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EXACT AND APPROXIMATE SOLUTIONS OF A FRACTIONAL DIFFUSION
PROBLEM WITH FIXED SPACE MEMORY LENGTH
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We study a fractional differential diffusion equation, where the spatial derivative is expressed by the fractional differential
operator with a fixed space memory length. The exact solution of the considered problem is presented, taking into account
the homogeneous Dirichlet boundary conditions. Additionally, since the solution is in the form of a trigonometric series,
we also present approximate solutions in the form of the truncated series. The accuracy of the approximation is controlled
by the derived bound of a approximation error.
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1. Introduction
Diffusion is the spontaneous spreading and permeation
of particles from regions of higher concentration to
regions of lower concentration, constituting a fundamental
process in various natural phenomena. Classical
diffusion appears when the described process has a linear
relationship between the mean square displacement and
time. On the other hand, for many processes the linear
relation does not occur. In complex media, anomalous
diffusion occurs due to the presence of heterogeneities,
obstacles, or other factors that affect the motion of
particles. Then we deal with an anomalous diffusion,
which is characterized by a nonlinear relationship between
the mean square displacement and time. In this
case, traditional linear diffusion models fail, while
mathematical models based on fractional differential
equations give us promising results.

In contrast to their classical (integer order)
counterparts, fractional diffusion equations reflect
the nonlocal character of anomalous diffusion
phenomena. Anomalous diffusion phenomena
are extensively observed in the fields of physics,
chemistry and biology (Chechkin et al., 2017; Elkott
et al., 2023; Magin, 2006; Magin et al., 2008; Metzler and
Klafter, 2000; Tsallis and Lenzi, 2002; Zaslavsky, 2000).

*Corresponding author

For a more detailed analysis of the current state of
knowledge on anomalous diffusion, we refer the reader to
the review papers by dos Santos (2019) and Evangelista
and Lenzi (2018).

This shift in the modeling approach has certain
consequences. Namely, the use of fractional derivatives
makes the diffusion equation even more difficult to solve.
Analytical solutions for partial fractional differential
equations are rarely available (Alaroud et al., 2024;
Bekir et al., 2015; Das, 2009; Echchaffani et al., 2024;
Malinowska et al., 2023). Therefore, various numerical
methods for fractional problems have been proposed: an
iterative method (Wang and Du, 2013), finite differences
(Ciesielski and Leszczynski, 2006; Gu et al., 2021; Lu
and Fan, 2025; Meerschaert and Tadjeran, 2004; Tian
et al., 2015), the spectral collocation method (Kilbas
et al., 2006; Yang et al., 2023) or the finite element method
(Zhuang et al., 2016).

A fractional diffusion equation could be considered
as a time (when the first-order time derivative is
replaced by a fractional derivative), a space (when
the second-order spatial derivative is replaced by a
fractional derivative) or a time-space (when both the
derivatives are modified) fractional diffusion equation. A
fractional diffusion equation can contain different types
of fractional derivatives. Fractional calculus offers many
types of derivatives such as Riemann–Liouville, Caputo,
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Grünwald–Letnikov, Riesz, or Hadamard (Kilbas et al.,
2006; Podlubny, 1999).

In this paper, we analyze a space fractional
diffusion problem described by an equation containing
a composition of fractional derivatives with a fixed
spatial memory length. In the last few years, fractional
operators with the fixed memory length have gained
attention across various scientific disciplines (Stempin
et al., 2023; Sumelka et al., 2015; Sumelka et al.,
2020; Voyiadjis et al., 2023). They were introduced in
papers (Blaszczyk et al., 2021; Ledesma et al., 2022;
Ledesma et al., 2023; Wei et al., 2017) in both left-
and right-sided versions. Then, in the paper (Klimek
and Blaszczyk, 2024), we studied the oscillator problem
within the framework of fractional calculus with fixed
memory length. The derived results are applied in the
present study of the partial differential space-fractional
equation, extending the classical diffusion problem under
homogeneous boundary conditions. These types of
equations usually describe complex phenomena, where
many specific parameters are required. The inclusion of
numerous parameters in the model complicates the formal
analysis of the problem under consideration. Therefore,
the analyzed problem is considered in a nondimensional
form. This approach also allows us to capture the
universal behavior of the obtained solution during the
process of finding and analyzing it.

The article is structured as follows: Section 2
includes all the necessary definitions and properties of
fractional operators with fixed memory length. We also
recall the results on the eigenfunctions and eigenvalues
of the corresponding fractional oscillator problem with
homogeneous Dirichlet boundary conditions. Next,
Section 3 is divided into two main parts. First, we
formulate the fractional diffusion problem based on
fractional derivatives with the fixed space memory length.
In Section 3.1, we derive its exact solution and study
its properties in detail. Section 3.2 is devoted to
approximation results and discussions on approximation
accuracy. In this part, we also include an analysis of the
solutions’ behaviour for various examples of the choice of
the initial function and problem parameters. The paper
is closed with a short Conclusions part and Appendix
containing results on estimation of the eigenvalues.

2. Preliminaries

Let us start with a short review of the definitions and
properties of fractional operators with the fixed memory
length. The fractional integrals and derivatives with fixed
memory length are given in the definition below.

Definition 1. Let α ∈ (0, 1), L > 0. The
left-sided fractional integral and derivative with fixed

memory length are respectively defined as follows:

x−LI
α
x f(x) :=

1

Γ(α)

∫ x

x−L

(x− s)α−1f(s) ds

=
1

Γ(α)

∫ x

x−L

|x− s|α−1f(s) ds, (1)

x−LD
α
xf(x) :=

d

dx
x−LI

1−α
x f(x). (2)

The corresponding right-sided operators are given by

xI
α
x+Lf(x) :=

1

Γ(α)

∫ x+L

x

(s− x)α−1f(s) ds

=
1

Γ(α)

∫ x+L

x

|s− x|α−1f(s) ds, (3)

xD
α
x+Lf(x) := − d

dx
xI

1−α
x+Lf(x). (4)

It is an interesting feature of the defined operators
that their left- and right-sided versions are connected by
the action of the following reflection operators:

Qf(x) := f(L− x), (5)

Q̃f(x) := f(−x). (6)

The relations between the left and right fractional
operators with fixed memory length are described in the
proposition below.

Proposition 1. Let α ∈ (0, 1), L > 0 and reflection
operators Q, Q̃ be defined by (5) and (6). Then hold

Q x−LI
α
xQf(x) = xI

α
x+Lf(x),

Q x−LD
α
xQf(x) = xD

α
x+Lf(x), (7)

Q̃ x−LI
α
x Q̃f(x) = xI

α
x+Lf(x),

Q̃ x−LD
α
x Q̃f(x) = xD

α
x+Lf(x). (8)

Proof. Let us note that formulas (7) were explicitly
calculated by Klimek and Blaszczyk (2024). We shall
prove the first part of formula (8) for integrals:

Q̃ x−LI
α
x Q̃f(x)

=
1

Γ(α)

∫ −x

−x−L

| − x− s|α−1f(−s) ds

= − 1

Γ(α)

∫ x

x+L

| − x+ u|α−1f(u) du

=
1

Γ(α)

∫ x+L

x

|u− x|α−1f(u) du

= xI
α
x+Lf(x).

