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The Lombard effect is an involuntary increase in the speaker’s pitch, intensity, and duration in the presence of noise. It
makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method
for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the
person on the detection process is examined. First, acoustic parameters related to speech changes produced by the Lombard
effect are extracted. Mid-term statistics are built upon the parameters and used for the self-similarity matrix construction.
They constitute input data for a convolutional neural network (CNN). The self-similarity-based approach is then compared
with two other methods, i.e., spectrograms used as input to the CNN and speech acoustic parameters combined with the
k-nearest neighbors algorithm. The experimental investigations show the superiority of the self-similarity approach applied
to Lombard effect detection over the other two methods utilized. Moreover, small standard deviation values for the self-
similarity approach prove the resulting high accuracies.
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1. Introduction

Nature has equipped humans with a mechanism to
communicate more effectively in noise conditions. The
main keywords related to the Lombard effect (LE) are
Lombard speech, acoustics communication, noise effects,
vocal modifications, or vocal plasticity (Hotchkin and
Parks, 2013). This is because the Lombard effect is
defined as the unintended tendency of an interlocutor
to increase the level of an utterance in noise conditions
to improve audibility and intelligibility. Although the
definition of the LE is mainly focused on the increase in
the utterance level, there are many additional indications
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in the acoustic analysis that LE increases. This concerns
the average amplitude of the signal, modifications in the
formant frequencies, changes in the length of utterance,
and shifts in the energy from low frequency to high and
medium frequency bands.

Careful analyses helped observe additional effects
such as flattening the slope of the spectrum, increasing
speech intelligibility by increasing the range of formant
frequencies, fundamental frequency, or changing the
duration of words and vowels, as well as the length of
the entire utterance (Hansen, 1994; Kleczkowski et al.,
2017; Summers et al., 1988). The LE is also associated
with non-acoustic effects, such as more prominent facial
muscle movements when speaking in noise (Stathopoulos
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et al., 2014; Chiu et al., 2020). Furthermore, the LE
involves cognitive functions of the human brain and,
consequently, vocal-motor control over own voice (Kim
and Davis, 2014; Luo et al., 2018). Our study follows
the well-established fact in the scientific community
that LE-affected speech becomes more intelligible to
the listener (Boril and Hansen, 2009; Garnier and
Henrich, 2014). It is also worth noting that recent
research on Lombard intelligibility has shown that despite
subtle native language influences on non-native Lombard
speech, both native and non-native speech provide the
benefit (Marcoux et al., 2022).

In contrast, the LE may create problems when
detecting speech in noise automatically, but not trained on
data related to the LE (Vlaj and Kacic, 2011; Marxer et al.,
2018; Korvel et al., 2020; Maheswari et al., 2020). Such
hyper-articulation impairs the performance of the speech
recognition systems (Maheswari et al., 2020), so it is
essential to train them on data, including Lombard-related
features. However, a question remains about what the
most representative Lombard-related characteristics are.
This was explicitly articulated by Chiu et al. (2020). They
said that if a speech recognition system (ASR) is trained
on data containing Lombard speech, then statistical
models built upon them may improve recognition results
(Chiu et al., 2020).

The motivation for undertaking this study is to
find an efficient method for detecting the LE in uttered
speech under noise and interference conditions. This is
based on searching for the best combination of speech
representation and classification algorithm. To that end,
several neural network architectures optimized for the
type of interfering noise, type of room, and gender of the
person being recorded, along with signal representations,
are exploited and compared with a baseline algorithm
combined with a feature vector. For the purpose of
this study, self-similarity matrices are built upon acoustic
parameters derived from speech signal processing (Rybka
and Janicki, 2013; Panek et al., 2015; Gama et al., 2021).

The idea of a self-similarity matrix is borrowed from
the music information retrieval (MIR) domain, where
it is used to characterize the rhythm and tempo of the
music (Foote, 1999; Wei et al., 2019). Recently, such an
approach was employed in the speech area in the context
of visualization of speech disfluencies (Esmaili et al.,
2016) and interlanguage phoneme differences (Korvel
et al., 2021), as well as pseudonymization performance
assessment applied to the speaker’s privacy preservation
(Noé et al., 2022). In addition, it has been shown that
taking into account the structural similarity of the image
itself, it can be applied in evaluating results based on
machine learning in areas not related to speech processing
(Dong et al., 2012; Wang et al., 2018).

