we can find that B&B is more
sensitive to parameter β (that is, to the tightness of job due
dates). When β is small (indicating that the range of due
dates is wide), B&B requires more time, while when β is
big (indicating tight due dates), B&B runs faster. On the
other hand, the influence of parameter β on PDP is not
visible. Its running time slightly grows with β, because
tight due dates (i.e., small due dates) influence the quality
of the lower bound used in PDP .

7. Conclusions
In the paper we studied the classical problem of
scheduling jobs on unrelated parallel machines in order
to minimize the total late work for these jobs (R||Y ). We
proposed two exact approaches for this strongly NP-hard
problem based on two different strategies: branching
and bounding as well as on enumeration combined with
dynamic programming. Moreover we formulated the
mathematical model for the problem considered. The
computational experiments showed that the dedicated
methods beat the mathematical model in this case.
Using mathematical models is a popular strategy to
solve intractable problems nowadays due to their fast
implementation. However, the algorithms specialized for
a problem, based on its specificity, can be still much

more effective. Based on the results of computational
experiments, we see that in some cases (for small
instances, for example) rather simple search strategies
(such as the method based on the enumerating all
partitions of jobs to machines) can be competitive to more
sophisticated search strategies, e.g., the branch-and-bound
method. But, in general, B&B is the effective approach
to solve intractable problems.

In our future research we would like to focus on the
scheduling models with dedicated machines: flow shops
(Błażewicz et al., 2005; Chen et al., 2022) and job shops
(Błażewicz et al., 2007) with the total late work. Since
for these intractable problems dynamic programming
approaches are available in the literature, we could use
our experience gathered during the reported research
to design efficient exact approaches for these models.
Moreover, we could consider some generalizations of
these due date scheduling problems (e.g., due window
assignment (Janiak et al., 2013)), or some scenarios for
real application (e.g., in transit networks (Liu et al., 2022))
with a late work criterion.
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Błażewicz, J., Pesch, E., Sterna, M. and Werner, F. (2007). A
note on the two machine job shop with the weighted late
work criterion, Journal of Scheduling 10(2): 87–95.

Chen, X., Liang, Y., Sterna, M., Wang, W. and Błażewicz, J.
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Appendix
To find a suitable initial upper bound for the algorithm
B&B in Section 4.2, we compared the performances of
the algorithms TS and GA proposed by Wang et al.
(2020). With the same experiment setting as in Section 6,
i.e., n ∈ {20, 22, 24, 26, 28} when m = 2,
n ∈ {15, 16, 17, 18, 19} when m = 3, n ∈
{11, 12, 13, 14, 15} when m = 4, and β ∈ {3, 5, 7}
for each pair of (m, n), we summarized the results of this
preliminary experiment in Table A1. Here the columns
“Score” show how often one algorithm beats the other
one from the viewpoint of the criterion value, and the
columns “Time” reflects the average running time of each
algorithm within the experiment (in milliseconds).

Table A1. Comparisons between TS and GA.
TS GA

Score Time [ms] Score Time [ms]
124 0.0134 135 0.8275
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For each combination of (m, n, β), we generated
30 random instances, i.e., there were 1350 test instances
in total. Within these tests, TS won 124 times from
the criterion value point of the view, while this number
for GA was 135. For the next 1091 tests, both of the
algorithms obtained the same criterion value. On the other
hand, TS cost less time than GA. Therefore, we choseTS
to generate an initial upper bound of B&B.
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