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We deal with the fundamental problem of path following applied to control mobile manipulators. A parametric-based path
following algorithm is proposed. Such an approach results in a cascaded structure of the control system, so that the control
algorithm is designed using the backstepping integrator method. The proposed solution is robust due to the following
features. Firstly, it is based on the Bishop parametrization, which is well-defined at every point of the curve. Moreover, we
present a novel approach to the orthogonal projection method onto the path so that the motion precisely along the path is
possible. Finally, the robustness to structural and parametric uncertainties of the dynamics model is guaranteed thanks to
the sliding mode controller applied at the dynamic level of the control cascade. The problem is analyzed theoretically. The
achieved results are verified with an exemplary simulation study. The proposed algorithm assures asymptotic convergence
of errors to zero for less strict requirements imposed on the desired path and in the case of partial knowledge of the dynamics
model.
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1. Introduction

Over the past decades the control problem of robotic
systems, especially with motion constraints, has attracted
a great deal of attention. The importance of robotic
solutions in industry is constantly growing as they allow
improving precision in manufacturing processes and
reduce production costs. The execution of a complex
robot motion is usually performed as the trajectory
tracking task, i.e., a motion with restricted time regime.
In such a case robots are forced to achieve very high
velocities: trajectories as “curves parametrized by time”
have to be executed very fast. However, in many practical
situations system velocities are bounded due to limited
actuations. The solution to a required motion constrained
with limited speed is the path following.

According to Hung et al. (2023), the path following
task is controlling a robot position in order to reach
and follow a spatial curve while a velocity profile along
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the path is asymptotically tracked. The path is a pure
geometrical object, often resulting from path planning
algorithms, which have been eagerly developed by many
researchers, for example by Pepy et al. (2009), Przybylski
and Putz (2017), Jafarzadeh and Fleming (2018), Costa
and Silva (2019) or Sun and Liu (2021).

There are different approaches to the path following
problem. One may distinguish two main trends,
namely parametric and non-parametric. Parametric
solutions are often based on the formalism of curvilinear
parametrizations which define a local frame evolving
along the path according to its geometry. Robot
behaviour is designed with respect to the particular
non-inertial frame associated with the desired path.
Such methods are eagerly considered in the literature
and practical applications. They have been discussed
for mobile robots (Liao et al., 2015; Micaelli and
Samson, 1993) and holonomic fixed-base manipulators
on a plane (Galicki, 2006). These papers deal with
two-dimensional cases, which are not easily scalable to

mailto:{alicja.mazur,filip.dyba}@pwr.edu.pl


210 A. Mazur and F. Dyba

the three-dimensional space. Solutions in the 3D space
have been presented for holonomic manipulators (Mazur
et al., 2015; Mazur and Dyba, 2023), autonomous
underwater vehicles (Encarnação and Pascoal, 2000),
and a group of robots (Cichella et al., 2012). The
path following task has been also studied for flying
robots (Lugo-Cárdenas et al., 2017), but the presented
solution is restricted only to a kinematic analysis.

On the other hand, the non-parametric solutions are
also investigated. This approach is mainly based on
purely computational methods which frequently require
defining the zero-level set, e.g., (Michałek and Gawron,
2018) or (Li et al., 2020). Deriving a zero-level set is
a non-trivial task. However, it can be used to consider
speed limits or obstacles in the task (Gonçalves et al.,
2020). Vector fields have also been eagerly considered in
non-parametric solutions, e.g., (Michałek and Kozłowski,
2009) or (Michałek and Gawron, 2018). A vector field
is designed in such a way so that its integral curves
converge to the desired path (Kapitanyuk et al., 2018).
Although methods based on vector fields have suitable
representation, a certain effort has to be made to assure
that method singularities are avoided.

The vector-field-based methods can also benefit
from a parametric representation of a curve which can
be defined by n scalar functions (Gonçalves et al.,
2010). Such an approach may result in a high
dimensionality of the task (n-dimensional vector fields).
The dimension may be even increased to avoid problems
with singularities in the curve definition (Yao et al., 2021).
It results in higher problem complexity in comparison
with methods based on curvilinear parametrization. On
the other hand, vector fields seem suitable to deal
with time-varying curves (Gonçalves et al., 2010), but
undesirable stable equilibrium points must be dealt with.
Rezende et al. (2022) proposed a solution to that problem
using a definition of the vector field based on elements of
a curvilinear parametrization of the desired path. Rezende
et al. (2022) indicated a problem with equidistant points to
a curve. To solve the issue, they wondered about including
the minimum distance from a curve in the state of a vector
field and defining a propagation law for this parameter. In
fact, such an approach is a fundamental aspect of methods
based on curvilinear parametrization.

In this paper, we focus on a method based on the
curvilinear parametrization formalism. Although this
approach is not free from drawbacks, it has a nice
geometric interpretation and results in low dimensionality
of the task. In fact, the task dimensionality directly
corresponds to the dimensions of a robot workspace.
The most popular curvilinear parametrization method
considered in the path following task was proposed
by Serret (1851) and Frenet (1852). However, it
is indeterminate when the path curvature is null.
An alternative method was introduced by Bishop (1975).

The usage of the Bishop parametrization leads to
a significant improvement in the generalization of the
robot description with respect to the given path.

Furthermore, in order to obtain equations of
motion with respect to the reference path described by
a curvilinear parametrization, a virtual target on the path
is considered. It can be located at any distance from
the controlled robot, which results in a non-orthogonal
parametrization (Mazur and Dyba, 2023). Alternatively,
a controlled robot can be located always at the shortest
distance from a target to obtain the orthogonal projection
of the robot onto the path (Mazur et al., 2015).
In the second approach, the problem dimensionality
is minimised thanks to the assumption of the closest
proximity between the robot and the path. On the other
hand, it introduces a singularity to the robot description.
Thus, the parametrization is defined locally, near the path.