In our research, self-similarity matrices are
constructed based on acoustic parameters differentiating

between neutral speech and produced by the Lombard
effect. The resulting graphical representations are derived
from the differences between acoustic characteristics
of the non-Lombard and Lombard speech signals and
are used as an input to a convolutional neural network
(CNN), widely used in image classification (Bernardo
et al., 2021; Kowal and Korbicz, 2019). It should be
pointed out that using self-similarity matrices is a novel
approach to investigating the Lombard effect phenomenon
in uttered speech. In the literature, commonly the
short-time Fourier transform (STFT) with both linear
and Mel scales, the constant-Q transform (CQT) and
the continuous Wavelet transform (CWT), are used in
conjunction with the CNN method to represent the signal
in the time and frequency domain (Huzaifah, 2017; Choi
et al., 2018). Also a raw waveform-based approach has
been explored to learn hierarchical characteristics of
audio directly (Lee et al., 2018).

Another motivation behind the experiments is to
efficiently detect the LE, because this phenomenon can
be used for creating synthesized Lombard speech in the
case of noisy environments when better intelligibility is
needed. Therefore, it should be determined whether it is
present in the input signal to avoid unnecessary speech
modifications when the speech is naturally Lombard in its
character. This may then be applied to communication
systems, public address systems, or hearing aids (Saba and
Hansen, 2022).

The paper starts with a brief description of extracting
parameters that show changes in time, frequency, and
intensity level analysis when the LE occurs. Then,
mid-term statistics are built upon these parameters
and used for the self-similarity matrix construction,
constituting a CNN’s input. The main assumptions of
the detection-based experiment are shown. The following
section deals with the analysis and interpretation of
the results obtained in the LE classification. Training
accuracies are calculated across the ten splits of the data
set of the recorded utterances. The self-similarity-based
approach is compared with two other methods, i.e.,
spectrograms used as input to the CNN and speech
acoustic parameters combined with the k-nearest neighbor
(kNN) algorithm. Detailed tables containing the
classification metrics for all tested methods are presented.
On this basis, conclusions are derived, showing the
superiority of the self-similarity approach applied to
Lombard effect detection over two other methods utilized.
Finally, future directions of the experiment development
are provided.

2. Measured data
To gather well-controlled data, speech recordings were
made in two rooms with different acoustic characteristics.
One of the rooms was an acoustically treated studio with
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suppressed reverberation (we call this room ‘Treat’). In
contrast, the second room was an interior with slight
acoustic treatment (we call it ‘UnTreat’). A microphone
was fixed approximately 1 meter away and pointed
towards the mouth of the person being recorded. Eight
speakers (four males and four females) were asked to read
10 separate words. The format of the speech recordings
was the .wav file with the following parameters: 48 kHz,
32 bit, mono.

To obtain utterances of normal speech and with
the Lombard effect, the assumed recording scenario was
repeated with varying conditions. The normal speech
utterances were recorded without additional noise played
back. The utterances with the Lombard effect were
recorded by playing interference noise via the headphones
during the recording process. Before each recording
session, measurement of the level was performed using
headphones placed on the B&K (head and torso) manikin,
type 4128C-002. Then, during the recording, the Brüel
& Kjaer 2260 Investigator was employed to monitor the
noise level continuously. For listening to noises, we
used Philips Stereo Headphones SBC HP195. Speech
recordings were made by the Panasonic AG–MC200
microphone and the ZOOM H6 recorder. Two types
of noise, i.e., pink noise generated using the noise
generator and the natural language samples of babble
speech (also known as cocktail-party-effect), were used.
These conditions resulted in three types of recordings with
the Lombard effect:

(i) playing noise with a cocktail-party effect of an
approximately 80 dBA signal level,

(ii) playing broadband pink noise of an approximately
73 dBA signal level,

(iii) playing broadband pink noise of an approximately
84 dBA signal level.

The recording session duration did not exceed 15
minutes; therefore, there was no problem with prolonged
exposure to noise. As a result, the recordings consist
of audio samples divided according to several categories,
namely: the type of interfering noise, the type of room,
and the gender of the person being recorded.

As noise levels are given for each of the tested
noise contamination scenarios, it is helpful to know the
associated signal levels to assume the expected SNRs and
foresee the problem difficulty (Tsardoulias et al., 2016;
Dimoulas et al., 2006). The combined noise and signal
waveform plot is shown in Fig. 1, where the standardized
recording is mixed with pink noises at SNR = 5 dB and
with the energy level maintained.

