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1. Introduction 2. Torsion Functor and Weak Primeness

It is well known that the controllability of a linear multidi-  In the remainder of the paper, we shall denote dya
mensional control system depends on an algebraic prop-Noetherian integral domain which is supposed to be either
erty (namely, thetorsion-freenegsof a certain module  a commutative ring or keft Ore domainnamely a domain

M associated with the system (Oberst, 1990; Pillai and such that, for any coupléa, b) € A2, there exists a non-
Shankar, 1999; Pommaret and Quadrat, 1999a; 1999b)trivial couple (u,v) € A? such thatua = v b. Moreover,
The recent survey (Wood, 2000) gives different equiva- let K = Q(A) be the quotient field ofA. If A and B

lent formulations of controllability and, in particular, the are two integral domains, then we shall denotehy/ 4
equivalence obtained in (Pillai and Shankar, 1999) be- a moduleM with the structure of a lefB-module and of
tween the torsion-freeness dff and the definition of  a right A-module (see (Kashiwara, 1970; Pommaret and
controllability given by Willems (1991). Quadrat, 1999a) for more details for the non-commutative

In this paper, we show how to use the powerful C3S€):
tools of homological algebra in order to compute the tor- In the literature on internal stabilization, the concept
sion submodulet(M) of an A-module M, i.e. the of weak primenesis useful (Quadrat, 2003; Smith, 1989).
non-controllable part of a control system (Pommaretand . o o
Quadrat, 1999a; 1999b; Willems, 1991). The obtained Definition 1. Let R be anl x m matrix with entries in
results show the link existing between the concept of - 1t is said to baveakly left-primef
the weak primeness of a matriR with entries in A . m ol
and the torsion part(M) of the module M associated K'RNA™ = A'R,
with R. Finally, we prove the isomorphismg M) =
tor! (K/A, M) = ext! (N, A), where N is thetrans-
posed A-moduleof M, A is anyOre Noetherian ring  Remark 1. If R is a full row rank! x m matrix ( < m)

and K = Q(A) stands for thdield of fractionsof A.  jth entries in 4, then R is weakly left-prime iff
This result generalizes the previous results obtained in

(Pommaret and Quadrat, 1999a; 1999b) for the ribg VzeK': z2Re A" =z e AL
of differential operators.

where the vectors ofi’, A™ and K'! are row vectors.
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Example 1. Let D = R(z1,xz2)[d1,ds] be the ring of
differential operators ind; with rational coefficients in
x;, and let R be the full row rank matrix defined by

R = (Ql‘gd% — 2$gd1 + 29 : x%dldg — xody — 1) e D'*2,
R is not weakly left-prime because we have
d2R = (Igdl - 1)R/7 (1)

and thus
(:L'le - 1)_1d2R = RI7

where (z2d; —1)7'dy € K = Q(D) and
R = (.’L’gdld2+3$2d1—1’2d2—1 : 12d§+2d2) € D1><2.

¢

Let us interpret weak primeness in terms of modules. We

need several definitions (Rotman, 1979).

Definition 2. The A-module defined by
t(M){me M |30+£a€c A: am =0}

is called thetorsion submodul®ef an A-module M. An
A-module M is torsion-freeif ¢(M) = 0 andtorsionif
t(M) = M. We have the following exact sequence:

)

where M/t(M) is a torsion-freeA-module. A module
M4 (resp.p M) is flatif for every short exact sequence
of left A-modules

0—t(M)— M — M/t(M) — 0,

()—>N/*>]\/'—>]\7//—>O7

Proof. It is well known that K is a flat A-module (Rot-
man, 1979). Thus, tensoring by the exact sequence

AV B qm 0, @)
we obtain the exact sequence
KUEER gm K @a M —— 0, (5)

where (idx ® .R)(z) = z R, Vz € K'. Hence we have
the commutative exact diagram

0
!
0 #(M)
l l l (6)
Al LN Am I M — 0
I ! ik
KU OESR S gem KEOT o M 0.