The parametric-based approach to the path following
problem results in a certain structure of the control
system. The mathematical model of a robot for the
path following task includes the robot dynamics as a set
of second-order differential equations, and the robot
kinematics as a set of the first-order differential equations
(description of the end-effector motion relative to the
local frame associated with the path). The equations
describing the kinematic and dynamic behaviour of the
plant are coupled and can be described as a two-stage
cascade system. Such a cascade structure has been eagerly
used for control purposes, for instance by Soetanto et al.
(2003) or Kozłowski and Pazderski (2004). In such
a control structure there exist subsystems that cannot be
controlled via the external inputs. However, they are
commanded due to appropriate control design on the
respective cascade levels. According to Krstić et al.
(1995), the backstepping integrator algorithm can be used
as an efficient control method for the cascaded systems.

In this article, we also focus on a particular type of
robots, namely mobile manipulators. They are willingly
included in the research and applications as they are
particularly relevant to the automation of freight transport
and complex lifting operations. A mobile manipulator
is described as a robotic system composed of two
separate subsystems: a mobile platform and an on-board
manipulator. Taking into account the mobility of the
subsystems, i.e., the type of constraints occurring in
motion, there are four possible configurations of mobile
manipulators. They concern holonomic properties either
of the platform or the manipulator. The most popular is
the combination (nh, h), i.e., a non-holonomic base and
a holonomic manipulator. Such a system can perform
manipulation tasks in a larger workspace than a fixed-base
manipulator. The price that should be paid for such
an advantage is a more complex modelling description
and control design (Mazur, 2010), which are considered
within this article.
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The control problem of mobile manipulators has
already been addressed in the literature, e.g. by Mazur
(2004) or Mazur and Szakiel (2009), where the path
following problem was considered. The authors provided
solutions for mobile manipulators of type (nh, h)
and (nh, nh). However, they treated the path following
task for every subsystem separately and based their
control strategies on the Serret–Frenet parametrization.

The contribution of our paper is the following:

• A new control algorithm for non-holonomic mobile
manipulators of the type (nh, h) is presented. The
aim of the algorithm is to allow the manipulator
end-effector to follow 3D paths defined by curves
of at least class C2, without dividing the task into
the separate subtasks for the platform and the robotic
arm.

• The robot description with respect to the given
path is achieved by using the orthogonal Bishop
parametrization. This is a generalization of
the previously considered methods as it has no
indeterminacy points resulting from the curve
geometry. A novel approach to the formulation of the
orthogonal projection constraint is also discussed. It
allows us to avoid or translate the singularity of the
method. As a result, the end-effector is able to move
precisely along the path, not only to asymptotically
approach it.

• The proposed control law is robust to structural
or parametric uncertainties of the robot dynamics.
The algorithm is designed with the backstepping
integrator method. On the first level (the kinematics
level) velocity profiles are generated in order to
follow the path and stick to the motion constraints
resulting from the platform non-holonomy. On the
dynamics level a sliding mode controller (Slotine and
Li, 1991; Utkin, 1992) is harnessed. The sliding
mode controllers have already been considered in
many applications, for instance, by Bartoszewicz
and Adamiak (2019), or Abadi et al. (2020). We
tailor this method to the path following problem and
the specificity of mobile manipulators. The formal
analysis is provided to show that the algorithm
guarantees asymptotic convergence of errors to zero
despite the dynamics uncertainty. The theoretical
stability of the algorithm is verified with a simulation
study.

2. Mathematical description of the robot
The considered robot is a mobile manipulator of the
type (nh, h) that consists of a non-holonomic mobile
platform equipped with non-deformable wheels and
a holonomic rigid manipulator mounted on its top. The

state of the mobile manipulator is described as

q =

(
qm

qr

)
, (1)

where qm ∈ R
n is the platform state and qr ∈ R

p is
the vector of joint positions.

It is assumed that non-holonomic constraints are
imposed on the mobile platform. In the system there are
no longitudinal slippage for every wheel and no lateral
slippage (Spong and Vidyasagar, 1991). Such constraints
may be expressed in the Pfaffian form

A(qm)q̇m = 0, (2)

with A(qm) ∈ R
l×n, where l is a number of independent

constraints. Non-holonomic constraints can be expressed
also as a driftless control system

q̇m = G(qm)η, (3)

where the matrix G(qm) ∈ R
n×m, m = n − l, and

the vector η ∈ R
m defines the so-called auxiliary

velocities (Campion et al., 1996). The matrix G(qm) is
chosen in order to span the kernel of the Pfaffian matrix
A(qm), i.e., that A ·G ≡ 0 holds.

The position and orientation of the end-effector in
the inertial frame X0Y0Z0 are described by the expression

p(q) = p(qm, qr) ∈ R
k. (4)

Hence, the end-effector velocity may be expressed as

ṗ =
∂p

∂q
q̇ =

[
∂p

∂qm

∂p

∂qr

](
q̇m

q̇r

)

=
[
Jm Jr

](q̇m

q̇r

)
.

It leads to the equation

ṗ =
[
Jm | Jr

] (q̇m

q̇r

)

=
[
Jm | Jr

] (Gη
q̇r

)

=
[
JmG | Jr

]( η
q̇r

)

=
[
J∗

m | Jr

]
z

= J∗(q)z,

(5)

where z =
(
ηT q̇T

r

)T
is the vector of auxiliary

velocities for the (nh, h) mobile manipulator and
J∗ ∈ R

k×(m+p) is the Jacobi matrix describing the
relationship between velocities of the mobile manipulator
end-effector ṗ and auxiliary velocities z. In Eqn. (5)
the non-holonomic constraints of the mobile platform are
taken into account by introducing the matrix G(qm).
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Dynamics of the system may be derived using the
d’Alembert principle (Mazur, 2004). It is expressed with
the equation (Mazur and Płaskonka, 2012)

Q(q)q̈ +C(q̇, q)q̇ +D(q) =

[
AT

0

]
λ +Bτ , (6)

where the following elements are defined:

• Q(q) =

[
Q11 Q12

Q21 Q22

]
∈ R

(n+p)×(n+p) is the inertia

matrix of the mobile manipulator;

• C(q, q̇) =

[
C11 C12

C21 C22

]
∈ R

(n+p)×(n+p) is the

matrix of Coriolis and centrifugal forces acting on
the mobile manipulator;

• D(q) =

(
0
D2

)
∈ R

n+p is the gravity vector; it is

assumed that the mobile platform moves only on the
X0Y0 plane;

• λ ∈ R
l is the vector of Lagrange multipliers, which

have a sense of static friction forces; non-holonomic
constraints are defined only for the mobile platform;

• B =

[
Bm 0
0 Ip

]
∈ R

(n+p)×(m+p) is the input

matrix;

• τ =

(
τm

τ r

)
∈ R

m+p is the control vector; the

vector τm represents control torques in the platform
wheels, while τ r stands for control generalized
forces in the manipulator joints.