Fig. 1. Noise-free signals and pink noises at SNR = 5 dB.

Fig. 2. Block diagram of the combinations of the signal repre-
sentation and the classification method.

3. Lombard effect detection
This section refers to the primary goal of this study, which
concerns detecting the Lombard effect in uttered speech.
The method proposed is based on searching for a best
combination of speech representation and classification
methods. We advocate self-similarity construction based
on short- and mid-term statistical properties of speech
parameters. The signal representation exploited, along
with the algorithm combined, are given in Fig. 2.

3.1. Self-similarity matrix construction. The
concept behind the self-similarity method employed in
this research is to transform the speech signal into a vector
of parameters that are capable of accounting for changes
caused by the Lombard effect, and then compare each
parameter of the vector with all other parameters of the
same vector. The similarity matrix is constructed based
on similarity scores between parameters and constitutes
the input for a CNN.

Generally, a similarity matrix represents the distance
between two vectors of parameters. The distance is
determined by the Euclidean distance formula, i.e.,

d (p,q)=

√
√
√
√

L∑

i=1

(pi − qi)
2
, (1)
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Algorithm 1. Preparation procedure for self-similarity
matrix construction.
Step 1. Signal dividing into short-term segments.
Step 2. Signal dividing into mid-term segments.
Step 3. Extraction of short-term parameters related to the
Lombard effect.
Step 4. Building mid-term statistics upon short-term
parameters.
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Fig. 3. Speech signal decomposition into short-term and mid-
term segments (the grey line denotes short-term seg-
ments, the black line refers to mid-term segments).

Fig. 4. Example of the self-similarity matrix.

where p and q are two vectors of parameters and L
denotes the number of parameters.

In this research, the self-similarity matrix is used.
This means that the distance computation is performed for
the same set of parameters, i.e., p = q.

Before the matrices are built, the 4-step procedure
represented as Algorithm 1 is performed.

The self-similarity matrix construction process starts
with dividing the speech signal into short-term and
mid-term segments (see Steps 1 and 2 of Algorithm 1).
An example of the signal division is given in Fig. 3. In
this stage the following settings are used: the length of the
short-term segment is 1024 samples, the overlap between
segments is 50%, and the number of the short-term
segments in a mid-term segment is equal to 30. The
short-term segment length and overlap were chosen based
on our previous studies related to signal parameterization
(Korvel et al., 2019), while the number of intervals was
derived from several initial tests.

In Step 3, the acoustic parameters related to
the Lombard effect are calculated for each short-term
segment. The procedure of parameter calculation is given

in Section 3.1. In the last step, for each mid-term segment,
the short-term parameter statistics are calculated. The
mean value as a mid-term statistic is employed. Mid-term
statistics cover general changes in parameters over time
and are commonly used in speech analysis (Smailis et al.,
2016; Piotrowska et al., 2021).

The self-similarity matrix is constructed for each
mid-term segment based on its mid-term statistics.
An example of the self-similarity matrix for mid-term
segment of speech with Lombard effect is given in Fig. 4,
where the x and y-axes represent the parameter numbers.
Each pixel is given a grey-scale value proportional to the
distance value. Darker colors mean a higher similarity
between parameters.

3.2. Short-term parameters. As already mentioned,
the Lombard effect modifies the volume of the uttered
speech, fundamental frequency, formant frequency,
spectral tilt, and duration. Therefore, the acoustic
characteristics, which reflect this phenomenon both in the
time- and the frequency domains, should be examined.
The time-domain parameters are extracted directly from
the samples of the speech signal. The frequency
characteristics are calculated from the Fourier spectrum:

X (k) =
N−1∑

n=0

x(n)w (n)e
−2πjkn

N , (2)

where X(k) are the Fourier transform coefficients, k =
0, . . . ,K − 1 (K is the number of the Fourier transform
coefficients), x(n) means the samples of a short-time
segment of the speech signal, N stands for the length of
the short-time segment, w (n) is the Hamming window
function, and j is the imaginary unit.

