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Recent works have developed model complexity based and algorithm based generalization error bounds to explain how
stochastic gradient descent (SGD) methods help over-parameterized models generalize better. However, previous works
are limited by their scope of analysis and fail to provide comprehensive explanations. In this paper, we propose a novel
Gaussian approximation framework to establish generalization error bounds for the U-SGD family, which is a class of
SGD with asymptotically unbiased and uniformly bounded gradient noise. We study U-SGD dynamics, and we show both
theoretically and numerically that the limiting model parameter distribution tends to be Gaussian, even when the original
gradient noise is non-Gaussian. For a U-SGD family, we establish a desirable iteration number independent generalization
error bound at the order of O((1 +

√
log(p

√
n))/

√
n), where n and p stand for the sample size and parameter dimension.

Based on our analysis, we propose two general types of methods to help models generalize better, termed as the additive and
multiplicative noise insertions. We show that these methods significantly reduce the dominant term of the generalization
error bound.
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1. Introduction
Stochastic gradient descent (SGD) methods (Sutskever
et al., 2013; Bottou, 1998) have been empirically proven
to be the most effective and reliable algorithms for training
high-dimensional over-parameterized models, such as
deep neural networks. Although there are many new
attempts and additions to the parameter training of models
(Chen, Chang, Meng and Zhang, 2019; Qian et al., 2022;
Sulaiman et al., 2024), SGD methods and their variants
are still the mainstream method in the industry. Instead of
computing the faithful gradient for all training samples,
as per standard gradient descent (GD) methods, SGD
inserts noise in the full gradient in each iteration. It
is surprising that gradient noise dramatically improves a
model’s generalization performance, especially in many
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large-scale optimization scenarios (Hardt et al., 2016; Li
et al., 2018; Zhang et al., 2016). Empirically, SGD
helps over-parameterized models overcome the curse of
dimensionality (Weinan et al., 2019).

A fundamental and long-standing problem in
machine learning is determining the way that model
capacity, data distribution and algorithm properties affect
the generalization performance. The key to this problem
is to analyze generalization error bounds. A tight
generalization error bound guarantees that gaps between
training errors and testing errors are small. Hence,
generalization error bounds are informative indicators
of how well a model generalizes to unseen data.
They provide us with guidance on designing effective
algorithms to learn robust models.

There have been two main schools of generalization
error bounds so far. One is based on the model
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complexity of the hypothesis, and the other is based
on algorithmic properties. A series of works (Bartlett
et al., 2017; Li, Lu, Wang, Haupt and Zhao, 2019)
have ascribed the generalization performance to model
structures by showing that a well-designed network enjoys
reduced model complexity (based on the Rademacher
complexity or VC-dimension), which directly leads to
tighter generalization bounds. However, most of these
bounds become vacuous when the model complexity (size
of parameter space) significantly exceeds the training
sample size (Zhang et al., 2016). Recently, some
stronger model-dependent results have been proposed
in the over-parameterized settings (Arora et al., 2019;
Chen, Mo, Yang and Wang, 2019; Weinan et al., 2019).
Since model-dependent bounds provide uniform control
of generalization error over a whole hypothesis family,
any overfitted model in this family significantly impairs
the bounds. In deep-learning practices, where advanced
algorithms are employed to avoid overfitting, such a
uniform bound is too loose to provide a comprehensive
explanation of generalization phenomena.

To better understand the roles of algorithms in
generalization performance, researchers have resorted
to algorithm-dependent generalization error bounds.
Algorithm-dependent bounds emphasize an essential
connection between the generalization error of an
algorithm and its uniform stability (Bousquet and
Elisseeff, 2002; Hardt et al., 2016; Shalev-Shwartz
and Ben-David, 2014). Roughly speaking, stable
algorithms, which change by a bounded amount with
switching a single data point, generalize well. Various
algorithm-dependent bounds have been established for
randomized algorithms, and these results rely on uniform
stability (Elisseeff et al., 2005; Bousquet and Elisseeff,
2002). However, uniform stability is a strong condition,
and it does not hold in general settings like univariate
logistic regression (Negrea et al., 2019). Moreover, most
of these results depend on the number of iterations T ,
which yield vacuous generalization bounds when T tends
to infinity. To address these limitations, the PAC-Bayesian
stability framework has been proposed to provide sharper
generalization guarantees for SGD, see (Li et al., 2020;
London et al., 2014).

In general, the above works either result in a
divergent generalization error bound (Hardt et al., 2016;
Shalev-Shwartz and Ben-David, 2014) or only apply to
some special SGD methods such as SGLD (Li et al.,
2020). The ultimate goal of this work is to obtain an
informative generalization error bound for general SGD
methods and provide theoretical explanations for how
these algorithms attain small generalization errors. An
intuitive idea is to use PAC-Bayesian theory to establish a
generalization error bound for general SGDs. As we shall
see, under standard assumptions, we develop desirable
generalization error bounds for various SGD analogues

that share important properties in common.

Contributions. The key contribution of this work is a
novel Gaussian approximation framework that establishes
a tight generalization error bound for a general class of
SGD, termed U-SGD. We present our contributions in
three aspects.

• By studying the dynamics of U-SGD, in
Proposition 1 and 3, we provide the Gaussian
approximation error bound of the limiting parameter
distribution of SGD. Our result shows that the
parameter distribution of SGD tends to be
Gaussian-like as the iteration number goes to
infinity. Moreover, according to numerical evidence
in Section 6, our statement holds for more general
cases.

• We establish a simple Gaussian approximation
framework to yield generalization error bounds for
U-SGD at an order of O((1 +

√
log(p

√
n))/

√
n)

which does not depend on the number of iterations
T , where n and p stand for the sample size and
parameter dimension, respectively (Propositions 2
and 4).

• The proposed framework induces two theoretically
guaranteed methods, termed the additive and
multiplicative noise insertions (Definition 2) to
improve the generalization performance of U-SGD.
We show that such noise insertions significantly
reduce the dominant term of the generalization
bound (Proposition 5).

Related work. A stochastic differential equation (SDE)
based framework (Li, Tai and E, 2019; Ljung et al.,
1992; He et al., 2019) has been widely used to
analyze the dynamics and generalization bounds for SGD
variants, such as the stochastic gradient Langevin dynamic
algorithm (SGLD) (Welling and Teh, 2011). Li, Tai and E
(2019) proved that SGD dynamics can be approximated
by a class of SDEs driven by Brownian motion. In
(Ljung et al., 1992; He et al., 2019), for quadratic loss
functions, the gradient noise of SGD is assumed to
be Gaussian, and the parameter dynamic is treated as
its continuous analogue, the Ornstein-Uhlenbeck process
(OU-process). Generalization bounds are then derived
from classical SDE results for the stationary distribution
of the OU-process. On top of these bounds, He
et al. (2019) show a positive correlation between the
ratios of the batch size to the learning rate and the
generalization error. However, the Gaussian assumption
is contested in (Panigrahi et al., 2019; Simsekli et al.,
2019), which shows that gradient noise can be generally
non-Gaussian. The dynamic and approximation analyses
of non-Gaussian SGD are discussed in (Dieuleveut et al.,
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2017; Feng et al., 2020), while none of this work provides
explicit bounds with respect to the model dimension
and the limiting SGD covariance, and thus cannot be
applied to derive generalization bounds. In this paper,
under non-Gaussian assumptions, we show that SGD
with non-Gaussian gradient noise yields Gaussian-like
limiting distributions, which enables us to establish
a PAC-Bayesian generalization bound by a Gaussian
approximation approach.