Let us observe that the elements Q12, Q21, C12 and
C21 result from the dynamic coupling between the mobile
platform and the manipulator.

Subsequently, the dynamics is expressed with the
auxiliary coordinates z. It is derived by pre-multiplying
Eqn. (6) by the matrix [G

T 0
0 Ip

]. Considering also the
driftless system, Eqn. (3), and its time derivative, the
dynamics model is expressed as

Q∗(q)ż +C∗(q, q̇)z +D∗(q) = B∗(q)τ , (7)

where Q∗(q),C∗(q, q̇),B∗(q) ∈ R
(m+p)×(m+p) and

Q∗(q) =
[
GTQ11G GTQ12

Q21G Q22

]
,

C∗(q, q̇) =
[
GTC11G+GTQ11Ġ GTC12

C21G+Q21Ġ C22

]
,

D∗(q) =
(

0
D2

)
∈ R

m+p,

B∗(q) =
[
GTB 0
0 Ip

]
.

Property 1. (Skew-symmetry of the inertia matrix)
According to Dulęba (2000), the inertia matrix Q∗ of
a mobile manipulator does not preserve the property
of skew-symmetry, which is typical for fixed-base
manipulators. Therefore, a correction matrix Cγ is
defined to satisfy the following relation:

Q̇
∗
= (C∗ +Cγ) + (C∗ +Cγ)T . (8)

3. Bishop parametrization
The Bishop parametrization (Bishop, 1975) allows one
to define a local frame associated with a curve. The
evolution of the frame along the curve is strictly defined
by its geometry. It is an alternative parametrization
method to the one presented simultaneously by Serret
(1851) and Frenet (1852). Comparing both the methods,
it can be observed that the Bishop frame offers clear
advantages over the Serret–Frenet parametrization. The
Bishop frame

• is well defined at all zero-curvature points (Carroll
et al., 2013) in contrast to the Serret–Frenet frame;

• can be used to parametrize paths with zero curvature;
in particular, it enables to derive parametrization
of a straight line, which is a common motion
component;

• evolves continuously along a curve due to the lack of
indeterminacy points (Carroll et al., 2013);

• reduces the requirement on the minimal curve class
to C2 (for the Serret–Frenet method a curve has to be
at least class C3);

• expands the scope of curves which may be
considered as the desired path in the path following
task;

• minimizes the frame rotations along the curve (Selig
and Wu, 2006);

• can be rotated in the initial state, although its
evolution remains unique.

The Bishop frame consists of a vector tangent
to a curve r, denoted as T , and two of its normal
vectors. If the curve is expressed with respect to the
arc length, s, called also as curvilinear distance (Oprea,
1997), the tangent vector is defined as

T (s) =
dr(s)

ds
. (9)

The normal vectors {N1,N 2} are chosen in such a way
as to create with the tangential vector an orthonormal basis
in R

3. The evolution of the normal vectors is defined with
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the relatively parallel transport (Bishop, 1975; Lee, 1997).
This means that the following relation holds:

dN i(s)

ds
= gi(s)T (s), i ∈ {1, 2}, (10)

where gi(s) are functions defined by some geometric
invariants of the Bishop parametrization, k1(s) and k2(s),
resulting from the curve geometry. They do not have
an intuitive interpretation like curvature or torsion, but
explicitly depend on them (Bishop, 1975). Hence,
the evolution of the Bishop frame may be described as

dT (s)

ds
= k1(s)N1(s) + k2(s)N 2(s), (11a)

dN 1(s)

ds
= −k1(s)T (s), (11b)

dN 2(s)

ds
= −k2(s)T (s). (11c)

These equations may be expressed in the matrix form

dS(s)
ds

=

[
dT (s)

ds

dN1(s)

ds

dN 2(s)

ds

]

=

⎡
⎣T T (s)

NT
1 (s)

NT
2 (s)

⎤
⎦
T ⎡
⎣ 0 −k1(s) −k2(s)

k1(s) 0 0
k2(s) 0 0

⎤
⎦

= S(s)W (s).

(12)

The matrix S(s)∈ SO(3) describes the orientation of
the Bishop frame with respect to the inertial frame. The
matrix W (s) is a skew-symmetric matrix by construction
and its elements are the Bishop geometric invariants. The
evolution of the matrix S(s) in the time domain is defined
with the following equation:

Ṡ(s) =
dS(s)

ds
ṡ = ṡS(s)W (s). (13)

The pair (k1, k2) is called the normal development of
the curve (Bishop, 1975). It may be calculated based on
Eqns. (11), and the assumption that the base vectors are
orthonormal (Liu and Pei, 2013),

k1(s) =

〈
dT (s)

ds
,N1(s)

〉
, (14a)

k2(s) =

〈
dT (s)

ds
,N2(s)

〉
, (14b)

where 〈·, ·〉 denotes the scalar product of vectors. The
values defined in Eqns. (14a) and (14b) are necessary for
computing the Bishop frame evolution.

The presented Bishop parametrization equations can
be harnessed to describe the robot state with respect to
a given curve.

Z0

X0

Y0

p

P

r

d

N 2

d1

T
N 1

r3

r2

r1

d2

d3

Fig. 1. Orthogonal projection of an object onto a curve.

4. Robot equations with respect to the
Bishop frame avoiding singularity

In order to enforce the robot to move along the path,
we describe the end-effector position with respect to
the local frame associated with the given path via the
Bishop parametrization method. As a consequence, the
description of the controlled object with respect to the
moving frame is derived. This motion is fully defined
with the path geometry, so if the robot mimics it, the path
following problem is solved.