We investigate an extensive set of parameters
to evaluate the Lombard effect appropriately. The
investigated parameters are given in Table 1. The set
of parameters was constructed based on our previous
experience with acoustic analysis of speech signals. The
parameters utilized are typical speech parameters as well
as features borrowed from the music information retrieval
(MIR) area and the MPEG-7 standard (Downie, 2003;
Schedl et al., 2014; Kim et al., 2005). Our previous
experiments showed that music domain-derived features
benefit speech signal processing (Korvel et al., 2019;
Piotrowska et al., 2019).

Overall, we have 106 extracted parameters for each
short-term segment (see Table 1). The time-domain
representation shows the time-varying behavior of the
signal. The temporal centroid (TC), i.e., the first
parameter, represents the time point where half of the
signal energy of the short-time speech segment x(n)
occurs,

TC =

∑N
n=1 nx

2(n)
∑N

n=1 x
2(n)

, (3)
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Table 1. Parameters extracted from the speech signal.
No. Parameter
Time-domain parameters
1 Temporal centroid (TC)
2 Zero crossing rate (ZCR)
3 Root mean square (RMS) energy
4-6 The number of samples exceeding levels

RMS, 2× RMS, 3×RMS (p1, p2, p3)
7-12 The mean and variance of samples exceeding

levels RMS, 2×RMS, 3×RMS averaged
for 10 sub-segments (μ(p1), μ(p2), μ (p),
σ2(p1), σ2(p2), σ2 (p3))

13 Peak to RMS
14-17 The number of the signal crossings in

relation to zero, RMS, 2×RMS, 3×RMS
(q1, q2, q3, q4)

18-25 The mean and variance of signal crossings
in relation to zero, RMS, 2×RMS, 3×RMS
averaged for 10 sub-segments (μ(q1), μ(q2),
μ (q3), μ(q4), σ2(q1), σ2(q2), σ2 (q3),
σ2(q4))

Frequency-domain parameters
31 Audio spectral centroid (ASC)
32 Audio spectral spread (ASSp)
33 Audio spectral skewness (ASSk)
34 Audio spectral kurtosis (ASK)
35 Spectral entropy
36 Spectral roll-off
37 Spectral brightness
38-66 Audio spectrum envelope calculated on 29

sub-bands (ASE1-ASE29)
67 Mean audio spectrum envelope (MASE)
68-85 Spectral flatness measure calculated on 18

sub-bands (SFM1-SFM18)
86 Mean spectral flatness measure (MSFM)
87-106 Mel-frequency cepstral coefficients

(MFCC1- MFCC20)

where N is the length of the short-time segment.
The second parameter (the zero crossing rate ZCR)

is the number of the time axis crossings of the signal,

ZC =
1

N − 1

N∑

n=2

|sn − sn−1|, (4)

where

sn =

{

1 if x (n) > 0,

0 if x (n) ≤ 0.
(5)

Root mean square (RMS) energy represents the
average power of the analyzed short-time speech segment
x (n)

RMS =

√
√
√
√ 1

N

N∑

n=1

x2(n). (6)

The RMS parameter is also used to extract
information on the speech temporal behavior (see
parameters no. 4–25). These parameters were proposed
by Kostek et al. (2011) and are based on the analysis of
the distribution of the sound sample values in relation to
the RMS levels.

The frequency domain parameters show how the
signal energy is distributed within the frequency range.
The parameters are derived from the power spectrum

PS(k) =
1

NFT

√

(X(k))2re + (X(k))2im, (7)

where X(k) are Fourier transform coefficients calculated
by Eqn. (2), k = 0, . . . ,K − 1 (K is the number of
Fourier transform coefficients), ‘re’ and ‘im’ mean real
and imaginary parts, respectively.

Parameters 31–37 are the so-called spectral shape
parameters. These measures are based on an octave
frequency scale centered at 1 kHz (Kim et al., 2005;
Korvel et al., 2019).

Parameters related to the audio spectrum envelope
(nos. 38–67) give a compact representation of the power
spectrum of the speech signal, while the spectral flatness
measure parameters (nos. 68–86) let separate voiced and
unvoiced speech. These parameters are considered on a
sub-band level. The audio spectrum envelope (ASE) in a
single band l (l = 1, . . . , 29) is calculated as follows:

ASE(l) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

P1∑

k=0

PS(k), l = 1,

Pl∑

k=Pl−1

PS(k), 2 ≤ l ≤ L+ 1,

fs/2∑

k=Pl+1

PS(k), l = L+ 2,

(8)

where L = 29, PS(k) is the power spectrum of the
short-time segment calculated by Eqn. (7), fs is the
sampling frequency, Pl means band frequency range
values.