2. Preliminaries
For any v ∈ R

p and V ∈ R
p×p, let v[i] be the

i-th component of v, and let V[i, j] be the i-by-j
component of V. Write ‖v‖q � (

∑p
i=1 |v[i]|q)1/q . In

the context of supervised learning, there is a training
dataset S � {(xi, yi)}ni=1

i.i.d.∼ D, where D is the
underlying distribution on R

d × R. The hypothesis class
is parameterized as {fθ(·) : R

d �→ R | θ ∈ Θ ⊂
R

p}, where the dimension of the parameter space Θ is
p. For a given smooth loss function l(ŷ, y) : R × R �→
[0, 1], the ultimate goal of supervised learning is to find
an optimal parameter θ∗ to minimize the expectation
error E(x,y)∼Dl(fθ(x), y). In practice, however, we
train the model by minimizing the empirical surrogate,
which is the empirical error Ê(x,y)∼Sl(fθ(x), y) �
1
n

∑n
j=1 l(fθ(xi), yi). For simplicity, we reparameterize

the expectation error and the empirical error as functions
of θ, denoted as L(θ) and LS(θ), respectively. We denote
byHS(θ) � ∇2LS(θ) the Hessian ofLS at θ. For a fixed
θ, the generalization error is defined as |L(θ) − LS(θ)|,
which measures how well the model fθ(·) generalizes to
unseen data from D.

When we apply SGD to minimize LS(θ), at the
t-th iteration, θ is updated as θt+1 = θt − αĝt, where
α ∈ R

+ is the learning rate, and ĝt is a random noisy
gradient, which is an estimate of the real gradient gt. It is
convenient for us to consider θ ∼ P as a p-dimensional
random vector, where P is a probability distribution over
Θ. In this context, we are interested in the expectations of
L(θ) and LS(θ). By a slight abuse of notation, we denote
L(P ) � Eθ∼PL(θ) and LS(P ) � Eθ∼PLS(θ).

If we suppose that the parameter is initialized as θ0 ∼
P0, and the learning rate is set as α, at the t-th iteration, the
parameter is updated to θt ∼ Pt(α). Thus, the updating
path of SGD can be viewed as a discrete stochastic process
{θt}t≥1. If there is a limit θ∞ ∼ P (α) of {θt}t≥1, the
generalization error bound is defined as an upper bound
of |L(P (α)) − LS(P (α))|. A tight generalization error
bound implies that SGD returns a robust model fθ∞ .

U -SGD family. We are now confronted with two central
problems. What is the limiting distribution P (α) or
does it even exist? How do we bound |L(P (α)) −

LS(P (α))|? Empirically, a gradient noise with a grossly
large magnitude significantly impairs the convergence
and effectiveness of SGD. As SGD fails to converge,
the limiting distribution and generalization error bounds
become meaningless. To avoid these ill cases, we focus
our interest on SGDs with reasonable noise insertion.
Formally, we call this reasonable SGD that satisfies the
following assumptions the U-SGD.

Assumption 1. Assume that the following criteria hold
for SGD updating:

1. Asymptotic unbiasedness: ∃θ∗
S ∈ ΘS such that

limt→+∞ Eθt = θ∗
S .

2. Uniform boundedness: The stochastic gradient ĝt
satisfies that supt≥0 E‖ĝt‖22 < +∞.

In general, U-SGD extends our scope of analysis
to SGDs with non-Gaussian gradient noise, which
are ubiquitous in stochastic optimization scenarios.
For instance, when we employ integer-arithmetic-only
quantization schemes to train neural networks (Jacob
et al., 2018), the gradient noise introduced by the
parameter clamping process is bounded, but highly
non-Gaussian. The conditions imposed in U-SGD
are natural; asymptotic unbiasedness implies that the
expectation of the parameter path converges to an
optimum. The second condition is mild because the
magnitude of the stochastic noisy gradient is observed
to be stable in the vicinity of local minima. For a
compact Θ, this condition is equivalent to imposing
uniform boundedness on loss function l, which is widely
embraced in the theoretical literature. In fact, the
uniform boundedness of ĝt guarantees the existence of
the covariance matrix Cov(ut), t ≥ 0, where ut �
HS(θt − θ∗

S) − ĝt is an important auxiliary variable for
the successive analysis and HS � HS(θ∗

S). This further
implies that the third-moment of {ut}t≥0 is uniformly
bounded, that is, ∃ Γ > 0 such that supt≥0 ‖ut‖3∞ ≤ Γ.
In the next section, we take advantage of the theoretical
merits of U-SGD to find the limiting distribution P (α)
and obtain desirable generalization bounds.

3. Generalization bound of U-SGD
In this section, we introduce a Gaussian approximation
framework to analyze the U-SGD dynamics and
establish generalization error bounds for objectives with
non-degenerate and degenerate Hessian HS , also known
as the locally strongly convex objectives and generic
convex objectives. The detailed proof is contained in
Section 5. Roughly speaking, there are two main steps
to establish a generalization error bound.

1. We study the U-SGD dynamic, examine the
existence of limiting distribution P , and establish
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a Gaussian approximation P̂ with respect to the
Wasserstein-1 metrics (Propositions 1 and 3). We
bound the deviation term |(L(P (α))−LS (P (α)))−
(L(P̂ (α)) − LS(P̂ (α)))| (Lemmas 2 and 4).

2. The generalization error bound is converted to the
KL-divergence bound (Lemma 3) between P̂ and a
sample-independent distribution Q (Propositions 2
and 4).

3.1. Generalization bound for non degener-
ate Hessian. To further understand the dynamic
and generalization property of U-SGD in locally
strong convex cases, we first introduce some standard
assumptions.

Assumption 2. Suppose the learning rate α ∈ R
+

satisfies α < λmax(HS)−1, where λmax(·) denotes the
largest eigenvalue of a matrix.

Remark 1. The positive definiteness of HS can be
fulfilled in the local strong convex case. The optima of the
loss function have been observed and proven to be stable,
even in the presence of gradient noise (Kramers, 1940).
The second assumption is that a moderate learning rate is
required to train a model well with U-SGD since λmax(I−
αHS) < 1, (I − αHS) can be viewed as a contraction
operator. These assumptions are also embraced in (He
et al., 2019; Mandt et al., 2017).

The update equation for SGD is known as θt+1 =
θt−α(HS(θt−θ∗

S)−ut) = (I−αHS)θt+α(HSθ∗
S +

ut). At the t-th iteration, we have (θt − θ∗
S) = (I −

αHS)t(θ0 − θ∗
S) + α

∑t−1
i=0(I − αHS)t−i−1ui. The

SGD dynamic involves adding new information ut to
the parameter each time while discounting the historical
information θt by multiplying it by (I − αHS). As
t → +∞, we have

(I− αHS)tθ0
L2→ 0,

which implies that the effect of the initialization tends to
vanish during the SGD process. This theoretical evidence
also coincides with the fact that SGD with proper random
initialization works well in large scale optimization cases.
Thus, we focus on the asymptotic behaviour of the last
term. Thanks to the standard martingale convergence
theorem, the existence of the limiting distribution is
guaranteed (see Section 5) and we are free to denote
the limiting distribution of {θt}t≥0 as θ∞ ∼ P (α). A
well-known result in (McAllester, 1999) states that the
information from P (α) provides us with a PAC-Bayesian
bound.

Lemma 1. (McAllester, 1999) In the previous settings,
with a probability of at least 1 − δ over the choice of S,

we have

|L(P (α)) − LS(P (α))|

≤
√

DKL(P (α)‖Q) + lnn/δ

2(n− 1)
,

where P (α) is the limiting distribution of {θt}t>0, and Q
is a distribution that is independent of S. DKL(P‖Q) is
known as the KL-divergence between P and Q.