It is assumed that the end-effector position in the
inertial frame p is projected orthogonally onto the curve
parametrized with the Bishop frame. As a result, the
end-effector is always located at the point of the closest
distance to the curve, i.e., in the plane spanned by the
normal vectors, N1 and N2. A schematic view of the
orthogonal projection is presented in Fig. 1. Define the
position of the manipulator end-effector in the Bishop
frame as

d =
(
d1 d2 d3

)T
= ST (p− r). (15)

According to the assumption of the orthogonal
projection, the distance in the tangent direction d1 should
always be zero. This implies that the vectors (p− r) and
T are orthogonal, i.e.,

〈T ,p− r〉 = 0. (16)

The time derivative of Eqn. (16) is〈
dT
ds

ṡ,p− r

〉
+ 〈T , ṗ− ṙ〉 = 0. (17)
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Considering the relation

〈T , ṙ〉 =
〈
T ,

dr
ds

ṡ

〉
= ṡ〈T ,T 〉 = ṡ, (18)

the condition which guarantees the fulfilment of the
orthogonal projection assumption is derived based on
Eqn. (17),

ṡ = − 〈T , ṗ〉〈 dT
ds ,p− r

〉− 1
. (19)

Taking into account Eqns. (11a) and (15), Eqn. (19)
can be reformulated as

ṡ = − 〈T , ṗ〉
k1d2 + k2d3 − 1

. (20)

It is noteworthy that the singularity defined in Eqn. (19)
is shifted in comparison with the previous form of the
orthogonal projection constraint used, e.g., by Mazur
et al. (2015). In the new approach, the expression〈 dT

ds ,p− r
〉

= k1d2 + k2d3 may be null and
Eqns. (19), (20) are still well defined. Although the
new definition of the orthogonal projection constraint
remains local as k1d2 + k2d3 �= 1, it allows us to fully
benefit from the Bishop parametrization method. The
manipulator end-effector can be located precisely on the
given curve and move along zero-curvature paths, when
(k1, k2) = (0, 0). The main drawbacks resulting from
the singularity of the orthogonal projection constraint
have been overcome by translating the singularity to
another point outside the reference path (Dyba and Mazur,
2024).

Consider now the evolution of the end-effector
position with respect to the Bishop frame. It is described
by the derivative of Eqn. (15)

ḋ = ST (ṗ− ṙ) + Ṡ
T
(p− r). (21)

Equation (21) may be rewritten as

ḋ1 = 〈T , ṗ− ṙ〉+ ṡk1〈N 1,p− r〉
+ ṡk2〈N2,p− r〉, (22a)

ḋ2 = 〈N1, ṗ− ṙ〉 − ṡk1〈T ,p− r〉
= 〈N1, ṗ− ṙ〉, (22b)

ḋ3 = 〈N2, ṗ− ṙ〉 − ṡk2〈T ,p− r〉
= 〈N2, ṗ− ṙ〉. (22c)

After a short computation involving Eqns. (18) and (20),
it can be shown that Eqn. (22a) confirms maintaining
a constant distance in the tangent vector direction as
ḋ1 = 0. As a result, the orthogonal projection assumption
is satisfied. Due to that fact, we need to assure the
satisfaction of the orthogonal projection constraint by
controlling the variable s. Apart from that, it is still
necessary to control the end-effector position in the

normal vectors directions. As a consequence, the state
of the end-effector with respect to the local Bishop frame
can be expressed with the following variables:

ξ =
(
s d2 d3

)T
. (23)

The vector ξ reduces the dimensionality of the path
following problem as the position in the tangent vector
direction is not taken into account. The time derivatives
of the vector ξ elements are defined as

ṡ = − T T

k1d2 + k2d3 − 1
ṗ = f1ṗ, (24a)

ḋ2 = NT
1 ṗ− 〈N1, ṙ〉

= NT
1 ṗ−

〈
N1,

dr
ds

ṡ

〉

= NT
1 ṗ− ṡ〈N1,T 〉

= NT
1 ṗ = f2ṗ, (24b)

ḋ3 = NT
2 ṗ− 〈N2, ṙ〉

= NT
2 ṗ−

〈
N2,

dr
ds

ṡ

〉

= NT
2 ṗ− ṡ〈N2,T 〉

= NT
2 ṗ = f3ṗ. (24c)

Equations (24) may be also rewritten in the concise form

ξ̇ = F ṗ, (25)

where F =
[
fT
1 fT

2 fT
3

]T
. Equation (25) fully

defines the evolution of the end-effector in the local
Bishop frame associated with a certain curve.

5. Control law formulation
The control problem considered in the article is following
a desired path of at least class C2 located in the robot
workspace by a non-holonomic mobile manipulator. Only
control of the position with respect to the given curve is
taken into account.

It is assumed that the orthogonal Bishop
parametrization is used to derive robot equations
with respect to the path. It may be noticed that Eqn. (25),
which describes the end-effector motion dynamics with
respect to the curve, has a similar form to the first-order
non-holonomic constraints (velocity constraints). It
means that the control problem is defined by

• the plant dynamics, Eqn. (7),

• the non-holonomic constraints of the robot
platform, Eqn. (3),

• the description of robot motion relative to the given
path in R

3, Eqn. (25).
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Dynamics level (ξ
, z
)

K

inematics level (
ξ)

ξ

z

τ

Fig. 2. Cascaded structure of the mobile manipulator system.

It is noteworthy that apart from the non-holonomic
constraints there are additional kinematic constraints in
the system which impose the successful following of the
path. In fact, the constraints, Eqns. (3) and (25), are
connected via Eqn. (5). Thus, the equation including all
kinematic constraints takes the form

ξ̇ = F ṗ = FJ∗z = Lz, (26)

where L = FJ∗ ∈ R
3×(m+p) is a full row rank matrix.

The variable ξ is the state variable on the kinematics
level. It can be controlled via the auxiliary velocity z,
which is the state variable on the dynamics level.
According to Eqn. (7), it can be controlled using the
external input τ . Hence, the kinematic constraints (26)
are coupled with the robot dynamics, Eqn. (7), and the
equations form a two-stage cascaded system which is
presented in Fig. 2.