The spectral flatness measure (SFM) in a single band
l (l = 1, . . . , 18) is calculated by

SFM(l) =

[
∏Pl+1

k=Pl
PS(k)

] 1
N

1
Pl+1−Pl+1

∑Pl+1

k=Pl
PS(k)

, (9)

where PS(k) is the short-time power spectrum, Pl are the
edges of the frequency bands.

The sub-band edges Pl (see Eqns. (8) and (9))
are logarithmically distributed corresponding to a specific
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octave frequency. The calculation procedure of the
sub-bands is given by Korvel et al. (2019).

The extraction process of mel-frequency cepstral
coefficients (MFCC1–MFCC20), parameters no. 87–106,
begins with filtering the short-time power spectrum (see
Eqn. (7)) by triangle bandpass filters. The scale of
filters is linear up to 1 kHz and logarithmic above this
frequency. Then, a log magnitude is calculated to obtain
the real cepstrum. The cepstral coefficients are obtained
by applying the discrete cosine transform (DCT):

cj =
K−1∑

i=0

mi cos

(
πj(i− 1

2 )

M

)

, (10)

where mi are the log filterbank amplitudes, M is the
number of triangle bandpass filters, j is the index of the
cepstral coefficient (j = 1, . . . , 20).

A detailed description of the parameters used is given
by Kostek et al. (2011) and Korvel et al. (2019). Before
performing an analysis of these parameters, they should be
normalized. The normalization to the range [0, 1] is used.
This process can be described by the following formula:

ṽl =
vl −min(V)

max (V)−min(V)
, (11)

where V = (v1, . . . , vL) is a vector of non-normalized
parameters, the values vl and ṽl refer to the normalized
and non-normalized l-th parameter, respectively, l ∈
[1, L], L signifies the number of parameters.

3.2.1. Parameter vector dimensionality reduc-
tion. We aim to disclose which of the extracted
acoustic parameters concern the Lombard effect the
most. To check which parameters of the 106 extracted
ones are important, we implement a dimensionality
reduction technique by employing a discriminating
parameter selection procedure. According to this
procedure, correlation coefficients are calculated between
the parameters extracted from the speech signal with
and without the Lombard effect. The parameters for
which correlation coefficients are greater than a threshold
prescribed are rejected. To find out which threshold yields
the best results, systematic and controlled experiments
were carried out. As a result, an optimized feature vector
is determined, which shows differences between signals
recorded with the Lombard effect and without it. The
correlation coefficient was 0.5. The analysis considers the
dependence of the type of interfering noise, the type of
room in which the recordings took place, and the gender
of the person exposed to noise while recorded. A set of
the optimized acoustic parameters in the context of the
Lombard effect is given in Table 2. The self-similarity
matrix is constructed based on these parameters. An
example of a graphical representation of separation based
on these parameters is given in Fig. 6.

Fig. 5. Separation of the Lombard effect based on Audio Spec-
trum Envelope calculated on four and nine sub-bands
(the brighter circles denote the recordings without the
Lombard effect, the darker circles—recordings with the
Lombard effect (cocktail-party-effect type noise; level of
80 dBA)).

Table 2. Set of the optimized acoustic parameters in terms of
Lombard effect detection.

No. Parameter
Time-domain parameters
4-6 The number of samples exceeding levels

RMS, 2× RMS, 3×RMS (p1, p2, p3)
13 Peak to RMS
Frequency-domain parameters
35 Spectral entropy
39-55,
62-64

Audio spectrum envelope calculated on 29
sub-bands (ASE2–ASE17, ASE25–ASE27)

69-76,
82-85

Spectral flatness measure calculated on 18
sub-bands (SFM2–SFM8, SFM15–SFM18)

86 Mean spectral flatness measure (SFM)
87-88,
97-106

Mel-frequency cepstral coefficients
(MFCC1–MFCC2, MFCC11–MFCC20)

In addition, principal component analysis (PCA)
was performed to achieve possibly the most orthogonal
dimensions (Kherif and Latypova, 2020; Diamantaras,
2002). The PCA method was applied to the set consisting
of 106 parameters (Table 1) calculated for all mid-term
segments. As a result, we obtained 58 components
sufficient to contain 99% of the information.