From this result we get the second part of (8) for
derivatives

Q̃ x−LD
α
x Q̃f(x) = Q̃

d

dx
Q̃Q̃x−LI

1−α
x Q̃f(x)
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− d

dx
xI

1−α
x+Lf(x) = xD

α
x+Lf(x).

�
The next interesting property of fractional operators

is the following formula connecting the left and right
fractional integrals valid for periodic or antiperiodic
functions. The proof can be found in the paper (Klimek
and Blaszczyk, 2024).

Proposition 2. Assume that functions f and g are defined
on R, they are locally integrable and simultaneously are
both periodic,

f(x± 2ML) = f(x), g(x± 2ML) = g(x), (9)

or simultaneously antiperiodic,

f(x± 2ML) = −f(x), g(x± 2ML) = −g(x), (10)

with an arbitrary constant M ∈ N. Then

∫ ML

−ML

f(x) x−LI
α
x g(x) dx

=

∫ ML

−ML

g(x) xI
α
x+Lf(x) dx. (11)

Applying formula (11), we derived the integration
by parts formula (explicit calculations can be found in
(Klimek and Blaszczyk, 2024)).

Proposition 3. Let the assumptions of Proposition 2 be
fulfilled and derivatives x−LD

α
x f and x−LD

α
xg be contin-

uous functions in [−ML,ML]. Then

∫ ML

−ML

f(x) x−LD
α
xg(x) dx

=

∫ ML

−ML

g(x) xD
α
x+Lf(x) dx

+ f(x) x−LI
1−α
x g(x)

∣∣∣ML

x=−ML
. (12)

Taking into account the fact that for a periodic
function g its integral x−LI

1−α
x g is also a periodic one,

we arrive at the following simple version of formula (12):

∫ ML

−ML

f(x) x−LD
α
xg(x) dx

=

∫ ML

−ML

g(x) xD
α
x+Lf(x) dx. (13)

In the sequel, we shall study the partial fractional
differential equation involving the symmetric fractional
differential operator constructed using the left and right

spatial derivatives, i.e., the oscillator operator with fixed
memory length,

L :=
1

2

(
xD

α
x+L x−LD

α
x + x−LD

α
x xD

α
x+L

)
. (14)

In our previous work (Klimek and Blaszczyk, 2024),
we investigated the solutions through the eigenfunctions
of the oscillator equation:

L (C1 sin(λx) + C2 cos(λx))

= ρ(λ)(C1 sin(λx) + C2 cos(λx)), (15)

where C1, C2 ∈ R are arbitrary constants and the
eigenvalues, connected to parameters λ ∈ R, are given
by

ρ(λ) := (AL,α(λ))
2 + (BL,α(λ))

2. (16)

Functions AL,α(λ) and BL,α(λ) are given by the explicit
formulas

AL,α(λ) = −λ2L2−αE2,3−α(−λ2L2),

BL,α(λ) = λL1−αE2,2−α(−λ2L2) (17)

with Mittag-Leffler functions determined for z ∈ C by the
series

Eγ,β(z) :=
∞∑
k=0

zk

Γ(γk + β)
. (18)

We observe that, in the study of the equation
presented above, we have 2π

λ -periodic solutions
determined for real numbers, with parameters α ∈ (0, 1),
λ ∈ R, C1, C2 ∈ R. When we supplement the oscillator
equation with homogeneous Dirichlet or Neumann
boundary conditions, we obtain the discrete sets of
eigenfunctions establishing orthogonal function bases
in the space L2(−ML,ML). In this paper, we shall
study the diffusion type problem with Dirichlet boundary
conditions in interval [−ML,ML] with natural number
parameter M ∈ N determining the finite domain, where
we consider the equation

LYΛ(x) = ρ(Λ)YΛ(x), x ∈ [−ML,ML] (19)

with solutions connected to eigenvalues ρ(Λ) obeying the
homogeneous Dirichlet boundary conditions in the form

YΛ(−ML) = YΛ(ML) = 0. (20)

Remark 1. We observe that the even and odd solutions
of the above problem can be studied separately due to the
commutation relation

Q̃L = LQ̃ (21)
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and the resulting equations

L1

2
(1± Q̃)YΛ(x) = ρ(Λ)

1

2
(1± Q̃)YΛ(x),

1

2
(1± Q̃)YΛ(−ML) =

1

2
(1± Q̃)YΛ(ML) = 0. (22)

The above homogeneous boundary conditions lead
to the following two discrete sets of eigenfunctions. The
first of them comprises odd functions, corresponds to
condition C2 = 0 in (15) and is indexed by parameters
Λk, k ∈ N,

Λk =
kπ

ML
, YΛk

(x) = sin

(
kπx

ML

)
. (23)

All the eigenfunctions from the first set are orthogonal:

∫ ML

−ML

YΛk
(x) YΛm(x) dx = 0, Λk �= Λm (24)

and 2ML-periodic.
The second subset of eigenfunctions, obtained for

constant C1 = 0 in (15) includes even functions and is
indexed by Λ̃k, k ∈ N0

Λ̃k =
(k + 1

2 )π

ML
,

YΛ̃k
(x) = cos

(
(k + 1

2 )πx

ML

)
.

(25)

It is easy to check that the eigenfunctions from the second
subset are 2ML-antiperiodic, cf. (10),

YΛ̃k
(x± 2ML) = −YΛ̃k

(x),

and orthogonal

∫ ML

−ML

YΛ̃k
(x) YΛ̃m

(x) dx = 0, Λ̃k �= Λ̃m. (26)

Finally, we note that the orthogonality relation for
eigenfunctions from the two subsets is also valid,

∫ ML

−ML

YΛk
(x) YΛ̃m

(x) dx = 0. (27)

It results from the fact that functions YΛk
are odd in

interval [−ML,ML] whereas YΛ̃m
are even.

3. Space-fractional diffusion problem with
fixed space memory length

We shall consider the following diffusion problem, where
we defined the L-operator in (14) by using the left and

right fractional spatial derivatives with fixed memory
length:

∂u(x, t)

∂t
+ Lu(x, t) = 0,

(x, t) ∈ (−ML,ML)× (0,∞). (28)

The solutions are subjected to the homogeneous Dirichlet
boundary conditions

u(−ML, t) = u(ML, t) = 0, t ∈ [0,∞) (29)

and fulfill the following initial condition:

u(x, 0) = g(x), x ∈ [−ML,ML]. (30)

Let us point out that, due to Remark 1, we can
separately study the even and odd solutions generated
respectively by the even and odd initial functions.

3.1. Exact solutions of the diffusion problem sub-
jected to the homogeneous Dirichlet boundary condi-
tions. In the solution of the problem formulated above,
we apply the fact that eigenfunctions of the L-operator
form an orthogonal function basis in L2(−ML,ML).
Therefore, we construct the solution in the form of the
series

u(x, t) =

∞∑
k=1

ak(t)YΛk
(x) +

∞∑
m=0

bm(t)YΛ̃m
(x) (31)

and check when (28) is fulfilled,

∞∑
k=1

a′k(t)YΛk
(x) +

∞∑
m=0

b′m(t)YΛ̃m
(x)

= −
∞∑
k=1

ak(t)ρ(Λk)YΛk
(x)

−
∞∑

m=0

bm(t)ρ(Λ̃m)YΛ̃m
(x). (32)

Applying the orthogonality properties (24), (26) and (27),
we arrive at the set of differential equations for coefficient
functions ak, bm,

a′k(t) = −ρ(Λk) ak(t), k ∈ N, (33)

b′m(t) = −ρ(Λ̃m) bm(t), m ∈ N0 (34)

which can be easily solved by providing the exact form of
coefficients dependent on the time variable,

ak(t) = Ak exp (−ρ(Λk) t) , k ∈ N, (35)

bm(t) = Bm exp
(
−ρ(Λ̃m) t

)
, m ∈ N0 (36)
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with constants Ak, Bm determined by the initial
condition

u(x, 0) =
∑
k=1

AkYΛk
(x) +

∑
m=0

BmYΛ̃m
(x) = g(x).