The backstepping integrator algorithm (Krstić et al.,
1995) may be used for the design of the control law as
the general methodology for the cascaded systems. It
allows us to derive equations of constraints on the system
trajectories at every cascade level and take them into
account at higher stages. As a result, the external control
input is designed so that it satisfies all the constraints
of the system. In the considered case it is necessary
to design two controllers (each for every stage) working
simultaneously:

1. Kinematic controller (constraints (26) are
considered): On the first stage of the cascade,
i.e., the kinematics level, velocity profiles zref should
be generated in order to fulfil constraints resulting
from the given path and the non-holonomy of the
mobile platform. However, the reference velocities
cannot be commanded directly as they are a part
of the system trajectories. In fact, the kinematic
controller determines geometrically the desired
trajectory in the state variables space, so it performs
as a motion planner.

2. Dynamic controller: The velocity profiles generated

by the kinematic controller have to be enforced by
a control law on the second stage of the cascade,
i.e., at the dynamics level. That is, control
torques and forces τ are generated based on the
calculated velocity profiles. The dynamic controller
is responsible for controlling the generalized forces
in order to follow the trajectory in the state space, so
it can be treated as a motion executor.

The schematic view of the control structure is presented
in Fig. 3.

In the proposed cascade structure subsystems
influence each other, but the control signals are applied
only to the most outer one. Hence, we must assure that
the function forms of errors at the higher cascade stage
are defined by trajectories describing error dynamics at
the lower level. Therefore, according to Krstić et al.
(1995), the control design should start from the innermost
subsystem as though no higher stage existed. On every
higher level the formulated control laws have to be taken
into account.

Remark 1. It is noteworthy that the velocities z are
parts of the system trajectories and state variables on the
dynamics level. Hence, they are controlled only indirectly.
However, the velocity profiles, zref, are treated as control
inputs on the kinematics level for the design purposes.
The velocity profiles are used to close a control loop on
the kinematics level. In practice, the kinematic controller
is responsible only for planning velocity profiles to satisfy
kinematic constraints. It is the dynamic controller which
forces the system trajectories, z, to converge to the
planned velocity profiles, zref.

6. Main result: Control algorithm
6.1. Kinematic controller. As mentioned, the
kinematic constraints for the considered system are given
by Eqn. (26). Based on that equation the following
kinematic controller is proposed:

zref = L#
(
ξ̇d −Kkeξ

)
, (27)

where ξd = ξd(t) is the desired state of a robot with
respect to the local Bishop frame associated with the
desired path, eξ = ξ − ξd is the vector of path following
errors, Kk = diag{kk} is the positive-definite gain
matrix, kk > 0, and # denotes the Moore-Penrose
pseudoinverse of a matrix (Spong and Vidyasagar, 1991),
i.e.,

L# = LT (LLT )−1.

It is assumed that the robot operates outside singular
configurations. Thus, the matrix L is full row rank and
its pseudo-inverse L# is well defined. It is stated that
the proposed control law allows following the desired path
according to the following result:
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Robot
Kinematics: (26)
Dynamics: (7)

Dynamic
controller
Eq. (34)

Kinematic
controller
Eq. (27)

Desired path
generator

Velocity profile
along the path

τ

q, z

q̇
zref

r(s)

ṡd

Fig. 3. General scheme of the cascade control structure.

Theorem 1. The reference velocity profiles (27) guaran-
tee the asymptotic convergence of the path following er-
rors, eξ to zero.

Proof. (Kinematic control law) In order to satisfy
the kinematic constraints, the trajectories of the
system (26), z, should converge to appropriate reference
trajectories zref. According to the backstepping integrator
method (Krstić et al., 1995), the kinematic controller (27)
is treated as a control command for the system (26) as
though there were no higher levels of the control cascade.
According to Remark 1, the velocity profiles (27), zref,
constitute velocity controls for the system (26) to control
the state ξ. As a result, the system (26) in the closed
feedback loop with the control (27) is described by

ėξ +Kkeξ = 0. (28)

The Lyapunov-like candidate function for the
system (28) is defined as

V1(eξ) =
1

2
eTξ eξ. (29)

Its time derivative calculated along trajectories of the
system (28) is

V̇1(eξ) = eTξ ėξ

= eTξ (−Kkeξ)

= −eTξ Kkeξ

≤ −Kk‖eξ‖2 = −W1(eξ) ≤ 0. (30)

We have shown that the system (28) has
a positive-definite Lyapunov-like function (29), and
V̇1(eξ) ≤ 0 for any eξ ∈ Υ0 = {eξ : V1(eξ) < v0},
where v0 > 0. Hence, by virtue of the LaSalle invariance
principle (Canudas de Wit et al., 1996), all bounded
solutions starting in Υ0 tend to the maximum invariant

set Ω0, which is an attracting set and a subset of the
invariant set Ω = {eξ ∈ Υ0 : V̇1(eξ) = 0}. Since

V̇1(eξ) = 0 ⇐⇒ W1(eξ) = Kk‖eξ‖2 = 0,

the invariant set Ω is defined only by a single point
eξ = 0 which is the equilibrium point of the system (28).
Therefore, the maximum invariant set Ω0 has to be equal
to the invariant set Ω according to the relation

Ω0 = Ω = {eξ ∈ Υ0 : ‖eξ‖ = 0}.

This means that the path following errors
converge asymptotically to zero and the system (28)
is asymptotically stable with a zero equilibrium point for
any positive-definite matrix Kk. It guarantees that the
designed reference velocities, zref, allow following the
path correctly on the kinematics level. �

6.2. Dynamic controller. The second stage of the
cascaded structure requires a dynamic controller which
guarantees that the errors of following the velocity profiles
generated by the kinematic controller converge to zero.

The errors considered on this stage of the cascade are
the velocity profiles following errors defined as

ez = z − zref, (31)

where the reference velocity zref is defined by the output
of the kinematic controller given by Eqn. (27). Hence,
Eqn. (31) may be rewritten as

ez(eξ) = z −L#
(
ξ̇d −Kkeξ

)
. (32)

Equation (32) shows that the errors defined for both the
levels of the system are coupled. In particular, the function
form of the velocity profiles following errors ez is not
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random, but is directly dependent on the path following
errors eξ.

A sliding mode controller (Slotine and Li, 1991;
Utkin, 1992) is proposed as a dynamic control law.
This controller might be used when the structure of
robot dynamics model or some model parameters are not
known. It is robust to unknown external disturbances
which are not taken into account in the dynamics model.