3.3. Spectrogram generation. The spectrogram is the
most often used representation of a speech signal (Ouyang
et al., 2019; Nugraha et al., 2020). A spectrogram is
constructed from a series of short-time Fourier transforms
(see Eqn. (7)), which are computed along the time domain
waveform of the analyzed speech signal. The obtained
values are collected together, and a spectrogram image is
built up. A graphical representation of the spectrogram
obtained is given in Fig. 6.
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3.4. Convolutional neural network selection. In
our research, a convolutional neural network (CNN) is
investigated and trained on self-similarity matrices to
obtain a model that can most precisely detect the Lombard
effect. The model architectures were investigated
by applying a hyperparameter optimization framework
(O’Malley et al., 2019) and the hyperband optimization
technique (Li et al., 2017). The structure of the search
space was selected as follows: every convolutional layer
was followed by MaxPooling and batch normalization.
The maximum number of convolutional layers was limited
to five. Then up to five more dense layers can be added
before flattening and the classifying dense layer, which is
placed at the end of the architecture.

In each convolutional layer the number of filters
ranged from to 8 to 128, the kernel size was in the range
from 1 to 7, and the activations explored were ELU,
ReLU, TanH and Sigmoid. Pool sizes in MaxPooling
varied in the range from 2 to 4. The number of dense
layer units selected by the optimization algorithm varied
from to 8 to 128 and the investigated set of possible
activation functions was the same as those tested for
every convolutional layer. The Glorot uniform algorithm
(Glorot and Bengio, 2010) was used for kernel weight
initialization (convolutional and dense layers). The model
was compiled using a binary cross-entropy loss function
and the Adam (adaptive moment) optimizer (Kingma and
Ba, 2014) at varying learning rate steps: 0.1, 0.01, 0.001,
and 0.0001. The adaptive moment estimation parameters
β1 and β2 were set to 0.95 and 0.999, respectively. Input
images are scaled to 256 × 256 and resized using the
nearest neighbor method.

The summaries of the best-found architectures for
different types of recordings with the Lombard effect
are presented in Tables 6 to 8. After obtaining the best
architecture from the hyperband optimization algorithm,
each architecture’s robustness was inspected further by
training the model 100 times. To prevent the neural
network from over training and to obtain the best results,
early stopping, together with a reduced learning rate on
plateau techniques, were used. The reduced learning
rate on the plateau parameter factor was set to 0.2, and
the minimum learning rate was set to 0.001. During
each architecture training, validation, and test stage, data
samples were selected randomly while keeping data split
proportions: 64% of the data were used for model
training, 16% for model validation, and 20% of total
data for model testing. Finally, the best-performing
model performance is visualized in Fig. 10. The model
is constructed using the Python programming language
and the Keras Python deep learning library with the
TensorFlow library (TensorFlow library, Keras library)
(Manaswi et al., 2018).

Fig. 6. Example of the spectrogram representation.

Table 3. Split of mid-term segments with regard to the different
types of interfering noise.

Type of noise No. of segms.
Wihout interfering noise 2233
Pink noise of 73 dBA signal level 2333
Pink noise of 84 dBA signal level 2233
The cocktail-party-effect of 80 dBA 1518

Table 4. Split of mid-term segments with regard to the room
type.

Type of room No. of segms.
An acoustically treated room 4196
A studio with light acoustic treatment 4121

Table 5. Split of mid-term segments with regard to the speaker
the gender.

Type of room No. of segms.
An acoustically treated room 4521
A studio with light acoustic treatment 3796

4. Experimental results
The experiment is performed on speech recordings
divided into mid-term segments. In this way, 8317
mid-term segments were obtained. Information about the
split of mid-term segments with regard to the different
types of noise used during the recording process is given
in Table 3. Accordingly, Tables 4 and 5 show the split
of mid-term segments regarding the room type and the
gender of the person being recorded, respectively.

In the first part of the experiment the effectiveness
of the optimized acoustic parameter set (see Table 2)
and PCA components obtained from all extracted
parameters (Table 1) is evaluated. For this purpose,
the kNN algorithm is employed (Zhang et al., 2017).
The evaluation of the accuracy measure is performed
separately for interference noise, room type, and gender.
To obtain results robust to random sampling, a 100-fold
random sub-sampling method is used (Berrar, 2019).
Based on this method, 100 pairs of training and testing
sets are generated. The learning function is applied to
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Fig. 7. Performance metrics [%] of feature vector containing acoustic parameters from Table 2 combined with the kNN across the ten
splits for recordings with the Lombard effect (‘Treat’ denotes an acoustically treated room, ‘UnTreat’ is a studio with a light
acoustic treatment).