However, this result is far from intended, since we
know nothing about P (α) other than its existence. To
obtain an informative bound, we turn to an approximate
distribution of P (α). Suppose P (α) can be approximated
by a parameterized distribution, denoted by P̂ (α), then
we have

|L(P (α))− LS(P (α))|
≤ |(L(P (α)) − LS(P (α)))

− (L(P̂ (α)) − LS(P̂ (α)))|

+

√
DKL(P̂ (α)‖Q) + lnn/δ

2(n− 1)
, (1)

where the first term is called the deviation term, and the
second term is the KL-divergence term. Our problem then
consists in finding a desirable Gaussian approximation
P̂ (α) and bounding DKL(P̂ (α)‖Q). The following
proposition shows that P (α) can be locally approximated
by a Gaussian distribution P̂ (α) with respect to the
Wasserstein-1 metric (Villani, 2008).

Definition 1. The Wasserstein-1 metric is defined as

W(1)
V (μ1, μ2)

� inf{
∫

Rp×Rp

p∑

i=1

v�i (θ1 − θ2)μ(dθ1, dθ2) :

μ ∈ coupl(μ1, μ2)},

where μ1, μ2 are two probability measures on R
p and

V = {v1, . . . , vp} is an orthogonal basis. coupl(μ1, μ2)
denotes the collection of probability measures on R

p×R
p

with marginals μ1, μ2 on the first and second factors,
respectively.

Proposition 1. (Gaussian approximation with
Wasserstein-1 metric) Suppose {ut}t≥0 ∈ U-SGD,
and θ∞ ∼ P (α) is the limiting parameter distribution.
Under the previous assumptions, the following statements
hold:

(i) Cov(θ∞) exists and Cov(θ∞) = O(α).
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(ii) Let ΣS = Cov(θ∞) and P̂ (α) be a Gaus-
sian distribution N(θ∗

S ,ΣS). We have

α−1/2(P (α) − P̂ (α))
law→ 0, as α → 0, where

law→ stands for the convergence in law.

(iii) Let ΘK � {θ : |θ[i] − θ∗
S [i]| ≤ K

√
ΣS [i, i], i =

1, 2, . . . , p}. Denote P |ΘK (α), P̂ |ΘK (α) the restric-
tion by of P (α), P̂ (α) on ΘK , respectively. For all
K > 0 and α < (2λmax(HS))−1, we have

W(1)(P |ΘK (α), P̂ |ΘK (α))

≤ α2 2C̃KΓ

3λmin(HS)
tr(Σ−1

S ), (2)

where C̃ is a constant smaller than 36.

Remark 2.

1. Notice that tr(Σ−1
S ) = O(α−1), the local

approximation error is bounded by O(α), and it
tends to vanish as α → 0. This theorem
reveals an important property of U-SGD: the
limiting distribution of {θt}t≥0 is Gaussian-like. In
essence, this conclusion follows the Central Limit
Theorem (CLT); in other words, when independent
non-Gaussian random vectors {αũt}t≥0 are added,
the sum tends toward a Gaussian distribution as α →
0, even if the original gradient noise is not Gaussian.

2. Intuitively, a smaller learning rate makes the U-SGD
dynamic more similar to its continuous analogue,
the OU-process, which has a Gaussian limiting
distribution. This statement coincides with some
previous results (Mandt et al., 2017; He et al., 2019),
where the gradient noise {ut}t≥0 is imposed to be
independent and identically Gaussian distributed.

Our understanding is numerically validated in
Section 6. Numerical experiments show that our statement
also holds for more general cases, where the gradient
noise is unbounded and the loss function is nonconvex.
In these cases, SGD converges to a flat local minimum,
where the loss function can be considered quadratic.

Given that P (α) is locally approximated by a
Gaussian distribution P̂ (α), the following lemma further
shows that the deviation term |(L(P (α))−LS(P (α)))−
(L(P̂ (α)) − LS(P̂ (α)))| has a tight upper bound.

Lemma 2. Suppose {ut}t≥0 ∈ U-SGD, and θ∞ ∼ P (α)
is the limiting parameter distribution. Under the previous
assumptions, ∀δ ∈ (0, 1), with a probability of at least
1− δ over the choice of S, we have

|(L(P (α))− LS(P (α))) − (L(P̂ (α)) − LS(P̂ (α)))|

≤ α2 2CΓtr(Σ−1
S )

3λmin(HS)
√
nδ

×
(
(
2 log(

√
2/π3λmin(HS)

√
nδp

2αCΓtr(Σ−1
S )

)
) 1

2

+
(
2 log(

√
2/π3λmin(HS)

√
nδp

2αCΓtr(Σ−1
S )

)
)− 1

2

)
, (3)

where C is a constant independent of δ and θ∞.

The deviation term (3) is bounded by
O(α((log(

√
np/α))

1
2 + (log(

√
np/α))−

1
2 )/

√
n) ≈

O((α
√
n)1−ε(log

√
np)

1
2 ) for an arbitrarily small

constant ε > 0. Again, the bound tends to zero when
α → 0, and it remains desirable even when p is large.
The only thing left is to bound the KL-divergence term.
Let Q � N(θ∗,Σ), where Σ � ESΣS , and we have
Σ � 0. To better illustrate our result, we introduce
another assumption.

Assumption 3. Suppose that ∃λ∗ > 0 such that
λmin(Σ

−1ΣS) ≥ λ∗ holds for all S; ∃M > 0 such that
E‖Σ−1ΣS − I‖2F ≤ M , where ‖ · ‖F is the Frobenius
norm.

The first assumption λmin(Σ
−1ΣS) > λ∗ > 0

guarantees that Σ−1ΣS is not singular. In the second
assumption, ‖Σ−1ΣS − I‖2F evaluates how significantly
the eigenvalues of ΣS deviate from the ones of Σ. A
small M value implies that ΣS is highly concentrated
to Σ, which means the training data S are stable and
representative. Since ES [Σ−1ΣS ] = I, the Law of Large
Numbers yields E‖Σ−1ΣS−I‖2F law→ 0 as the sample size
#S = n tends to infinity. This implies E‖Σ−1ΣS − I‖2F
is uniformly bounded with respect to n and the soundness
of Assumption 2.

Lemma 3. (KL-divergence bound) Suppose {ut}t≥0

belongs to U-SGD. Let P (α) be the limited distribution
of {θt}t≥0, and P̂ (α) be the approximate distribution
N(θ∗

S ,ΣS). Under the previous assumptions, for ∀δ > 0,
with a probability of at least 1− δ over the choice of S, it
holds that

DKL(P̂‖Q) ≤ (1 + δ−1)

2

×max
{− logλ∗ + λ∗ − 1

1− λ∗
, 1
}
M

+
1

2
(θ∗ − θ∗

S)
�Σ−1(θ∗ − θ∗

S). (4)

We develop a dimension-free upper bound
for the KL-divergence term. The combination of
the aforementioned results yields a probabilistic
generalization error bound for U-SGD.