(37)
These are as follows:

Ak =
1

ML

∫ ML

−ML

g(x) sin

(
kπx

ML

)
dx

=
1

ML
〈g, YΛk

〉, (38)

Bm =
1

ML

∫ ML

−ML

g(x) cos

(
(m+ 1

2 )πx

ML

)
dx

=
1

ML
〈g, YΛ̃m

〉. (39)

Let us point out that the solution (31) is now given as
a formal series

u(x, t) =
1

ML

( ∞∑
k=1

e−ρ(Λk)t〈g, YΛk
〉YΛk

(x)

+

∞∑
m=0

e−ρ(Λ̃m)t〈g, YΛ̃m
〉YΛ̃m

(x)

)
(40)

and we shall prove its convergence and analyze the
properties of the solution in the sequel. It appears that they
depend on the choice of the initial function g. Following
Remark 1, we shall separately check the convergence and
approximation results for the even and odd solutions. Let
us begin with initial function g, which is an even and
continuous function.

Theorem 1. Let function g ∈ C[−ML,ML] be an even
function obeying homogeneous Dirichlet boundary condi-
tions. Then the solution u given by (40) is an absolutely
and uniformly convergent series in any compact subset of
[−ML,ML] × [0,∞), thereby a continuous function of
two variables. It also is of class C∞(G), where G is any
open subset of [−ML,ML]× (0,∞).

Proof. For an even version of the solution (40), the
coefficients Ak vanish

Ak = 0, k ∈ N,

while for coefficients Bm, m ∈ N0 the relation (39)
holds. In the considered case, the even solution is

u(x, t) =
1

ML

∞∑
m=0

e−ρ(Λ̃m)t〈g, YΛ̃m
〉YΛ̃m

(x). (41)

We estimate the absolute value of sum series u at any
point of set (−ML,ML)× (0,∞) applying Proposition

A1 and determining lower bounds for eigenvalues
ρ(Λ̃m), m ∈ N,

− ρ(Λ̃m) ≤ −(m+
1

2
)γe < 0,

− ρ(Λ̃0) ≤ −γe/4 < 0, (42)

|u(x, t)| ≤ 2||g||
(
e−ρ(Λ̃0)t +

∞∑
m=1

e−ρ(Λ̃m)t

)

≤ 2||g||
(
e−γe t/4 +

∞∑
m=1

e−(m+ 1
2 )γe t

)

= 2||g||
(
e−γe t/4 +

e−3γe t/2

1− e−γet

)
, (43)

where constant γe is given by (A2). We observe that
the series majorizing our series solution is convergent in
any compact subset of [−ML,ML]× (0,∞). From the
Weierstrass test, we infer that the solution, described as
the series (40), is absolutely and uniformly convergent.
Therefore, its sum is a continuous function of two
variables.

Now, we analyze properties of the series representing
first-order partial derivatives

∂

∂t
u(x, t) = − 1

ML

∞∑
m=0

e−ρ(Λ̃m)tρ(Λ̃m)

× 〈g, YΛ̃m
〉YΛ̃m

(x), (44)

∂

∂x
u(x, t) = − π

M2L2

∞∑
m=0

e−ρ(Λ̃m)t〈g, YΛ̃m
〉

× (m+
1

2
) sin

(
(m+ 1

2 )πx

ML

)
. (45)

For the series determining the time derivative, we obtain
the following estimate:
∣∣∣∣ ∂∂tu(x, t)

∣∣∣∣ ≤ 1

ML

(
e−γet/4ρ(Λ̃0)|〈g, YΛ̃0

〉|

+
∞∑

m=1

e−(m+ 1
2 )γetρ(Λ̃m)|〈g, YΛ̃m

〉|
)

≤ 4||g||γeM(
cos

(
π

4M

))2
(
1

4
e−γet/4

+

∞∑
m=1

e−(m+ 1
2 )γet(m+

1

2
)2

)
, (46)

where we applied Propositions A1 and A2 with constant
γe defined in Eqn. (A2). The series on the right-hand
side is convergent for points from any open subset of
[−ML,ML]× (0,∞). This fact can be tested using the
ratio test, namely, we have the following limit for the ratio
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of two consecutive terms of this series:

lim
m→∞

e−(m+ 3
2 )γet · (m+ 3

2 )
2

e−(m+ 1
2 )γet · (m+ 1

2 )
2

= lim
m→∞

(
1 +

1

m+ 1
2

)2

e−γet

= e−γet < 1, t > 0.

From the ratio test, we infer that the series on the
right-hand side of the above inequalities is convergent in
any open subset [−ML,ML]× (0,∞); therefore, by the
Weierstrass test, the series representing partial derivative
∂u
∂t is uniformly and absolutely convergent in this set.
Thus, its sum, the derivative ∂u

∂t , is a continuous function
in any open subset [−ML,ML]× (0,∞).

Next, we investigate the convergence of the series
representing the spatial derivative and we get the estimate

∣∣∣∣ ∂∂xu(x, t)
∣∣∣∣

≤ π

M2L2

∞∑
m=0

e−ρ(Λ̃m)t|〈g, YΛ̃m
〉|(m+

1

2
)

≤ 2||g||π
ML

(
1

2
e−γe/4

+

∞∑
m=1

e−(m+ 1
2 )γet(m+

1

2
)

)
(47)

with constant γe given by Eqn. (A2). Again, we apply
the ratio test calculating the limit for the ratio of two
consecutive terms of the series on the right-hand side

lim
m→∞

e−(m+3/2)γet · (m+ 3
2 )

e−(m+ 1
2 )γet · (m+ 1

2 )

= lim
m→∞

(
1 +

1

m+ 1
2

)
e−γet

= e−γet < 1, t > 0.

From ratio the test, we infer that the series on the
right-hand side of the above inequalities is convergent
in any open subset [−ML,ML] × (0,∞); therefore, by
the Weierstrass test, the series representing the partial
derivative ∂u

∂x is uniformly and absolutely convergent in
this set. Thus, its sum, the derivative ∂u

∂x , is a continuous
function in any open subset G ⊂ [−ML,ML]× (0,∞).

We point out that the continuity of the function u and
its partial derivatives implies that the solution is of class
C1(G), in any such open subset.