Fig. 8. Performance metrics [%] of 58 PCA components combined with the kNN across the ten splits for recordings with the Lombard
effect.

each training set, and the resulting model is then applied to
the corresponding test set. The performance is estimated
as the average over 100 test sets. The classification results
are given in Figs. 7 and 8.

As can be seen from the results, the classification
accuracies obtained by using the optimized acoustic
parameters set are higher than those using PCA
components; therefore, the self-similarity matrices based
on the optimized acoustic parameters set are created
and introduced as 2D space features at the CNN
input. For comparing the results obtained, spectrogram
representations, an alternative method of speech signal
representation in the 2D space, are used. The different
CNN models were trained for each type of interfering
noise, the type of room, and the gender of the person being

recorded. The architectures of the models trained for each
kind of noise without a split into the gender of the speaker
and room type are given in Tables 6–8, where the names
of all layers, along with hyperparameters, are presented.
The obtained results are presented in Figs. 9 and 10.

As can be seen from the results, the highest
classification accuracies were achieved for the
self-similarity approach. The feature vector containing
acoustic parameters related to the Lombard effect
combined with the kNN also produces good results, with
minor differences.

When comparing the obtained results in the context
of interference noise, the following tendencies are seen:
while playing broadband pink noise with a higher noise
level (i.e., 84 dBA), the classification performance of
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Table 6. CNN architecture for recordings with the Lombard effect recordings playing broadband pink noise at an approximately 73
dBA signal level.

Layer name Filters Units Kernel size Pool size Padding Stride Activation
Conv2D 56 3,3 same 1,1 ReLU
MaxPooling2D 3,3 3.3
BatchNormalization
Conv2D 48 3,3 same 1,1 TanH
MaxPooling2D 2,2 2,2
BatchNormalization
Dense 96 ELU
BatchNormalization
Dense 96 ELU
BatchNormalization
Flatten
Dense 2 Sigmoid

Table 7. CNN architecture for recordings with the Lombard effect recordings playing broadband pink noise at an approximately 84
dBA signal level.

Layer name Filters Units Kernel size Pool size Padding Stride Activation
Conv2D 32 5,5 same 1,1 ReLU
MaxPooling2D 2,2 2,2
BatchNormalization
Conv2D 64 5,5 same 1,1 Sigmoid
MaxPooling2D 3,3 3,3
BatchNormalization
Dense 80 Sigmoid
BatchNormalization
Flatten
Dense 2 Sigmoid

all methods employed is better in comparison with the
case of recordings with a lower pink noise level (i.e.,
73 dBA). This led us the conclusion that the higher
the background noise level, the stronger the Lombard
effect (Bottalico et al., 2017; 2022). In the case of
the noise with the cocktail-party effect, the classification
scores for methods based on acoustic parameters are
more effective than recordings with pink noise distortion
(regardless of the noise level). This is not confirmed for
the joint spectrogram-CNN-based approach, but, notably,
the scores of recordings with the cocktail-party-effect
noise are significantly higher compared with the same
level of pink noise.

The analysis of the results obtained regarding the
room type revealed that for the method based on acoustic
parameters, the classification accuracies of recordings
obtained in a studio with a light acoustic treatment are
better than those obtained in an acoustically treated room.
For the spectrograms, this tendency related to room type
is not observed.

Comparing the results obtained regarding the speaker
gender, we can observe that the classification accuracy
using spectrograms and the CNN and acoustic-based

features together with the kNN is significantly different
for male and female speakers, while the difference is
not significant using the similarity approach. Moreover,
it can be seen that the difference between male and
female speakers, in the case of spectrograms, shows better
accuracy when evaluating female and male recordings
separately than when considering all recordings together.