Proposition 2. (Generalization error bound of U-SGD)
Under the previous assumptions, given {ut}t≥0 belong-
ing to U-SGD, for ∀δ1, δ2 > 0, with a probability of at
least 1 − δ1 − δ2 − δ3 over training data S of size n, we
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have the following inequality for the limiting parameter
distribution P (α):

|L(P (α))− LS(P (α))|

≤ 1√
2n− 2

(
(1 + δ−1

1 )

2

×max
{− logλ∗ + λ∗ − 1

1− λ∗
, 1
}
M

+ log(
n

δ2
) +

1

2
(θ∗

S − θ∗)�Σ−1(θ∗
S − θ∗)

) 1
2

+ α2 2CΓtr(Σ−1
S )

3λmin(HS)
√
nδ3

×
((

2 log(

√
2/π3λmin(HS)

√
nδ3p

2α2CΓtr(Σ−1
S )

)
) 1

2

+
(
2 log(

√
2/π3λmin(HS)

√
nδ3p

2α2CΓtr(Σ−1
S )

)
)− 1

2

)
, (5)

where C is a constant independent of δ and θ∞.

Remark 3. (Comparison with existing work)

1. Our order bound O(
√

log(n) + α−1/
√
n +

α
√
log (p

√
n)/

√
n) sheds light on a trade-off

between the KL-divergence term and the
deviation term. When the learning rate α is
small, the limiting parameter distribution is highly
Gaussian-like, and the first term dominates the
bound. In contrast to algorithmic stability based
generalization bounds that scale as O(T/n) (Hardt
et al., 2016; Shalev-Shwartz and Ben-David, 2014),
our bound is independent of the total iteration
number T , which is more favorable for realistic SGD
training.

2. Our work explicitly analyzes the order of the
bound with respect to both model dimension p and
sample size n. On the contrary, the dependence
of algorithmic stability based bounds on p is
blurred by same artificially defined constants. From
this perspective, our bound can better explain
generalization under the over-parameterized setting.
In fact, by further assuming ‖Σ−1ΣS − I‖F and
‖θ∗

S − θ∗‖2 are at an order of O(1/
√
n), we

can refine the KL-divergence term to the order of
O(1/n). Since ‖Σ−1ΣS − I‖F and ‖θ∗

S − θ∗‖2
tend to 0 almost surely, this additional assumption is
merely asking for a mild error rate control for these
terms, which does not exceed the naive Monte Carlo
error rate.

3.2. Generalization bound for degenerate Hes-
sian. To further understand how SGD helps high
dimensional machine learning models generalize well,

we need to establish a generalization bound for locally
convex objectives with a degenerate Hessian HS .
Unfortunately, in these cases, the distribution of U-SGD
path {θt}t≥0 is no longer guaranteed to converge, and
the previous Gaussian approximation framework becomes
inapplicable.

Example 1. (SGD fails to converge for degenerate HS)
Suppose we optimize θ with SGD by minimizing the
following objective with a degenerate Hessian:

L(θ) = L1 + L2

=
(
θ[1]2 + θ[3]

)
+
(
θ[2]2 − θ[3]

)
. (6)

At the t-th iteration, θ does not converge as θt[3] =
θ0+

∑t
i=1 Ber(−1, 1), where Ber(−1, 1) is the Bernoulli

distribution. �
A straightforward approach to address this issue,

is to recover the positive definiteness of HS via
�2-regularization. Again, we can apply the previous
arguments by substituting HS with �2 penalized Hessian
HS + λI. However, �2 regularization introduces an
inevitable bias to the objective, and machine learning
models generalize well even in the absence of �2
regularization. This urges us to find another solution
for understanding generalization of unregularized models.
Hence, we recast our Gaussian approximation framework
by employing a dynamic learning rate αt and establishing
a generalization bound for the T -th iteration. Specifically,
we first establish an order O(maxt<T αt +

∑T
i=1 α3

t∑T
i=1 α2

t

)

Gaussian approximation error bound. Then, we establish
the revised KL-divergence bound, which finally leads us
to a PAC-Bayesian generalization bound.

Proposition 3. (Gaussian approximation with
Wasserstein-1 metric) Suppose {ut}T−1

t=0 ∈ U-SGD,
and θT ∼ P (α, T ) is the parameter distribution at
time T . Under the previous assumptions, the following
statements holds:

(i) Cov(θT ) = O(
∑T

i=1 α
2
t ).

(ii) Let ΣS = Cov(θT ) and P̂ (α, T ) be a Gaussian dis-
tribution N(E[θT ],ΣS), and let ΘK � {θ : |θ[i]−
E[θT ][i]| ≤ K

√
ΣS [i, i], i = 1, 2, . . . , p}. De-

note by P |ΘK (α, T ), P̂ |ΘK (α, T ) the restrictions of
P (α, T ), P̂ (α, T ) on ΘK , respectively. For ∀K >
0, we have

W(1)(P |ΘK (α, T ), P̂ |ΘK (α, T ))

≤ 2C̃K

(
maxt<T αt · Γ

3λ̃min

+

∑T−1
i=0 α3

t∑T
i=1 α

2
t

)
, (7)

where C̃ is a constant independent of θT , and λ̃min

denotes the smallest nonzero eigenvalue of HS .
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Remark 4. This proposition is an analog of Proposition 1
in singular cases. In contrast to Proposition 1, (7) is
independent of λmin(HS) which is essentially 0. Hence,
it does not explode when HS is semi-positive definite.

By an argument similar to Lemma 3, we obtain the
following deviation bound.

Lemma 4. Suppose {ut}Tt=0 ∈ U-SGD, and θT ∼
P (α, T ) is the limiting parameter distribution. Under the
previous assumptions, ∀δ ∈ (0, 1), with a probability of at
least 1− δ over the choice of S, we have

|(L(P (α, T ))− LS(P (α, T )))

− (L(P̂ (α, T ))− LS(P̂ (α, T )))|

≤
2C

(maxt<T αt·Γ
3λ̃min

+
∑T−1

i=0 α3
t∑

T
i=1 α2

t

)

√
nδ

×
((

2 log

( √
2/π

√
nδp

2C
(maxt<T αt·Γ

3λ̃min
+

∑T−1
i=0 α3

t∑
T
i=1 α2

t

)

)) 1
2

+

(
2 log

( √
2/π

√
nδp

2C
(maxt<T αt·Γ

3λ̃min
+

∑T−1
i=0 α3

t∑
T
i=1 α2

t

)

))− 1
2
)
,

(8)

where C is a constant independent of δ and θT .
The next step is to bound the KL-divergence term

DKL(P̂ (α, T )‖Q(α, T )), where Q(α, T ) is chosen to
be a data-independent Gaussian distribution N(θ∗,Σ).
Plugging in the deviation bound and the KL-divergence
bound yields our desirable generalization bound.

Proposition 4. (Generalization error bound of U-SGD)
Under the previous assumptions, given {ut}Tt=0 belong-
ing to U-SGD, ∀δ > 0, with a probability of at least
1 − δ1 − δ2 − δ3 over training data S of size n, we have
the following inequality for the limiting parameter distri-
bution P (α):

|L(P (α, T ))− LS(P (α, T ))|

≤ 1√
2n− 2

(
(1 + δ−1

1 )

2
max

{− logλ∗ + λ∗ − 1

1− λ∗
, 1
}
M

+ log(
n

δ2
) +

1

2α
(θ∗

S − θ∗)�Σ−1(θ∗
S − θ∗)

) 1
2

+
2CΓ√
nδ3

((
2 log

( √
2/π

√
nδ3p

2CΓ
(maxt<T αt·Γ

3λ̃min
+

∑T−1
i=0 α3

t∑T
i=1 α2

t

)

)) 1
2

+

(
2 log

( √
2/π

√
nδ3p

2CΓ
(maxt<T αt·Γ

3λ̃min
+

∑T−1
i=0 α3

t∑T
i=1 α2

t

)

))− 1
2
)
,

(9)

where C is a constant independent of δ and θT .