To prove the main result, we use the mathematical
induction principle. Assuming that the function and all
its partial derivatives of order up to n − 1, n > 1,
are continuous in any open subset of [−ML,ML] ×
(0,∞) and, therefore, function u is of class Cn−1(G)

we investigate the continuity properties of all the n-th
order partial derivatives. In general, the n-th order partial
derivatives are as follows (n ∈ N, l = 0, . . . , n):

∂nu(x, t)

∂tn−l∂xl
= Cn,l

∞∑
m=0

e−ρ(Λ̃m) t〈g, YΛ̃m
〉
(
ρ(Λ̃m)

)n−l

× (m+
1

2
)l cos

(
(m+ 1

2 )πx

ML
+

lπ

2

)
,

(48)

where Cn,l is a constant dependent solely on the order
of the derivative and the divide of derivatives between
time and space derivatives. We observe that the series on
the right-hand side can be estimated as follows by using
Propositions A1 and A2:

∣∣∣∣∂
nu(x, t)

∂tn−l∂xl

∣∣∣∣
≤ |Cn,l| · ||g|| · 2ML

( π

ML

)l

×
(

2ML · γe
cos2

(
π

4M

)
)n−l (

1

22n−l
e−γet/4

+

∞∑
m=1

e−(m+ 1
2 )γet(m+

1

2
)2n−l

)
. (49)

Applying the ratio convergence test, we get the
following limit for the ratio of two consecutive terms:

lim
m→∞

e−(m+3/2)γet · (m+ 3/2)2n−l

e−(m+ 1
2 )γet · (m+ 1

2 )
2n−l

= lim
m→∞

(
1 +

1

m+ 1
2

)2n−l

e−γet

= e−γet < 1, t > 0.

Therefore, we conclude that the above series majorizing
the series determining the n-th order derivative is
convergent. From the Weierstrass test, we infer that all
the series representing the n-th order partial derivatives
are absolutely and uniformly convergent. Hence these
derivatives are continuous in any open subset G ⊂
[−ML,ML]× (0,∞).

Finally, we note that since the function u and all
its partial derivatives of order up to n are continuous in
any open subset G, the function is of class Cn(G). In
turn, as the order n is arbitrary and we can extend the
above discussion and results for any order, we conclude
that solution u given by formula (41) is a function of class
C∞(G). �

We point out that analogous procedures can be
applied in the investigation of solutions generated by an
odd initial function in Eqn. (30). We shall use them
in estimation formulas (A4) and (A12) to determine the
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lower and upper bounds for eigenvalues ρ(Λk), k ∈ N of
the operator L from Propositions A1 and A2, respectively.
All the calculations and reasoning are similar to the ones
presented above in detail. Therefore we omit the proof
and formulate the result for the odd solutions below.

Theorem 2. Let g ∈ C[−ML,ML] be an odd func-
tion obeying homogeneous Dirichlet boundary conditions.
Then the solution u resulting from (40) has the following
form:

u(x, t) =
1

ML

∞∑
k=1

e−ρ(Λk)t〈g, YΛk
〉YΛk

(x). (50)

The above series is absolutely and uniformly convergent
in any compact subset of [−ML,ML] × (0,∞). There-
fore its sum is a continuous function of two variables. It
is also of class C∞(G), where G is any open subset of
[−ML,ML]× (0,∞).

In addition, from Theorems 1 and 2, the following
result is easily deduced, where the case with a general,
continuous initial function g is described.

Corollary 1. Let function g ∈ C[−ML,ML] obey the
homogeneous Dirichlet boundary conditions. Then the so-
lution u represented by the series from formula (40) is ab-
solutely and uniformly convergent in any compact subset
of (−ML,ML)× [0,∞). Therefore, its sum is a contin-
uous function of two variables. It also is of class C∞(G),
where G is any open subset of [−ML,ML]× (0,∞)

Remark 2. We note that the estimate (43) for the solution
generated by an initial even function g and the estimate

|u(x, t)| ≤ 2||g||
∞∑
k=1

e−ρ(Λk)t ≤ 2||g||
∞∑
k=1

e−kγo t (51)

for a solution corresponding to an odd initial function g
clearly indicate that the solutions described in the above
theorems tend exponentially to zero as time t → ∞.

We shall close this section with a simple calculation
of the exact solution for the case when the initial function
is of the class C2(−ML,ML). The results are given
below for the cases of even and odd initial functions,
respectively.

Proposition 4. Let g ∈ C2(−ML,ML) be an even func-
tion obeying homogeneous Dirichlet boundary conditions.
Then the solution u, given by (40), is of the form

u(x, t) = −ML

π2

∞∑
m=0

e−ρ(Λ̃m)t

× 〈g′′, YΛ̃m
〉

(m+ 1
2 )

2
YΛ̃m

(x),

(52)

Proof. For the even version of the solution (40), the
coefficients Ak vanish

Ak = 0, k ∈ N,

while for the coefficients Bm, m ∈ N0 the following
relation holds:

Bm =
1

ML

∫ ML

−ML

g(x) cos

(
(m+ 1

2 )πx

ML

)
dx

= − ML(
(m+ 1

2 )π
)2

∫ ML

−ML

g′′(x)

× cos

(
(m+ 1

2 )πx

ML

)
dx

= − ML(
(m+ 1

2 )π
)2 〈g′′, YΛ̃m

〉, (53)

which results from the integration by parts formula and
the homogeneous Dirichlet boundary conditions (29).
Substituting coefficients Bm into (40), we get the even
solution in the form

u(x, t) = −ML

π2

∞∑
m=0

e−ρ(Λ̃m)t · 〈g
′′, YΛ̃m

〉
(m+ 1

2 )
2
YΛ̃m

(x).

(54)
�

We shall now formulate the analogous proposition
for the odd solution of problem (28)–(30) and omit its
proof since it is analogous to the one presented above for
the even solution.

Proposition 5. Let function g ∈ C2(−ML,ML) be
an odd function obeying homogeneous Dirichlet boundary
conditions. Then the solution u resulting from (40) has the
form

u(x, t) = −ML

π2

∞∑
k=1

e−ρ(Λk)t · 〈g
′′, YΛk

〉
k2

YΛk
(x). (55)

3.2. Approximation. In the previous part of our
paper, we constructed the exact solutions of the problem
(28)–(30) in the form of series (40) or (52), respectively,
for even solutions corresponding to even initial functions,
and (50) or (55) for odd solutions generated by the odd
initial function. We also presented the continuity and
C∞ class results proved for solutions generated by the
continuous initial function appearing in condition (30).
The respective theorems were formulated separately for
even and odd solutions in view of Remark 1. The result
for an arbitrary continuous initial function is given in
Corollary 1.

Now, we shall consider approximate solutions, where
we simplify solutions to the finite sums and investigate
the estimation of approximation error. Again, we start
with even solutions and first study approximation of the
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solution to the problem with a continuous initial function.

Proposition 6. Let g ∈ C[−ML,ML] be an even func-
tion obeying homogeneous Dirichlet boundary conditions
(29). Then, the approximation of the solution u deter-
mined by formula (41) is given as

uapp(x, t) =
1

ML

Mapp∑
m=0

e−ρ(Λ̃m)t〈g, YΛ̃m
〉YΛ̃m

(x) (56)

and generates the approximation error with the upper
bound given below

|u(x, t)− uapp(x, t)| ≤ e− (Mapp+3/2)γe t · 2 ||g||
1− e−γet

,

x ∈ [−ML,ML], t > 0
(57)

with constant γe given by (A2).