Different CNN models were trained for each type of
interfering noise, room type, and gender of the person
being recorded to check whether the proposed feature
space generalizes well. Following the analysis of the
results obtained, we can see that the models generalize
well to all data sets. As a result, we have inspected
a single generalized model of merged data. According
to Table 3 to represent the negative class (C1), we took
all the data without interfering noise. To represent the
positive class (C2), one third of the data were taken
from the samples representing 73 dBA, another one third
representing 84 dBA and the final one third representing
the cocktail party effect of a 80 dBA signal level. Such
a scheme enforced a positive-negative class data balance.
The procedure for architecture selection and best-model
evaluation was applied as described in Section 3.4. We
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Fig. 9. Performance metrics [%] of spectrograms and the CNN across the ten splits for recordings with the Lombard effect.

Fig. 10. Performance metrics [%] of self-similarity matrices and the CNN across the ten splits for recordings with the Lombard effect.

assume that the 100-times train-validated model resolves
the room type and speaker gender data variability. The
obtained architecture of the model is given in Table 9.
The performance of the model is shown in Fig. 11, where
the binary confusion matrix is visualized. The overall
accuracy derived from the confusion matrix was 98.99%
and statistics for 100 train/validation/test trials test set
classification results converged to an accuracy mean of
97.2%. at the standard deviation of 0.7%.

5. Conclusions

In the paper, we have evaluated the performance of
the proposed self-similarity approach for Lombard effect
detection. For comparison of results, classification
employing kNN and CNN methods using acoustic
parameters and spectrograms, respectively, as inputs is

performed. The experimental investigations showed
that regardless of different factors involved (i.e., type
of interfering noise, type of room, and gender of the
person being recorded), the highest accuracies were
achieved by the self-similarity approach. Moreover,
the proposed self-similarity feature space shows good
classifier generalization properties at different noise types
and levels. Classification results converged to the mean
accuracy of 97.2% at the standard deviation of 0.7%
while classifying data of different factors involved. This
leads us to conclude that, despite the simplicity of the
selected network architecture, the self-similarity shows
the superiority over the other two methods utilized in
context of the Lombard effect detection. Moreover, the
small standard deviation for the self-similarity approach
indicates that the accuracies obtained are quite precise.

An additional conclusion related to the range of
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Table 8. CNN architecture for recordings with the Lombard effect recordings playing the noise with the cocktail-party effect at an
approximately 80 dBA signal level.

Layer name Filters Units Kernel size Pool size Padding Stride Activation
Conv2D 40 1,1 same 1,1 ReLU

MaxPooling2D 2,2 2,2
BatchNormalization

Conv2D 64 5,5 same 1,1 ELU
MaxPooling2D 2,2 2,2

BatchNormalization
Dense 56 TanH

BatchNormalization
Flatten
Dense 2 Sigmoid

Table 9. General CNN architecture for all types of recordings with the Lombard effect.
Layer name Filters Units Kernel size Pool size Padding Stride Activation
Conv2D 72 3,3 same 1,1 ELU
MaxPooling2D 2,2 2,2
BatchNormalization
Conv2D 128 1,1 same 1,1 ELU
MaxPooling2D 2,2 2,2
BatchNormalization
Conv2D 112 3,3 same 1,1 ReLU
MaxPooling2D 3,3 3,3
BatchNormalization
Dense 112 ELU
BatchNormalization
Flatten
Dense 2 Sigmoid

parameters can be formulated. While in many cases,
extensive use of possible parameters proves helpful,
especially in the case of machine learning, in terms
of detection of the Lombard effect, it has not been.
This is confirmed by the fact that the Lombard effect
detection based on specific Lombard phenomenon-related
parameters has shown very good results. In contrast,
spectrograms covering a wide range of parameters showed
lower accuracy. The same can be said about traditional
dimensionality reduction techniques (i.e., PCA) used in
data mining. The dimensionality reduction of a data set
by transforming it into a new coordinate system has not
worked. The reason for this may be that the Lombard
speech characteristics vary over time, and they are difficult
to detect as they depend on several factors. We also found
that the network learns to detect other phenomena at the
same time. This is supported by the fact that, in the case
of spectrograms, the accuracy of evaluating female and
male recordings separately is better than that of assessing
all recordings together. We can see that the network learns
features related not only to the Lombard effect but also, as
in the referred case, to the gender of the speaker. However,
this statement requires a thorough analysis, which we

should follow in future research.
Lastly, the idea of a system mimicking the natural

way of speaking in noisy conditions by speech synthesis
is to be pursued as the area of hearing aid may benefit
from such an approach.
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