Remark 5. (Comparison with existing work) This
result substantially enlarges the scope of Proposition 2, by
liberating us from the strongly convexity restriction. If we
further assume αt = O(1/t) as in (Hardt et al., 2016), our
result is of order O((1 +

√
log(p

√
n))/

√
n) which is still

independent of T and stays informative for large T , while
the result in (Hardt et al., 2016) is of order O(T 1−ε/n),
where ε ∈ (0, 1).

4. U-SGD with additive and multiplicative
noise insertion

So far, we have studied the dynamics and the approximate
limiting distribution of U-SGD. On top of this framework,
we established a tight generalization error bound in (5).
In this subsection, we propose two general types of
methods to help the model fθ generalize better. We first
introduce the definitions of additive and multiplicative
noise insertions. Then, we show that this noise
insertion scheme further reduces the dominant term of the
generalization bound forU-SGD. In practice, some widely
used algorithms are shown to be specific instances of our
theoretical framework.

Suppose the gradient noise of U-SGD is independent
and identically distributed, that is, {ut}t≥0

i.i.d.∼ u,
with Cov(u) = C. According to the previous
discussions, the dominant term in (4) can be as
bad as α−1λmin(C)−1λmax(HS)‖θ∗ − θ∗

S‖22. The
generalization error bound fails when λmin(C) ≈ 0.
In these cases, the component-wise collinearity of u
is strong, and it impairs the generalization bound. To
alleviate this collinearity, a straightforward idea is to insert
some isotropic noise into u. Generally, these schemes
can be characterized as additive and multiplicative noise
insertion.

Definition 2. Assume that {ut}t≥0 ∈ U-SGD, θt is the
model parameter at the t-th iteration, and α > 0 is the
learning rate.

1. Additive noise insertion: The SGD updating equation
with additive noise insertion follows θt+1 = θt −
α(HS(θt − θ∗

S) − ut + ηt), where {ηt}t≥0 are
identically and independently distributed (i.i.d.),
∀t ≥ 0, ηt ⊥ {us}0≤s≤t. Moreover, {ηt}t≥0 is
centralized and isotropic with finite variance, that is,
∀t,Eηt = 0, {ηt[i]}pi=1 are i.i.d. and Var(η0[1]) <
+∞.

2. Multiplicative Noise insertion: The SGD updating
equation with multiplicative noise insertion follows
θt+1 = θt − αγt � (HS(θt − θ∗

S) − ut), where
� denotes the Hadamard product, {γt}t≥0 are i.i.d.,
∀t ≥ 0,γt ⊥ {us}0≤s≤t. Moreover, we assume
∀t,Eγt = 1, {γt[i]}pi=1 are i.i.d. with 1 <
E(γ0[1]

2) < +∞.
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Some SGD variants can be characterized as additive
and multiplicative noise insertions. The SGLD algorithm
is known as θt+1 = θt−α(gBt(θt)+σεt), where σ > 0,
gBt(θt) is the mini-batch gradient, and εt ∼ N(0, I).
Hence, SGLD can be viewed as additive noise insertion
by taking ut � (HS(θt − θ∗

S)− gBt(θt)) and ηt � σεt.
SGD with edge-wise dropout (Rong et al., 2020) during
backpropagation can be formulated as θt+1 = θt−αγt�
(HS(θt − θ∗

S) − ut), with {γt[i]}pi=1
i.i.d.∼ β−1Ber(β),

whereBer(β), β ∈ (0, 1) is the Bernoulli distribution with
a success probability equal to β. Thus, the edge-wise
dropout can be considered as a specific multiplicative
noise insertion.

Notice that, Wu et al. (2020) proposed the so-called
‘multiplicative-framework’ to extend the mini-batch
sampling SGD to SGD variants with general sampling
noise. In contrast, our new framework characterizes
such data-wise sampling procedures (e.g., mini-batch
SGD) as instances of additive noise insertion. For
algorithms that perform parameter-wise sampling over the
full gradient (e.g., edge-wise dropout), we characterize
them as multiplicative noise insertions. The following
proposition studies the Gaussian approximation for these
cases.

Proposition 5. Suppose {θ′
t}t≥0 is generated by U-SGD

with additive or multiplicative noise insertions. Let θ
′
∞ ∼

P
′
(α) be the limiting parameter distribution.

(i) Additive noise insertion: θ
′
∞ = α

∑
t≥0(I −

αHS)tC
′
(I − αHS)t exists with C

′
= (C +

Var(η0[1])I) and Cov(θ
′
∞) = O(α). Let Σ

′
S �

Cov(θ
′
∞) and P̂

′
(α) be a Gaussian distribution

N(θ∗
S ,Σ

′
S). Then, α−1/2(P

′
(α) − P̂

′
(α))

law→ 0 as
α → 0.

(ii) Multiplicative noise insertion: θ
′
∞ = α

∑
t≥0(I −

αHS)tC
′
(I − αHS)t exists with C

′
= (C +

(Eγ0[1]
2 − 1)diag(C)) and Cov(θ

′
∞) = O(α). Let

Σ
′
S � Cov(θ

′
∞) and P̂

′
(α) be a Gaussian distribu-

tion N(θ∗
S ,Σ

′
S). Then, α−1/2(P

′
(α)−P̂

′
(α))

law→ 0
as α → 0.

Remark 6. Although the noise insertion method
can reduce the generalization error, it will also increase
the variance of the parameter distribution or affect the
convergence of SGD. To some extent, this reflects the
contradiction between empirical error and generalization
error. From the perspective of model selection, if we
use a suitable model so that the loss function has a flat
landscape in the main range of parameter distribution,
the noise insertion method can reduce the generalization
error while maintaining the loss value. However, this is
beyond the scope because the focus of this paper is on the
generalization error with SGD.

By simply substituting ΣS with Σ
′
S , the previous

generalization error bound can be parallelly extended to
U-SGD with additive and multiplicative noise insertions.
Both of these methods share important theoretical merits:
the diagonal entries of C are further augmented, and
the component-wise collinearity of u is alleviated.
Hence, additive and multiplicative noise insertions
significantly reduce α

4 (θ
∗
S − θ∗)�H1/2

S C−1H
1/2
S (θ∗

S −
θ∗), the dominant term of the generalization error bound,
especially when p is extremely large and α is small.

5. Proof of propositions

5.1. Proof of Proposition 1. (i): Since ut is uniformly
bounded, ∃C ∈ R

p×p,C � 0 such that Cov(ut) ≺ C
holds for any t. Then we have

Cov(θ∞) = α2
∑

t≥0

(I− αHS)tCov(ut)(I− αHS)t

≤ α2
∑

t≥0

λ2t
max(I− αHS)C

=
α2

1− λ2
max(I− αHS)

C

= O(α).

(ii): Let φθt be the characteristic function of θt. Thus

φθ∞(s) =
∏

t≥0

φut(α(I− αHS)ts)

=
∏

t≥0

(1 − α2s�(I− αHS)tCov(ut)

× (I− αHS)ts+ o(α2‖s‖22))
= 1− s�Cov(θ∞)s + o(‖s‖22α2),

By the proof of (i), φθ∞(s) → 1−s�Cov(θ∞)s as α → 0,
thus α−1/2(P (α) − P̂ (α))

law→ 0.