Proof. First, from Proposition A1, we get the following
set of inequalities for the eigenvalues of the L operator:

ρ(Λ̃m) ≥ (m+
1

2
)γe

> (Mapp +
1

2
)γe, m > Mapp,

−ρ(Λ̃m) ≤ −(m+
1

2
)γe

< −(Mapp +
1

2
)γe, m > Mapp.

(58)

Now, we calculate the difference between the full solution
(41) and its approximation (56):

u(x, t)− uapp(x, t)

=
1

ML

∞∑
m=Mapp+1

e−ρ(Λ̃m)t〈g, YΛ̃m
〉YΛ̃m

(x). (59)

We estimate the approximation error at any point of set
[−ML,ML]× (0,∞) applying the above inequalities for
the eigenvalues resulting from Proposition A1 and obtain
Eqn. (57)

|u(x, t)− uapp(x, t)|

≤ 2 ||g||
∞∑

m=Mapp+1

e−ρ(Λ̃m)t

≤ 2 ||g||
∞∑

m=Mapp+1

e− (m+ 1
2 )γet

= e− (Mapp+3/2)γet · 2 ||g||
1− e−γet

. (60)

�

Remark 3. Let us note that the estimating function on
the right-hand side of (57) is a rapidly decreasing function
of time. It consists of the exponential part and function
(1 − e−γet)−1 which is also decreasing.

Thus, the error is an exponentially and decreasing
function of both the parameterMapp the time variable. The
estimation of approximation error (57) can be improved
when we move to the problem with the initial function g
being of class C2 as described in Proposition 4. Such a
case is discussed in the proposition below.

Proposition 7. Let g ∈ C2(−ML,ML) be an even func-
tion obeying homogeneous Dirichlet boundary conditions.
Then, the approximation of solution u determined by (52)
is given as

uapp(x, t) = −ML

π2

Mapp∑
m=0

e−ρ(Λ̃m)t
〈g′′, YΛ̃m

〉
(m+ 1

2 )
2
YΛ̃m

(x)

(61)
and generates the approximation error with the upper
bound given below:

|u(x, t)− uapp(x, t)|

≤ e− (Mapp+3/2)γe t

(Mapp + 3/2)2
· 2 M2L2 ||g′′||
π2(1− e−γet)

,

x ∈ [−ML,ML], t > 0 (62)

with constant γe given by (A2).

Proof. Let us note that in the case when the initial
function is of class C2, we get the exact form of the
solution to the problem (28)–(30) described in (52).
Therefore, the difference between the full solution and its
approximation (61) is given by the series

u(x, t)− uapp(x, t)

= −ML

π2

∞∑
m=Mapp+1

e−ρ(Λ̃m)t

× 〈g′′, YΛ̃m
〉

(m+ 1
2 )

2
YΛ̃m

(x). (63)

�
In the estimation of the approximation error, we again
apply Proposition A1 and resulting inequalities for
eigenvalues (58). In this manner, we get Eqn. (62) valid
for any point in set [−ML,ML]× (0,∞):

|u(x, t)− uapp(x, t)|

≤ 2 M2L2 ||g′′||
π2

∞∑
m=Mapp+1

e−ρ(Λ̃m)t

(m+ 1
2 )

2

≤ 2 M2L2 ||g′′||
π2(Mapp +

3
2 )

2

∞∑
m=Mapp+1

e− (m+ 1
2 )γet

=
e− (Mapp+

3
2 )γe t

(Mapp +
3
2 )

2
· 2 M2L2 ||g′′||
π2(1− e−γet)

. (64)
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Now, we formulate the corresponding versions of
Propositions 6 and 7 when the initial function g is an odd
function. First, we have the case of the continuous initial
function for which we get the approximation error bound
described in the proposition below. The proof is similar to
the one of Proposition 6.

Proposition 8. Let g ∈ C[−ML,ML] be an odd func-
tion obeying homogeneous Dirichlet boundary conditions.
Then, the approximation of solution u determined by (50)
is given as

uapp(x, t) =
1

ML

Kapp∑
k=1

e−ρ(Λk)t〈g, YΛk
〉YΛk

(x) (65)

and generates the approximation error with the upper
bound

|u(x, t)− uapp(x, t)| ≤ e− (Kapp+1)γo t · 2 ||g||
1− e−γot

,

x ∈ [−ML,ML], t > 0
(66)

with constant γo given in formula (A5).

Similarly to the case of the even initial function of the
C2 class discussed in Proposition 7, we have an analogous
proposition valid for an odd initial function, and we omit
the proof as it is analogous to the one of Proposition 7.

Proposition 9. Let g ∈ C2[−ML,ML] be an odd func-
tion obeying homogeneous Dirichlet boundary conditions.
Then the approximation of solution u determined by (52)
is

uapp(x, t) = −ML

π2

Kapp∑
k=1

e−ρ(Λk) t 〈g′′, YΛk
〉

k2
YΛk

(x)

(67)
and generates the approximation error with the upper
bound

|u(x, t)− uapp(x, t)|

≤ e− (Kapp+1)γo t

(Kapp + 1)2
· 2 M2L2 ||g′′||
π2(1− e−γot)

,

(x, t) ∈ [−ML,ML], t > 0 (68)

with constant γo given by (A5).

We note that all the above results provide bounds
on approximation errors dependent on both the length
of the approximating trigonometric polynomial and the
specific value of the time variable. First, we see that
in the case of a continuous initial function g for any
chosen value of the time variable t the approximation
error exponentially decreases for an increasing number of
terms in the approximate solution (56) and (65). When

the function g ∈ C2(−ML,ML) and the approximate
solution are given by (61) and (67), the error decreases
even faster. Secondly, when we keep constant parameters
Mapp or Kapp, we observe that the error bound decreases
faster than the corresponding exponential in (57), (62),
(66) and (68).

Remark 4. Analyzing the above-mentioned results on
approximation errors, we note that fixing the error bound
at time t0 > 0 and denoting it as Δt0 , we obtain the
following estimate of the approximation error at t > t0.
Results for even solutions (57) and (62) yield the relation:

Δt ≤ Δt0e
−(Mapp+

3
2 )γe(t−t0)

and Eqns. (66) and (68) describing the errors for odd
solutions lead to the relation

Δt ≤ Δt0e
−(Kapp+1)γo(t−t0).

In conclusion, for the considered problems we can
establish the required level of accuracy of the
approximation at the fixed moment of time and the
above inequalities show the increasing accuracy of the
procedure for t > t0.

Remark 5. In addition, let us observe that γe =
γe(α,M,L), i.e., this constant is in fact a function of
problem parameters (see (A2)). The function describing
the bound of the approximation error includes the factor
(1 − e−γe t)−1 which leads to singularity whenever γe t
tends to zero. Therefore, the approximation accuracy must
be analyzed carefully at each step of the investigation of
the behavior of solutions. The same remark also holds for
the case with an odd initial function as γo = γo(α,M,L)
(cf. (A5)).

On the other hand, when we approximate the solution
close to t = 0, then the estimates of the error bounds
indicate that more terms in the respective approximation
formula are necessary to keep the assumed accuracy
of the procedure. It is possible to overcome this
difficulty, at least in the case of initial function in class
C2(−ML,ML). For even and odd versions of the
solution, the estimates independent of time are valid.

In the next propositions we prove formulas which
bound the approximation error by the inverse of
parameters Mapp or Kapp, respectively.