If the dynamics model linearly depends on the
unknown parameters ρ and there are some structurally
unknown parts ζ(t), Eqn. (7) is transformed to the form

Q∗
k(q,ρ)ż +C∗

k(q, q̇,ρ)z +D∗
k(q,ρ) + ζ(t)

= Q∗
0(q)ż +C∗

0(q, q̇)z +D∗
0(q)

+Q∗
ρ(q)ż +C∗

ρ(q, q̇)z +D∗
ρ(q) + ζ(t)

= Q∗
0(q)ż +C∗

0(q, q̇)z +D∗
0(q)

+ Y (ż, z, q̇, q)ρ+ ζ(t) = B∗τ ,
(33)

where

• matrices with k in the subscript refer to the
structurally known part of the dynamics model,

• matrices with 0 in the subscript refer to the fully
known part of the robot dynamics,

• matrices with ρ in the subscript refer to the
parametrically unknown part of the model dynamics
and they are rewritten as matrix Y ,

• Y ∈ R
(m+p)×r is the regression matrix describing

the linear dependence on the unknown parameters,

• ρ ∈ R
r is the vector of unknown dynamic

parameters, and

• ζ ∈ R
m+p represents all unknown impacts which

influence the robot and are treated as slow-varying
disturbances. They cover both uncertainties in
the internal structure of the robot dynamics and
neglected external factors, such as limited acting
forces or an environment impact on friction forces,
e.g., temperature, air viscosity.

In order to define a sliding control law, it is assumed that
the unknown parameters and disturbances are bounded
and the limits are known:

• |ρi| ≤ ρ∗i , i = 1, 2, . . . , r,

• |ζi(t)| ≤ ζ∗i , i = 1, 2, . . . ,m+ p.

The upper limits of the parametric and structural
uncertainties can be estimated, at least roughly, based
on the available data in a robot manual (permissible
load, maximum velocities) and knowledge of the work

environment (predictable order of magnitude of mass
elements, friction, or external forces).

The following dynamic control law is proposed:

τ = (B∗)−1
(
Q∗

0(q)żdyn +C∗
0(q, q̇)zdyn

+D∗
0(q) + Y d(żdyn, zdyn, q̇, q)ρ̂−Cγ

0 (q̇, q)σ

−Xσ(σ, q̇, q)ρ̂−Kdσ −Ksgn(σ)
)
,

(34)

where

• σ is the slide variable defined as

σ = ez +Λe = z − zdyn (35)

with Λ as a positive-definite diagonal matrix and the
error signal e(t) satisfying the following relations

e(t) =

∫ t

0

ez(u) du, (36a)

ė(t) = ez(t); (36b)

• zdyn is the reference signal defined based on the
velocity profiles generated on the kinematics level
and results from the slide variable definition

zdyn = zref −Λe; (37)

• d in the subscript of the regression matrix Y d means
that it depends on the reference signals żdyn and zdyn;

• Xσ ∈ R
(m+p)×r is the regression matrix describing

the linear dependence of the correction matrix,
defined by Eqn. (8), on the unknown parameters ρ.
It satisfies the relation

Xσ(σ, q̇, q)ρ = Cγ
ρ(q̇, q,ρ)σ;

• Cγ
0 ∈ R

(m+p)×(m+p) is the part of the correction
matrix which is known structurally and
parametrically. Together with the part dependant
on the unknown parameters, Cγ

ρ, it creates the
correction matrix

Cγ
k(q̇, q,ρ) = Cγ

0(q̇, q) +Cγ
ρ(q̇, q,ρ)

to satisfy Property 1 for the structurally known
matrices, i.e., Q∗

k(q,ρ) and C∗
k(q̇, q,ρ);

• ρ̂ is the estimation of the unknown parameters. It is
constant and selected from the known range before
the control process;

• Kd is the symmetric and positive-definite gain
matrix;
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• K = diag{ki}, i = 1, 2, . . . ,m + p is a diagonal
matrix.

Let us notice that the expression Ksgn(σ) is
responsible for compensating errors resulting from the
lack of knowledge of the model. It attracts the system to
the sliding surface where the system dynamics converges
to the origin. The proposed approach results in correct
path following as stated by the following result:

Theorem 2. The system (33) in the closed feedback
loop with the control law (34) is asymptotically stable at
the zero equilibrium point. Hence, the error signals, ez
and eξ, converge to zero asymptotically.

Proof. (Dynamic control law) The system (33) in
the closed feedback loop with the control law (34) is
expressed with the equation

Q∗
0ż +C∗

0z +D∗
0 + Y ρ+ ζ

= Q∗
0żdyn +C∗

0zdyn +D∗
0 + Y dρ̂

−Cγ
0σ −Xσρ̂−Kdσ −Ksgn(σ), (38)

where the matrix arguments are omitted for the clarity of
notation. Let us subtract the elements Y dρ and Xσρ
from both the sides of Eqn. (38). We obtain

Q∗
kσ̇ +C∗

kσ −Zρ̃+Cγ
kσ

+Kdσ +Ksgn(σ) + ζ = 0, (39)

where ρ̃ = ρ̂ − ρ is the error of unknown parameters
estimation and Z = Y d −Xσ .

Notice that the considered disturbances consist of
disturbances resulting from the lack of the knowledge
of the inertia matrix structure, Coriolis and centrifugal
forces matrix structures, and other disturbances, i.e.,
ζ = ζQ + ζC + ζR. According to the assumptions,
all of the elements are bounded. Hence, the fully known
matrices along the system trajectories are obtained

Q∗ż = Q∗
kż + ζQ, C∗z = C∗

kz + ζC . (40)

In a similar way, matrices along the reference trajectories
can be denoted as

Q∗żdyn = Q∗
kżdyn + ζQd

,

C∗zdyn = C∗
kzdyn + ζCd

.
(41)

Moreover, we denote by ζγ and ζγd
the structurally

unknown parts of the correction matrix along the system
and along the reference trajectories, respectively. They
may exist due to structurally unknown elements of the
robot dynamics as the matrix C∗

k was defined based only
on the structurally known part. Thus,

Cγz = Cγ
kz + ζγ ,

Cγzdyn = Cγ
kzdyn + ζγd

.
(42)

The matrix Cγ satisfies Property 1 for the complete
matrices, i.e., Q∗ and C∗. Taking into account the above
relations, Eqn. (39) is reformulated as

Q∗σ̇ +C∗σ −Zρ̃+Cγσ

+Kdσ +Ksgn(σ) + ζN = 0, (43)

where ζN = ζR + ζQd
+ ζCd

− ζγ + ζγd
.