(iii): Let event A = {θ | |θ[i]−θ∗
S[i]| ≤ K

√
Σ[i][i], i =

1, . . . , p}. We have

W(1)(P |ΘK , P̂ |ΘK )

= inf
Fθ1

=FP |ΘK
,Fθ2

=FP̂ |ΘK

Eθ1,θ2‖θ1 − θ2‖1

≤ inf
Fθ1

=FP ,Fθ2
=FP̂

Eθ1,θ2 [‖θ1 − θ2‖1
· χA(θ1) · χA(θ2)]

≤ inf
Fθ1

=FP ,Fθ2
=FP̂

p∑

i=1

∫ θ∗
S [i]+K

√
Σ[i][i]

θ∗
S [i]−K

√
Σ[i][i]

· |FPi(x) − FP̂i
(x)|dx
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≤ 2K

p∑

i=1

√
Σ[i][i] · CE

∣
∣θ[i]/

√
Σ[i][i]

∣
∣3

≤ 2C̃K

p∑

i=1

(Σ[i][i])−1

· (
∑

t≥0

α3(1 − αλmin(HS))3tΓ
)
[i]

≤ 2α2C̃KΓ

3λmin(HS)
tr(Σ−1),

where FPi is the cumulative function of θ[i]; the third
inequality is obtained by the Berry-Essen inequality.

5.2. Proof of Lemma 2. Let us start with a claim:
Suppose the parameter space Θ is compact, ∀δ ∈ (0, 1),
with probability of at least 1 − δ over the choice of S,
there exists a constant C(δ,Θ) such that ‖LS − L‖lip ≤
C(δ,Θ)/

√
n.

By the CLT, as n → ∞,

1√
n

n∑

i=1

∇θl(fθ(xi), y)−∇θL(θ)

d→ N (0,Cov(∇θl(fθ(x), y))).

Hence, by the standard Chebyshev inequality, ∀δ ∈ (0, 1),
with probability of at least 1 − δ over the choice of S, we
have

sup
θ∈Θ

‖ 1√
n

n∑

i=1

∇θl(fθ(xi), y)−∇θL(θ)‖2

≤ sup
θ∈Θ

tr(Cov(∇θl(fθ(x), y)))/(δn),

where Θ is the compact parameter space. Then, the proof
is completed by taking

C(δ,Θ) = 2
√

sup
θ∈Θ

tr(Cov(∇θl(fθ(x), y)))/δ.

Now let us move on to the proof of Lemma 2:

|(L(P )− LS(P ))− (L(P̂ )− LS(P̂ ))|
= |Eθ∼P (L(θ)− LS(θ))
− Eθ∼P̂ (L(θ)− LS(θ))|

≤ |Eθ∼P |ΘK
L(θ)− Eθ∼P̂ |ΘK

L(θ)|
+max{P (Ac), P̂ (Ac)} · sup

θ∈ΘK

|L(θ)|

≤ ρW(1)(P |ΘK , P̂ |ΘK )

+ max{P (Ac), P̂ (Ac)} · sup
θ∈ΘK

|L(θ)|

≤ 2C(δ)α2C̃KΓ

3λmin(HS)
√
n

tr(Σ−1)

+ sup
θ∈Θ

|L(θ)| · 2p

K
√
2π

e−K2/2

� C1α
2K + C2

p

KeK2/2
,

where

C1 � 2C(δ)C̃Γ

3λmin(HS)
√
n

tr(Σ−1),

C2 � sup
θ∈Θ

|L(θ)| ·
√

2

π
.

Let K �
√
2 log(C2p

C1α
). We have

|(L(P )− LS(P ))− (L(P̂ )− LS(P̂ ))|

≤ C1α
2

(√

2 log
(C2p

C1α

)
+

√

2 log
(C2p

C1α

)−1
)

.

5.3. Proof of Lemma 3. Let P̄ = N(θ∗,Σ). By
definition,

DKL(P̂‖σ(S)⊥)
≤ DKL(P̂ ‖P̄ )

=
1

2

∫

θ∈Θ

− log
|ΣS |
|Σ|

+ (θ − θ∗S)
�(Σ−1 − Σ−1

S )(θ − θ∗S)

+ 2(θ − θ∗S)
�Σ−1(θ∗S − θ∗)

+ (θ∗S − θ∗)�Σ−1(θ∗S − θ∗)dθ

= −1

2
log |Σ−1ΣS |+ 1

2
tr(Σ−1ΣS − I)

+
1

2
(θ∗S − θ∗)�Σ−1(θ∗S − θ∗).

Let 0 < a∗ ≤ a1 ≤ · · · ≤ ak ≤ 1 ≤ ak+1 ≤ · · · ≤ ap be
the eigenvalues of MS � Σ−1ΣS ; thus

DKL(P̂‖P̄ ) =
1

2

p∑

i=1

(− log ai + ai − 1)

+
1

2
(θ∗S − θ∗)�Σ−1(θ∗S − θ∗).

Since − log(1 − x1/2) + (1 − x1/2) − 1 is convex for
x ∈ (0, (1− a∗)2) and − log(1 + x1/2) + (1 + x1/2)− 1
is concave for x > 0,

− log(1− x1/2) + (1− x1/2)− 1

<
− log a∗ + a∗ − 1

(1− a∗)2
x,
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− log(1 + x1/2) + (1 + x1/2)− 1

<
1

2(1 +
√
x0)

(x− x0)

− log(1 +
√
x0) + (1 +

√
x0)− 1,

where x0 = V2/(p− k). Therefore,

k∑

i=1

− log ai + ai − 1 ≤− log a∗ + a∗ − 1

(1− a∗)2
V1, (10)

p∑

i=k+1

− log ai + ai − 1 ≤− (p− k) log(1 +

√
V2

p− k
)

+ (p− k)

√
V2

p− k

≤V2, (11)

where V1 =
∑k

i=1(ai − 1)2, V2 =
∑p

i=k+1(ai − 1)2.
Combine (10) and (11) to get

ESDKL(P̂‖σ(S)⊥)
≤ 1

2
max

{− log a∗ + a∗ − 1

1− a∗
, 1
}
M

+
1

2
(θ∗S − θ∗)�Σ−1(θ∗S − θ∗).

The final result follows the Chebyshev’s inequality.

5.4. Proof of Proposition 3. (i): Since ut is uniformly
bounded, ∃C ∈ R

p×p,C � 0 such that Cov(ut) ≺ C
holds for any t. Then we have

Cov(θT ) =

T−1∑

t=0

α2(I− αHS)T−t−1

× Cov(ut)(I− αHS)T−t−1

≤ Tα2C = O(Tα2).

(ii): Let φx be the characteristic function of x. Thus

φθT−E[θT ](s)

=

T−1∏

t=0

φut(α(I − αHS)ts)

=
T−1∏

t=0

(1− α2s�(I− αHS)t

× Cov(ut)(I− αHS)ts

+ o(α2‖s‖22))
= 1− s�Cov(θT )s + o(‖s‖22α2),

By the proof of (i), φθ∞(s) → 1 − s�Cov(θ∞)s as
maxαt → 0; thus (

∑T−1
t=0 α2

t )
−1/2(P (α)− P̂ (α))

law→ 0.

(iii): Without loss of generality, assume that the
eigenvector direction of HS is consistent with the
coordinate axis. Set event A = {θ | |θ[i] − θ∗

S [i]| ≤
K
√
Σ[i][i], i = 1, . . . , p}.We have

W(1)(P |ΘK , P̂ |ΘK )

= inf
Fθ1

=FP |ΘK
,Fθ2

=FP̂ |ΘK

Eθ1,θ2‖θ1 − θ2‖1

≤ inf
Fθ1

=FP ,Fθ2
=FP̂

Eθ1,θ2 [‖θ1 − θ2‖1
· χA(θ1) · χA(θ2)]

≤ inf
Fθ1

=FP ,Fθ2
=FP̂

p∑

i=1

∫ θ∗
S [i]+K

√
Σ[i][i]

θ∗
S [i]−K

√
Σ[i][i]

· |FPi(x) − FP̂i
(x)|dx

≤ 2K

p∑

i=1

√
Σ[i][i] · C̃E

∣
∣θ[i]/

√
Σ[i][i]

∣
∣3

≤ 2C̃K

( q∑

i=1

(Σ[i][i])−1

· (
T−1∑

t=0

α3(1− αλ̃min(HS))3tΓ
)
[i]

+

p∑

i=q+1

(Σ[i][i])−1 · (
T−1∑

t=0

α3
E|ut[i]|3

)
)

≤ C̃′K
(

αΓ

3λ̃min

+

∑T
i=1 α

3
t∑T

i=1 α
2
t

)
,

where the third inequality is obtained by the Berry-Essen
inequality.