Proposition 10. Let g ∈ C2[−ML,ML] be an even
function obeying homogeneous Dirichlet boundary condi-
tions. Then, the approximation of solution u given in (61)
generates the approximation error with the upper bound

|u(x, t)− uapp(x, t)| ≤ 2M2L2||g′′||
π2(Mapp +

1
2 )

,

(x, t) ∈ [−ML,ML]× (0,∞). (69)
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Proof. We calculate the error based on the exact form of
the solution (52) and its approximation (61) to obtain

|u(x, t)− uapp(x, t)|

≤ 2M2L2||g′′||
π2

∞∑
m=Mapp+1

1

(m+ 1
2 )

2

≤ 2M2L2||g′′||
π2

∫ ∞

Mapp

1

(u+ 1
2 )

2
du

=
2M2L2||g′′||
π2(Mapp +

1
2 )

.

�
Analogous calculations yield the the approximation

error formula for the case of an odd initial function.

Proposition 11. Let g ∈ C2[−ML,ML] be an odd
function obeying homogeneous Dirichlet boundary condi-
tions. Then the approximation of solution u given in (67)
generates the approximation error with the upper bound

|u(x, t)− uapp(x, t)| ≤ 2M2L2 ||g′′||
π2 Kapp

,

(x, t) ∈ [−ML,ML]× (0,∞). (70)

The above results give bounds for approximation
errors which will be particularly useful in the investigation
of the quality of approximation close to t = 0. Let us
point out that for specific examples, these bounds can be
improved (see Example 3, formula (80)). In addition, we
shall analyze the case with a continuous initial function
g /∈ C2(−ML,ML) in Example 2. It appears that the
bound for approximation error, independent from the time
variable, can be derived based on the exact form of the
solution (cf. Eqn. (77)). Therefore, the approximation
for the time variable close to t = 0 can also be developed
with a reliable analysis of its accuracy.

In the examples below, we study various solutions
with initial functions given in the form of the delta Dirac
function, a continuous function not belonging to the C2

class and function from the C2 class. In all cases we
calculate the explicit form of the solution, approximation
errors and present graphs describing the time evolution
as well as comparing the properties of the solution for
various choices of problem parameters such as fractional
order α and memory length L.

Example 1. (A Dirac delta function in the initial
condition (30)). Assume the initial function in the form
of the Dirac delta function

g(x) = δ(x). (71)

The solution u is determined as a series of even terms in

the following form:

u(x, t) =

∞∑
m=0

exp
(
−ρ(Λ̃m) t

)
cos

(
(m+ 1

2 )πx

ML

)
.

(72)
We shall check the convergence as the initial function

does not fulfill the assumptions of Theorems 1 and 2. In
the estimation, we apply the property (58) resulting from
Proposition A1 and for any point (x, t) ∈ [−ML,ML]×
(0,∞) we get

|u(x, t)| ≤
∞∑

m=0

exp
(
−ρ(Λ̃m) t

)

≤
∞∑

m=0

exp

(
−(m+

1

2
)γet

)

=
e−γet/2

1− e−γet
. (73)

Analogously to the proof of Theorem 1, we apply
the Weierstrass test of function series convergence and
conclude that the solution u as a sum of series convergent
absolutely and uniformly in each compact subset of
[−ML,ML]×(0,∞) is a continuous function in any such
subset.

Next, we assume the approximate solution in the
form of the finite sum

uapp(x, t) =

Mapp∑
m=0

e−ρ(Λ̃m)tYΛ̃m
(x) (74)

and calculate the approximation error for any (x, t) ∈
[−ML,ML]× (0,∞),

|u(x, t)− uapp(x, t)| ≤
∞∑

m=Mapp+1

e−ρ(Λ̃m)t

≤
∞∑

m=Mapp+1

e−(m+ 1
2 )γet

=
e− (Mapp+3/2)γet

1− e−γet
(75)

with constant γe given by (A2).

We analyze the behavior of solutions by applying
their approximate versions. First, in the graphs included
in Fig. 1, we compare time evolution of the solutions
for orders α = 1 and α = 0.7 for fixed values of
parameters M = 10, L = 0.25. Both solutions are
decreasing functions of time, tend to zero as t → ∞,
which results from the estimate (73). However, comparing
the movement of maximum of the solution, we see that the
solution for a fractional order of α = 0.7 decreases more
slowly than in the classical case.



Exact and approximate solutions of a fractional diffusion problem . . . 321

Next, Fig. 2 includes two graphs. In the first one we
compare solutions for fixed values of parameters M ·L =
12, α = 0.8, time moment t = 25 and a varying memory
length. We observe that the evolution slows down when
the memory length decreases for the constant length of
the problem domain 2ML = const. Next, we fix values
M = 10, L = 0, 25 and time moment t = 3. Then,
we change the fractional order α ∈ {0.7, 0.8, 0.9, 1.0}
and note that the evolution for the decreasing value of the
fractional order becomes slower.

For the examples described above, all calculations,
have been performed assuming that the approximation
error is less than 10−6. This assumption required
truncating the series to Mapp = 1100. The Mapp value
was determined based on the estimate (75). �

Example 2. (A continuous and even initial function)
Next, we consider the example with the even initial
function g(x) = ML − |x|. Applying Theorem 1, we
get coefficients

Bm =
2ML(

(m+ 1
2 )π

)2

and the even solution in the form of the series

u(x, t) =
2ML

π2

∞∑
m=0

1

(m+ 1
2 )

2

× exp
(
−ρ(Λ̃m)t

)
cos

(
(m+ 1

2 )πx

ML

)
.

Applying Theorem 1 and the fact that the initial
function is continuous here, we infer that the solution u
is a continuous function of two variables in any compact
subset of [−ML,ML] × (0,∞) and a function of the
C∞(G) in any open subset G.

In addition, using (57), we estimate the
approximation error (here ||g|| = ML)

|u(x, t)− uapp(x, t)| ≤ e− (Mapp+
1
2 )γe t

1− e−γet
· 2ML (76)

with constant γe given by (A2).

Let us note that the above estimate does not fully
describe the approximation error when time t is close
to zero. The initial function in this example is not of
C2(−ML,ML) class. Therefore, we cannot apply the
result from Proposition 10. We calculate the error based
on the exact form of the solution and obtain the following
formula, which is useful for the time variable t close to

Fig. 1. The approximate solution of the problem (28)–(30) for
the initial function g(x) = δ(x) and for different times.

zero:

|u(x, t)− uapp(x, t)|

≤ 2ML

π2

∞∑
m=Mapp+1

1

(m+ 1
2 )

2

≤ 2ML

π2

∫ ∞

Mapp

1

(u+ 1
2 )

2
du

=
2ML

π2(Mapp +
1
2 )

. (77)
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Fig. 2. The approximate solution of the problem (28)–(30) for
the initial function g(x) = δ(x) and for different values
of spatial memory length L (left) and fractional order α
(right).

In the graphs of Fig. 3, we again compare time
evolution of the solutions for orders α = 1 and α =
0.7. By Remark 2, both solutions are rapidly decreasing
functions of time and tend exponentially to zero when
time t → ∞. However, when we analyze the movement
of the solution maximum, we observe that for fractional
order α = 0.7 it decreases more slowly than in the
classical case.