Consider a Lypunov-like candidate function

V2(eξ,σ, ez, t) = V1(eξ) +
1

2
σTQ∗σ, (44)

which is always non-negative due to the properties of
the inertia matrix Q∗ and the function V1 defined by
Eqn. (29).

The time derivative of the function (44) along the
system trajectories is equal to

V̇2 = V̇1 + σTQ∗σ̇ +
1

2
σT Q̇

∗
σ. (45)

Taking into account Eqns. (8) and (43), we get

V̇2 = V̇1 − σTKdσ

− σT (Ksgn(σ) + ζN −Zρ̃).
(46)

It can be observed that the last component of the sum in
Eqn. (46) is equal to

σT (Ksgn(σ) + ζN −Zρ̃)

=

m+p∑
i=1

|σi|
(
ki + ζNisgn(σi)−

r∑
j=1

Zij ρ̃jsgn(σi)
)
.

(47)

Define

ki =
r∑

j=1

Z∗
ijαj + ζ∗Ni

+ δi, (48)

where |Zij | ≤ Z∗
ij expresses the model constraints

along the system trajectories and reference trajectories,
αj = |ρ̂j | + ρ∗j ≥ |ρ̃j | constitutes the evaluation of
the maximal estimation error of the unknown parameters,
δi is a positive number, and ζ∗Ni

is the upper limit of the
unknown disturbances, i.e.,

|ζNi | ≤ |ζRi |+ |ζQdi
|+ |ζCdi

|
+ |ζγdi

− ζγi | ≤ ζ∗Ni
,

i = 1, 2, . . . ,m+ p. The newly defined disturbances ζN

are bounded as they comprise the disturbances limited by
assumption and constrained reference trajectories. We can
notice that for i = 1, 2, . . . ,m+ p

r∑
j=1

Z∗
ijαj −

r∑
j=1

Zij ρ̃jsgn(σi) ≥ 0, (49a)

ζ∗Ni
+ ζNisgn(σi) ≥ 0. (49b)
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From the definition (48) and the relations (49) it may
be concluded that

V̇2 ≤ V̇1(eξ)− σTKdσ −
m+p∑
i=1

δi|σi|

= V̇1(eξ)−W2(σ) ≤ 0. (50)

Notice that the element W2(σ) = σTKdσ +∑m+p
i=1 δi|σi| is non-negative for any positive-definite

matrix Kd. It is clear that

W2(σ) = 0 ⇐⇒ σ = 0. (51)

Hence, the LaSalle–Yoshizawa theorem (Canudas de Wit
et al., 1996) is harnessed to conclude that the trajectories
of the system (38) tend to zero asymptotically for the
positive-definite matrix Kd and the matrix K defined by
Eqn. (48). The trajectories of the system are brought to the
sliding surface. As a result, based on Eqns. (35), (36b),
and (51), the following relation is obtained:

ez = ė = −Λe, (52)

which for the positive-definite matrix Λ means that e → 0
as t → +∞. As a consequence, also z → zref as
t → +∞, so that the velocity profiles generated on the
kinematics level are followed asymptotically. Due to the
facts that the first level of the control cascade was taken
into account in the definition of the function (44) and the
errors eξ and ez are coupled, we deduce that both error
signals converge to zero and the path is followed correctly.

�

7. Simulation results
In this section results of the simulation study for
a particular model of the mobile manipulator are
presented.

7.1. Controlled robot. The plant considered in the
simulation study is a mobile manipulator of the type
(nh, h), which is presented in Fig. 4. It consists of
a unicycle-like platform of the type (2, 0) (Campion
et al., 1996) and an RTR manipulator mounted on the
platform. The robotic arm has three degrees of freedom:
rotational, translational and rotational. Parameters of
the mobile manipulator taken into account during the
simulation study are presented in Table 1. Mobile
platform parameters are based on the vehicle considered
by Yamamoto and Yun (1996), while the manipulator
description is chosen arbitrarily.

The state of the platform is qm =
(
x y φ

)T ,

which describes its position
(
x y

)T and orientation φ

on the X0Y0 plane. In turn, qr =
(
q1 q2 q3

)T

Y0

X0

Z0 x

y

Xp

Zp

Yp

XbYb
φ

X1

Y1

φ1

X2

Y2

φ2

L

q1

q2

l2

l3
q3

Fig. 4. Schematic view of the mobile manipulator.

is the robotic arm state, which describes positions in
the respective joints. The initial state of the mobile
manipulator was arbitrarily chosen as

q0 =
(
0.5m 0 0 π

4 rad 0.5m −π
2 rad

)T
,

(53)
while the initial auxiliary velocities are equal to z0 = 0.

7.2. Control law description. In this section the
elements of the control law considered in the simulation
study are described. The selection is exemplary to verify
the performance of the proposed algorithm.

The desired path was defined as a straight line, which
is the most evident example of a zero-curvature path. It
was given with the equation

r(s) = r0 + s
T 0

‖T 0‖ , (54)

where r0 =
(
1 0.1 0.15

)T , T 0 =
(
1 1 0.05

)T .
The desired value of vector ξd was defined as

ξd(t) =
(
0.1t+ s0 0 0

)T
, (55)

where s0 is the initial value of the curvilinear distance
resulting from the orthogonal projection of the object onto
the curve.