5.5. Proof of Lemma 4. We have

|(L(P )− LS(P )) − (L(P̂ )− LS(P̂ ))|
= |Eθ∼PL(θ)− Eθ∼P̂L(θ)|
≤ |Eθ∼P |ΘK

L(θ)− Eθ∼P̂ |ΘK
L(θ)|

+max{P (Ac), P̂ (Ac)} · sup
θ∈ΘK

|L(θ)|

≤ C(δ)√
n

W(1)(P |ΘK , P̂ |ΘK )

+ max{P (Ac), P̂ (Ac)} · sup
θ∈ΘK

|L(θ)|

≤ 2√
n
C(δ)C̃K

(
αΓ

3λ̃min

+

∑T
i=1 α

3
t∑T

i=1 α
2
t

)

+ sup
θ∈Θ

|L(θ)| · 2p

K
√
2π

e−K2/2

� C1K + C2
p

KeK2/2
,

where

C1 � 2√
n
C(δ)C̃K

(
αΓ

3λ̃min

+

∑T
i=1 α

3
t∑T

i=1 α
2
t

)
,
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C2 � sup
θ∈Θ

|L(θ)| ·
√

2

π
.

Let K �
√
2 log(C2p

C1
). We have

|(L(P )− LS(P ))− (L(P̂ )− LS(P̂ ))|

≤ C1(

√

2 log
(C2p

C1

)
+

√

2 log
(C2p

C1

)−1

).

5.6. Proof of Proposition 5. (i) Additive noise
insertion: By substituting ut in the proof of
Proposition 1 with u − ηt, our conclusion directly
follows Cov(u− ηt) = Cov(u) + Var(η0[1])I.

(ii) Multiplicative noise insertion: The dynamics of SGD
with multiplicative noise are

θt+1 = θt − αγ(t) � gBt

= (I − αHS � γ(t))θt − αγ(t) � ut.

Thus,

θT =
T−1∑

t=0

T−1∏

i=t+1

(I− αHS � γ(i)) · αγ(i) � ut

+

T∏

t=1

(I− αHS � γ(t))θ0.

By taking the covariance of θT , we have

Cov(θT ) =EγT ,u[( I− αHS � γ(T ))Cov(θT−1)

(I− αHS � γ(T ))] + Cov(αγT � ut)

=(I− αHS)Cov(θT−1)(I− αHS)

+ Cov(αγT � ut) +O(α2Cov(θT−1)).

Thus,

lim
α→0

α−1Cov(θT )

= lim
α→0

α−1(I− αHS)Cov(θT−1)(I− αHS)

+ α−1Cov(αγT � ut)

= lim
α→0

α

T∑

t=0

(I− αHS)tC
′
(I− αHS)t,

whereC
′
= (C+(Eγ0[1]

2−1)diag(C)). Setting T = ∞,
we have

lim
α→0

α−1Cov(θ
′
∞) = α

∑

t≥0

(I− αHS)tC
′
(I− αHS)t.

6. Empirical evidence
In Proposition 1, given that gradient noise is generally
non-Gaussian, we have proven that the limiting
distribution of U-SGD is Gaussian-like. To validate
these statements from an empirical perspective, we
conduct systematic numerical experiments to examine
the Gaussianity of limiting distributions of non-Gaussian
SGDs. Numerical results suggest that, for convex loss
functions, SGD with non-Gaussian gradient noise yields
a Gaussian limiting parameter distribution. Visualization
shows that the limiting distribution becomes more
Gaussian-like as the learning rate gets smaller. Moreover,
such Gaussianity is observed to hold for more general
cases.

Experimental settings. To visualize the limiting
parameter distribution, we consider three instances of
U-SGD on three loss functions on R

2. The loss function
f(·) is chosen from

f1(θ) �
1

2
θ�

(
2 1
1 1

)
θ,

f2(θ) = θ[1] log(θ[1]) + (1, 1)�θ · log((1, 1)�θ),
f3(θ) = f1(θ) log(f1(θ)).

The learning rate α takes values from
{0.1, 0.01, 0.001}. The gradient noise {ut} is chosen
from {{u(i)

t }}3i=1. For different choices of α, {u(i)
t } are

i.i.d., and they are generated as follows:

{u(1)
0 [1],u

(1)
0 [2]} i.i.d.∼ 0.01 ·U(−0.5, 0.5),

{u(2)
0 [1],u

(2)
0 [2]} i.i.d.∼ (Exp(100)− 0.01),

{u(3)
0 [1],u

(3)
0 [2]} i.i.d.∼ 0.01 · (Bin(4, 0.5)− 2).

U(−0.5, 0.5) denotes the uniform distribution on
(−0.5, 0.5), Exp(100) denotes the exponential
distribution with a rate parameter equal to 100, and
Bin(4, 0.5) denotes the binomial distribution with
the number of trials equal to 4 and the probability of
success equal to 0.5. The mean and covariance of these
distributions are 0 and 0.012I.

These distributions are chosen to represent bounded
and well-behaved distributions, exponential-tailed
continuous distributions, and discrete distributions,
respectively.

In all these cases, we ran the following experiments.
In each episode, the parameter is initialized at θ0 =
(1, 1)�. In the t-th iterations, we update the parameter
as θt+1 = θt − α∇l(θt). After running T iterations (we
set T = 104), we collect θT . We run 104 episodes to
obtain {θi

T }10
4

i=1, a sample set of the limiting parameter
distribution. Then, we visualize the empirical limiting
distribution and perform a Henze-Zirkler multivariate
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Fig. 1. For each gradient noise implementation (including adding uniform, exponential and binomial gradient noise) and each loss
function f1, f2, f3, experiments are run with α = 0.1 and θ0 = (1, 1)�. We visualize the empirical limiting distribution with
a 2D-kernel density plot. The scatter plots are contained in Appendix.
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Fig. 2. The gradient noise is fixed to be exponential. For each loss function f1, f2, f2, the experiments are run with α ∈
{0.1, 0.01, 0.001} and a fixed initial value θ0 = (1, 1)�. We visualize the empirical limiting distribution with a 2D-kernel
density plot. The scatter plots are contained in the Appendix.
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normality test to examine whether {θi
T}10

4

i=1 follows
a two-dimensional Gaussian distribution. The whole
process is repeated 30 times. Similar procedures are
conducted on two neural networks and different datasets,
namely MNIST and CIFAR-10 (LeCun and Cortes, 2010;
Krizhevsky and Hinton, 2009). The optimizer is the
standard SGD without weight decay or momentum. We
train from a fixed initialization until a high, stable training
accuracy is achieved, and then we collect the model
parameters. This process is repeated 3 × 103 times to
get {θ(i)}3×103

i=1 . To check the marginal-Gaussianity of
{θ(i)}3000i=1 , we perform a Pearson’s Gaussian (D’Agostino
and Pearson, 1973) test on the projections of each
dimension. For marginals with p-values lower than 0.01,
we reject the null hypothesis that the marginal parameters
are Gaussian at a confidence level of 99%; otherwise, we
accept the null hypothesis. Implementation details are
included in the supplementary material.