Fig. 3. The approximate solution of the problem (28)–(30) for
the initial function g(x) = ML − |x| and for different
times.

Next, Fig. 4 includes two graphs. In the first one, we
compare solutions for fixed values of parameters M ·L =
12, α = 0.8, time moment t = 20 and a varying memory
length. We note that the evolution slows down when
the memory length decreases for a constant length of the
problem domain 2ML = const. In the next graph we fix
values M = 10, L = 0, 25 and time moment t = 3. Then,
we change the fractional order α ∈ {0.7, 0.8, 0.9, 1.0}.
We observe that the evolution for a decreasing value of
fractional order becomes more slow.

For the examples described above, all calculations,
have been performed assuming that the approximation
error is less than 10−6. This assumption required
truncating the series to Mapp = 800. The Mapp value was
determined based on the estimation (76). �
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Fig. 4. The approximate solution of the problem (28)–(30) for
the initial function g(x) = ML − |x| and for differ-
ent values of the spatial memory length L (left) and the
fractional order α (right).

Example 3. (The initial function in C2(−ML,ML)) In
the next case, we assume g(x) = M2L2 − x2 which
is clearly of the C2(−ML,ML) class. Then, applying
Proposition 4, we get coefficients

Bm =
4M2L2(−1)m(
(m+ 1

2 )π
)3

and the even solution in the form of the series

u(x, t) =
4M2L2

π3

∞∑
m=0

(−1)m

(m+ 1
2 )

3

× exp
(
−ρ(Λ̃m) t

)
cos

(
(m+ 1

2 )πx

ML

)
,

(78)

which is of C∞(G) class for any open subset G ⊂
[−ML,ML] × (0,∞) and a continuous function in any
compact subset.

Applying Eqn. (62), we can give an explicit estimate
of the approximation error as ||g′′|| = 2:

|u(x, t)− uapp(x, t)|

≤ e− (Mapp+1/2)γet

(Mapp +
3
2 )

2 (1− e−γet)
· 4 M2L2

π3
(79)

with constant γe given by (A2).
Similarly to the previous example, the above estimate

does not fully describe the approximation error when time
t is close to zero. The initial function in this example
is in C2(−ML,ML) and we could apply a result from
Proposition 10. Instead, we calculate the error based on
the exact form of the solution and obtain the following
formula providing a more accurate estimate

|u(x, t)− uapp(x, t)|

≤ 4M2L2

π3

∞∑
m=Mapp+1

1

(m+ 1
2 )

3

≤ 4M2L2

π3

∫ ∞

Mapp

1

(u + 1
2 )

3
du

=
2M2L2

π3(Mapp +
1
2 )

2
. (80)

We analyze the behavior of solutions by applying
their approximate versions. First, in the graphs included
in Fig. 5, we compare time evolution of the solutions
for orders α = 1 and α = 0.7. By Remark 2, both
solutions are decreasing functions of time, tend to zero as
t → ∞. However, analyzing the movement of the solution
maximum, we see that the solution for a fractional order
of α = 0.7 decreases more slowly than in the classical
case.

Next, Fig. 6 consists of two graphs. In the first
one, we compare solutions for fixed values of parameters
M · L = 12, α = 0.8, time moment t = 20 and a varying
memory length. Again, we note that the evolution slows
down when memory length decreases for the constant
length of the problem domain 2ML = const. Next, we
fix values M = 10, L = 0, 25 and time moment t = 3.
Then, we change fractional order α ∈ {0.7, 0.8, 0.9, 1.0}.
We observe that the evolution for the decreasing value of
the fractional order becomes slower.
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Fig. 5. The approximate solution of the problem (28)–(30) for
the initial function g(x) = M2L2−x2 and for different
times.

For the examples described above, all calculations,
have been performed assuming that the approximation
error is less than 10−6. This assumption required
truncating the series to Mapp = 290. The Mapp value was
determined based on the estimate (79). �

4. Conclusions
In the paper, we studied the partial fractional differential
equation, where the fractional derivatives with fixed
length of space memory replace the second-order
derivative with respect to the spatial variable. The
derivatives of this type seem particularly well suited for
the finite domain problems where we assume the size of
the domain to be expressed in terms of L, i.e., memory

Fig. 6. The approximate solution of the problem (28)–(30) for
the initial function g(x) = M2L2−x2 and for different
values of spatial memory length L (left) and fractional
order α (right).

length. The problem considered here was complemented
with the homogeneous Dirichlet boundary conditions.
Applying our previous results on the eigenfunctions and
eigenvalues of the oscillator operator with fixed memory
length, we derived the exact solutions in the form of a
trigonometric series with time-dependent coefficients.

As the exact solution of the fractional problem
(28)–(30) is given in the form of a series, we studied
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approximate solutions in the form of partial sums. The
length of the partial sum (parameter Mapp or Kapp,
respectively) and the time variable are fundamental
parameters deciding on the accuracy of approximation.
To control the accuracy of approximation, we derived
formulas describing a bound of the approximation error.

First, the approximation error is controlled by
parameters Mapp and Kapp as well as time t in formulas
(57), (62), (66) and (68). Rapid decreasing of the
error for increasing values of time and length of the
partial sum is to be noticed. Therefore, establishing the
approximation accuracy at a given time moment and the
value of parameters Mapp and Kapp, we can be sure that
this accuracy will be strongly improved in time according
to Remark 4.

On the other hand, time-dependent estimates (57),
(62), (66) and (68) predict that in order to approximate
a solution near t = 0 with high accuracy, very long partial
sums are needed. Our results allow us to keep control
of the approximation error by dynamically changing
parameters Mapp and/or Kapp according to time moment.

In addition, time independent formulas (69) and
(70) are developed in the case when the initial function
g ∈ C2(G). The obtained functions describing the
error bound are decreasing functions of parameters Mapp

and/or Kapp, respectively. It seems that they will be
particularly useful when approximating the solution near
t = 0. An analogous formula is also valid for certain
cases of continuous initial functions which was shown in
Example 2.

The length of partial sums depends strongly on
parameters such as the memory length L and time t. For
very large values of Mapp and Kapp, the time necessary to
calculate the partial sum increases significantly. In such a
situation, the calculations become ineffective. Therefore,
our future work will be focused on developing effective
numerical algorithms for solving the studied diffusion
problem.
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Appendix

Estimation of lower and upper bounds
for eigenvalues

In this section, we shall derive useful estimates
of lower and upper bounds for the eigenvalues of the
oscillator problem (19) and (20). To this aim, we apply
the property of fractional derivatives with fixed memory
length given in (13), which will be fundamental in our
discussion. We start by estimating lower bounds for the
eigenvalues connected to even and odd eigenfunctions
(25) and (23), respectively.