In the conducted numerical analysis the following
control gains were chosen arbitrarily:

• kinematic controller: Kk = diag3×3{100};

• dynamic controller: Kd = diag5×5{200},
K = diag5×5{10}, Λ = diag5×5{0.1}.
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Table 1. Mobile manipulator parameters.
Symbol Value Description
Mp 94 kg mobile platform mass
Mk 5 kg wheel mass
R 0.075 m wheel radius
IZ 6.609 kg ·m2 inertia moment of the platform with respect to the Zp axis of its local frame
L 0.3 m half width of the mobile platform

l 0.2 m
distance between manipulator base and platform centre of mass

in the Xp axis of the platform local frame
l2 0.3 m length of 2nd manipulator link
l3 0.2 m length of 3rd manipulator link
m2 20 kg mass of manipulator link l2
m3 20 kg mass of manipulator link l3

0

0.2

10

0.4

0.6

Z
 [m

]

0.8

1

X [m]

5
0

Y [m]

240 6

Fig. 5. Path followed by the mobile manipulator.

Moreover, in the simulation study some parametric
and structural uncertainties were artificially introduced
to validate the perfomance of the sliding mode
controller (34). In the case of parametric uncertainty, four
parameters were assumed to be unknown

ρ =
(
m3l2l3 m3l

2
2 Ip/L

2 m3l2
)T

,

where Ip = IZ + 0.5MkR
2 + 2MkL

2 is the total inertia
moment of the mobile robot with respect to Zp axis
of its local frame, see Fig. 4. In the control law the
following constant values of parameters were assumed:
ρ̂ =

(
1 5 60 10

)T . It is noteworthy that the chosen
values of unknown parameters ρ̂ were different from the
real values. Finally, some parts of the dynamic model
structure were neglected to verify the impact of structural
uncertainties. It simulates the lack of knowledge or errors
made in the modelling process. The arbitrarily selected
elements were equal to zero in the control law, although
they are non-zero values in the robot dynamics (7). The

0 10 20 30 40 50 60
Time [s]

-0.2

0

0.2

0 10 20 30 40 50 60
Time [s]

-0.01

0

0.01

Fig. 6. Path following errors.

omitted elements were chosen as follows:

• The whole gravity terms vector D∗; hence, D∗
k = 0

in Eqn. (33).

• Two elements on the main diagonal of the inertia
matrix. They correspond to the translational and
second rotational joints of the robotic arm, namely
Q∗

44 and Q∗
55. They are part of the matrix Q22 in

Eqn. (7). As a result, the matrix Q∗
k in Eqn. (33) is

equal to

Q∗
k =

⎡
⎢⎢⎣
GTQ11G GTQ12

Q21G

⎡
⎣Q

∗
33 Q∗

34 Q∗
35

Q∗
34 0 Q∗

45

Q∗
35 Q∗

45 0

⎤
⎦

⎤
⎥⎥⎦ .

The remaining elements of the controllers were derived
according to the dynamic and kinematic models of the
considered mobile manipulator.
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Fig. 7. Velocity profile following errors.

7.3. Numerical results. In order to verify the
theoretical results presented in the previous sections,
numerical simulations for the defined robot were
conducted in the MATLAB environment. The direct-drive
system was considered. Also, it was assumed that all
necessary measurements are available directly. In Fig. 5
the desired path and the path performed by the mobile
manipulator are shown. The control system compensates
the initial error, and forces the robot to approach the path
and move along the curve.

This behaviour can be even better observed in graphs
presenting the path following errors (Fig. 6) and the
velocity profile following errors (Fig. 7). All errors
asymptotically converge to zero. This confirms the
properties of the algorithm proven with the theoretical
analysis. In the transient state some high-frequency
oscillations can be observed. They result from the signum
element considered in the control law. However, when the
robot is close to the path, the error signals converge to zero
smoothly.

Finally, in Fig. 8 control signals generated by the
dynamic controller are presented. It is worth noticing that
the sliding mode controller introduces some rapid changes
in the control signals in order to compensate the lack of
knowledge of the dynamic model. It leads to oscillations
of the control value (in particular τ3) or sudden changes
of the value level (τ4 approximately in the middle of the
simulation time). It is worth noticing that the impact of the
sliding mode controller can be especially observed in the
degrees of freedom where elements of the dynamic model
structure were neglected. Furthermore, the highest values
are generated in the transient state. They are responsible
for compensating the error resulting from the initial state
and change quite fast. It is the result of the non-continuous
element of the control law and choice of the control gains.
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Fig. 8. Control signals.

8. Conclusions
In the paper the robust path following algorithm has been
presented. It offers the following features:

1. It is based on the Bishop parametrization.
This means that the algorithm is robust to all
zero-curvature points as the local frame on the path
is always well defined.

2. The robot is projected onto the path using the
orthogonal projection method which minimizes the
problem dimensionality. We proposed the orthogonal
projection constraint in such a form that the resulting
singularity is outside the path. Therefore, the
presented algorithm allows the robot to reach the
path and moves along it. It is noteworthy that the
presented solution is not restricted only to the one
type of a path. Any curve satisfying the Bishop
parametrization assumptions can be commanded as
the desired path.

3. The control law has been designed based on
the backstepping method. The sliding mode
controller, considered at the dynamics level,
guarantees robustness to the parametric and
structural uncertainties of the dynamics model.

4. The proposed control law is characterised with the
asymptotic convergence of errors to zero, which is
proven analytically.

The conducted simulation study confirms the
theoretical results and properties of the presented
algorithm. However, it has to be noticed that too high
control gains for the sliding mode controller may lead
to high amplitudes and high-frequency changes of the
control signals. Thus, the dynamic model structure has
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to be identified as precisely as possible in order to avoid
signals which may destroy a physical object. The more
knowledge we have about the dynamics model, the lower
gains can be used in the sliding mode controller. Although
the control algorithm is robust to uncertainties of the
dynamic model, it may require unfeasible actuations
to compensate them in case of enormous differences
between the real robot and the model considered in the
control law.

All in all, in the paper we proposed the
parametric-based path following algorithm which is
a generalization of the path following methods for mobile
manipulators. The achieved results indicate further
research directions. The control of the end-effector
orientation with respect to a moving reference frame
should be additionally considered. Moreover, the control
constraints may be explicitly taken into account in the
control law. Finally, the control law should be validated
experimentally on a real mobile manipulator. The authors
have already validated path following algorithms for
a fixed-base manipulator, e.g., (Dyba, 2023; 2024). The
laboratory test-bed equipped with the mobile manipulator
is under construction and will be used in the future
investigation.
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