Numerical results. Visualization evidence coincides
with our theoretical findings. As shown in Fig. 1,
for convex loss functions (not necessarily quadratic),
non-Gaussian SGD with a fixed initialization still
leads to a Gaussian-like limiting distribution, which
disperses around the minima. SGDs with uniformly
distributed and binomially distributed gradient noise
belong to the U-SGD family, and they result in a
visually more Gaussian limiting distribution than the
exponentially noisy SGD does. Figure 2 shows, for
exponentially noisy SGD, that the limiting distribution
tends toward a Gaussian distribution as α gets smaller.
In conclusion, our statement that ’non-Gaussian SGD
has a Gaussian-like limiting distribution’ is extended
to more general cases, where the loss functions
are not necessarily quadratic and gradient noise is
exponential-tailed. In all cases, the p-values of the
Henze-Zirkler multivariate normality test suggest that
there is no statistically significant evidence against the null
hypothesis that the limiting distribution is Gaussian. To
further examine the two-dimensional Gaussianity of the
limiting distribution, the aforementioned procedures with
a random initialization {θ0[1], θ0[2]} i.i.d.∼ U(0, 1) are
repeated 30 times. For each initialization, we perform the
Henze-Zirkler multivariate normality test on the limiting
distributions. We then collect the p-values of each
repetition. As we can see in Fig. 3, there is no statistically
significant evidence against the null hypothesis that the
limiting distribution is Gaussian.

For neural network cases, a representative result
is displayed in Fig. 4. Clearly, the p-values of each
marginal are nearly uniformly distributed on [0, 1]. About
6.7% (MNIST) and 1.5% (CIFAR-10) of the marginal
p-values are lower than 0.01. This evidence shows that
the marginal-Gaussianity holds for most of the dimensions
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Fig. 3. For loss functions f1, f2, f3, we perform SGDs with uni-
formly, exponentially and binomially distributed gradi-
ent noise, and set α = 0.01. At a confidence level
of 0.99, about 29/30 out of 30 repetitions fail to pro-
vide statistically significant evidence against the two-
dimensional Gaussianity of the limiting parameter dis-
tributions.

and strongly suggests that the limited distributions of
parameters are Gaussian-like. More experiments with
randomized initialization along with the table of p-values
are reported in Appendix.

7. Conclusions
In this paper, we propose a novel Gaussian approximation
framework to develop generalization error bounds for the
U-SGD family. Our general process is two-fold. We
prove that the limiting parameter distribution P (α) tends
to be Gaussian as α → 0, even when the gradient noise
is non-Gaussian. This result is numerically validated
to hold for more general cases, and it enables us to
establish a Gaussian approximation P̂ (α) with an O(α)
approximation error. Then, we bound the deviation term
(3) and the KL-divergence term (4), respectively. The



264 H. Chen et al.

Fig. 4. For a given threshold (horizontal axis), we calculate
the percentage (vertical axis) of marginals with p-values
smaller than the threshold. The horizontal axis of the
lower figure is log-scaled.

combination of these results leads to a tight generalization
error bound at an order of O((1 +

√
log(p

√
n))/

√
n).

On top of that, we propose additive and multiplicative
noise insertion methods to improve the generalization
performance. Admittedly, a grossly small learning rate
greatly loosens the KL-divergence bound (4). In future
works, we will attempt to refine the generalization error
bound and develop hybrid noise insertion methods.
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Appendix
Details of experiments

Experimental settings. Our experiments on neural
networks are conducted on different models and different
datasets, namely MNIST (LeCun and Cortes, 2010) and
CIFAR-10 (Krizhevsky and Hinton, 2009). On the
MNIST dataset, we train a three-layer network (Model 1)
with (784×200 FC)-ReLU-(200×200 FC)-ReLU-(200×
10 FC), where FC denotes a fully connected layer. We
use the optimizer of SGD with batch size = 200 and
learning rate = 0.01 for the network. For the CIFAR-10
dataset, we use a convolution network (Model 2) with (3×
6 5×5C)-ReLU-MP2-(6×16 5×5C)-ReLU-MP2-(400×
120 FC)-ReLU-(120×84FC)-ReLU-(84×10 FC), where
(5 × 5C) denotes a 5 × 5 convolution layer and MP2
denotes a 2× 2 max pooling layer. The optimizer of SGD
is used again but the settings changes to batch size = 4
and learning rate = 0.001. Experiments are executed as
follows:

1. Initialize the model at a fixed point in the vicinity
of the optima. In each experiments, we get this fixed
point by training 5 epochs on Model 1 and 10 epochs
in Model 2 with a Xavier and Kaiming initialization
(He et al., 2015).

https://openreview.net/pdf?id=Hkx1qkrKPr
https://openreview.net/pdf?id=Hkx1qkrKPr
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Table A1. For each experiment, we calculate the percentages of dimensions with marginal p-values smaller than 0.1, 0.05 and 0.01,
respectively. For a marginal with a p-value smaller than δ ∈ (0, 1), we can reject the null hypothesis that this marginal
follows a Gaussian distribution at a confidence level of 1− δ.

Percentage ≤ 0.1 ≤ 0.05 ≤ 0.01
MNIST Exp. 1 10.8% 5.7% 1.5%
MNIST Exp. 2 11.8% 6.9% 2.6%
MNIST Exp. 3 12.3% 7.2% 2.7%
MNIST Exp. 4 12.6% 7.5% 3.2%
CIFAR-10 Exp. 1 8.3% 3.9% 0.3%
CIFAR-10 Exp. 2 8.8% 4.1% 0.3%
CIFAR-10 Exp. 3 10.1% 4.4% 0.4%
CIFAR-10 Exp. 4 10.2% 4.4% 0.4%
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Fig. A1. For each gradient noise implements (including adding
uniform, exponential and binomial gradient noise) and
each loss function f1, f2 and f3, experiments are run
with α = 0.01 and θ0 = (1, 1)�. We visualize the
empirical limiting distribution by a 2D-kernel density
plot.

2. Train the models until the training loss and accuracy
are stable. We train 30 epochs on Model 1 and 50
epochs on Model 2.

3. Repeat the second step for 3000 times and collect
the parameters of the final epochs. We obtain
{θ(i)

MNIST}3000i=1 , {θ(i)
CIFAR10}3000i=1 .

4. Take MNIST for example; for each marginal j =
1, . . . , pMNIST with pMNIST = 198800, we perform
the Person test on {θ(i)

MNIST[j]}3000i=1 to check where
marginal-Gaussianity holds for the j-th dimension.
This results in 198800 marginal p-values. At
a confidence level of 1 − δ, we reject the null
hypothesis that the j-th marginal is Gaussian if the
corresponding p-value is less than δ. The same
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Fig. A2. The gradient noise is fixed to be exponential. For
each loss function f1, f2, f2, the experiments are run
with α ∈ {0.1, 0.01, 0.001} and a fixed initialization
θ0 = (1, 1)�. We visualize the empirical limiting
distribution by a 2D-kernel density plot.

procedures are conducted on CIFAR-10.

Experimental results. For a given threshold, we
calculate the percentage of marginals with p-values
smaller than the threshold. The horizontal axis of the
lower figure is log-scaled. Table A1 shows that the
marginal-Gaussianity holds for most of the dimensions
and strongly suggests that the limited distributions of
parameters are Gaussian-like.
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