Proposition A1. Eigenvalues of the oscillator problem
(19) and (20) obey the following inequalities:

ρ(Λ̃m) ≥
(
(m+ 1

2 )π

M

)2 (
cos

( π

4M

))2

× L−2α

(Γ(2− α))2
× 1

M

≥ (m+
1

2
)γe, m ∈ N, (A1)

where ρ(Λ̃m), determined by (16), corresponds to eigen-
function YΛ̃m

given in (25) and

γe :=
(
cos

( π

4M

))2

× π2L−2α

M3(Γ(2− α))2
. (A2)

For eigenvalue ρ(Λ̃0) we have

ρ(Λ̃0) ≥ γe/4. (A3)

For eigenvalues ρ(Λk), determined by (16), correspond-
ing to eigenfunctions YΛk

given in (23) we have

ρ(Λk) ≥
(
kπ

M

)2 (
sin

( π

4M

))2

× L−2α

(Γ(2− α))2
× 1

M
≥ kγo, k ∈ N,

(A4)
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where

γo :=
(
sin

( π

4M

))2

× π2L−2α

M3(Γ(2 − α))2
. (A5)

Proof. We begin with calculations of formula (A1)
describing the lower bound for eigenvalues ρ(Λ̃m). Let
us start with the following useful formula:

x−LI
1−α
x 1 =

L1−α

Γ(2− α)
= xI

1−α
x+L1 (A6)

and write the oscillator equation with function YΛ̃m
as a

solution (m ∈ N0)

ρ(Λ̃m)YΛ̃m
(x) = LYΛ̃m

(x), x ∈ [−ML,ML]. (A7)

Now, we multiply both the sides of this equality with
YΛ̃m

and integrate over interval [−ML,ML]

ρ(Λ̃m)

∫ ML

−ML

YΛ̃m
(x)YΛ̃m

(x) dx

=

∫ ML

−ML

YΛ̃m
(x)LYΛ̃m

(x) dx. (A8)

Calculating the integral on the left-hand side and using
formula (13) for the right operators, we obtain the relation

ρ(Λ̃m)ML

=
1

2

( ∫ ML

−ML

(
x−LD

α
x YΛ̃m

(x)
)2

dx

+

∫ ML

−ML

(
xD

α
x+L YΛ̃m

(x)
)2

dx
)
. (A9)

Using the above relation, we estimate two terms on
the right-hand side. For the first one, we get

∫ ML

−ML

(
x−LD

α
x YΛ̃m

(x)
)2

dx

=

(
(m+ 1

2 )π

ML

)2

×
∫ ML

−ML

(
x−LI

1−α
x sin

(
(m+ 1

2 )πx

ML

))2

dx

≥ 2(2m+ 1)

(
(m+ 1

2 )π

ML

)2

×
∫ ML

2m+1

(M− 1
2
)L

2m+1

(
x−LI

1−α
x sin

(
(m+ 1/2)πx

ML

))2

dx

≥ 2(2m+ 1)

(
(m+ 1

2 )π

ML

)2

×
(
sin

(
(m+ 1

2 )π

ML
× (M − 1

2 )L

2m+ 1

))2

×
∫ ML

2m+1

(M− 1
2
)L

2m+1

(
x−LI

1−α
x 1

)2
dx

= 2(2m+ 1)

(
(m+ 1

2 )π

ML

)2

×
(
sin

(
(m+ 1

2 )π

ML
× (M − 1

2 )L

2m+ 1

))2

× (
x−LI

1−α
x 1

)2 × L

2(2m+ 1)

=

(
(m+ 1

2 )π

ML

)2 (
sin

(π
2
− π

4M

))2

× L2−2α

(Γ(2− α))2
· L.

Similarly, for the second term with the right-sided
derivatives we obtain the same inequality:

∫ ML

−ML

(
xD

α
x+L YΛ̃m

(x)
)2

dx

=

(
(m+ 1

2 )π

ML

)2

×
∫ ML

−ML

(
x−LI

1−α
x sin

(
(m+ 1/2)πx

ML

))2

dx

≥
(
(m+ 1

2 )π

ML

)2 (
sin

(π
2
− π

4M

))2

× L2−2α

(Γ(2 − α))2
× L.

Taking into account the above estimates and relation (A9),
we arrive at estimates (A1) and (A3),

ρ(Λ̃m) ≥
(
(m+ 1

2 )π

ML

)2 (
cos

( π

4M

))2

× L2−2α

(Γ(2− α))2
× 1

M

=

(
m+

1

2

)2

γe ≥ (m+
1

2
)γe, m ∈ N,

(A10)

ρ(Λ̃0) ≥ γe/4,



328 M. Klimek and T. Blaszczyk

where we define constant γe by (A2). We omit the proof
of the estimate (A4) as it is analogous to the proof of
formulas (A1)–(A3) presented in detail. �

Next, we consider the upper bounds for eigenvalues
(16) connected to even and odd eigenfunctions determined
by Eqns. (25) and (23), respectively. The proof will also
be based on the relation given in (13).

Proposition A2. The eigenvalues of the oscillator prob-
lem (19) and (20) obey the following inequalities:

ρ(Λ̃m) ≤
(
(m+ 1

2 )π

ML

)2
2L2−2α

(Γ(2 − α))2

=

(
(m+ 1

2 )π

M

)2
2L−2α

(Γ(2 − α))2
, m ∈ N0,

(A11)

where ρ(Λ̃m), the eigenvalue given in (16), corresponds
to the eigenfunction YΛ̃m

determined in (25) and

ρ(Λk) ≤
(

kπ

ML

)2
2L2−2α

(Γ(2 − α))2

=

(
kπ

M

)2
2L−2α

(Γ(2 − α))2
, k ∈ N,

(A12)

where eigenvalue ρ(Λk), the given in (16), corresponds to
the eigenfunction YΛk

determined by formula (23).

Proof. In the calculations of the estimate (A11), we apply
relation (A9) resulting from (13). We shall estimate both
the terms on the right-hand side. To this aim, we apply the
explicit form of the solution

YΛ̃m
(x) = cos

(
(m+ 1

2 )πx

ML

)

and the fact that the left derivative is given as

x−LD
α
x = x−LI

1−α
x

d

dx
.

For the first of the two terms on the right-hand side, we
obtain the following estimate

∫ ML

−ML

(
x−LD

α
x YΛ̃m

(x)
)2

dx

=

(
(m+ 1

2 )π

ML

)2

×
∫ ML

−ML

(
x−LI

1−α
x sin

(
(m+ 1

2 )πx

ML

))2

dx

≤
(
(m+ 1

2 )π

ML

)2 ∫ ML

−ML

(
x−LI

1−α
x 1

)2
dx

=

(
(m+ 1

2 )π

ML

)2
L2−2α

(Γ(2− α))2
· 2ML,

where we applied (A6).
The estimation for the second part on the right-hand

side of (A9) can be derived analogously and is as follows:

∫ ML

−ML

(
xD

α
x+L YΛ̃m

(x)
)2

dx

≤
(
(m+ 1

2 )π

ML

)2
L2−2α

(Γ(2− α))2
· 2ML

Taking into account the above inequalities, we arrive at
the estimate of the upper bound of ρ(Λ̃m) given in (A11):

ρ(Λ̃m) ≤
(
(m+ 1

2 )π

M

)2
2L−2α

(Γ(2 − α))2
.

The second part of the estimation describing the
eigenvalues ρ(Λk) in formulas (16) and (23) can be proved
analogously. �

Received: 5 August 2024
Revised: 2 January 2025
Accepted: 28 January 2025


	Introduction
	Preliminaries
	Space-fractional diffusion problem with fixed space memory length
	Exact solutions of the diffusion problem subjected to the homogeneous Dirichlet boundary conditions
	Approximation

	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [597.600 842.400]
>> setpagedevice