1 = 2. Letustakem € t(M), i.e.ixg(m) = 0.
Using the fact thatr is a surjective A-morphism, there
exists A € A™ such thatm = w(\). Thus, we have
(ix @ T)(A) = igx(7w(N)) = 0, and, since (5) is an exact
sequence, there exisfs € K' such thaty R = \. By
hypothesis,R is weakly left-prime, and thus there exists
ve Al suchthatv R =\ = m = 7(\) = n(v R) = 0,
i.e. t(M)=0.

2=1.Letpuc K'suchthaty R = \ € A™. Ifwe
write m = 7 (), then we have

ixe(m) = ix (r(\) = (ik@m)(\) = (ix@m)(uR) = 0,

and thusix (m) = 0. By hypothesis, we have(M) = 0,

we have the following exact sequence of Abelian groupsi.e. m = w(A) = 0. Since (4) is an exact sequence,

(resp. left B-modules):

0— MRy N — M®4s N — Mg N — 0.

K is a flat A-module, i.e. the tensor product by
transforms exact sequences of leftmodules into exact
sequences of leff{-vector spaces, and we have the exact
sequence of leftA-modules (Rotman, 1979):

0—t(M) — M 2SS Kos M
— (K/A)®a M — 0. 3)

Theorem 1. (Quadrat, 2003)et R be anl x m matrix
with entries inA and M = A™/A! R, where the vectors
of A and A™ are row vectors. The following assertions
are equivalent:

1. R is weakly left-prime, i.eK! R N A™ = A'R,

2. t(M)=0,i.e. M is atorsion-freeA-module.

there existsy € A' such thatv R = ), and thus, we
have u R = vR, i.e. K'Rn A™ C A'R. Finally,

using the trivial fact thatd' R C K' R N A™, we obtain
K'RNnA™ = A'R. [

Example 2. Let us reconsider the matri® defined in
Example 1. We proved thaR is not weakly left-prime.
Therefore, by Theorem 1, we know that tle-module
M = D?/DR is not torsion-free. Let us denote hy
(resp. u) the class of the first vectar; = (1 : 0) (resp.
ez = (0 : 1)) of the canonical basis ab? in M. Hence,
with the notationd; d; y = y;;, we find thatM is defined
by the following equation:

3 2 2
Toy1l —2x53y1 + T2y + x3u12 — X2Uu2 —u =0,

as well as all its D-linear combinations. Using (1), we
find that the class of the vectdR’ is in M, i.e. the ele-
ment

z=a3y12+ 322y — Tays — Y + Toue + 2ux € M,
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satisfies the equatiofizody — 1)z = 2921 — 2z = 0,
which means thatz is a torsion element of theD-
module M. ¢

Corollary 1. (Quadrat, 2003)et R be anl x m matrix
with entries in A and the A-module M = A™/A'R.
Then we have

t(M) = (K' RN A™)/A!R,

@)
M/t(M) = A™J(K' RN A™).

Proof. We have the commutative exact diagram

0 0
! !

0— AR —A™— M —0
! l 1

0— K'RNA™ —A™——A™/(K'RNA™)—0 (8)
! ! l

(K'RNA™)JA'R 0 0

!
0,

from which we deduce the following exact sequence:
0— (K'RNA™)JA'R — M — A™/(K' RNA™) — 0.

We have K @4 ((K'RN A™)/A'R) = K'R/K'R =

0, i.e. the A-module (K'R N A™)/A'R is a tor-
sion module. We havek @4 (K'R N A™) N A™ =
K'RNA™, which shows that thel-module A™ /(K! RN
A™) is torsion-free. From the exact sequence (2), we
obtain (7). ]

Remark 2. Smith (1989) shows that ifA is a commu-
tative integral domain, then weak left-primeness implies
minor left-primeness and the two concepts are equiva-
lent if A is a greatest common divisor domainSee

@ c

Abelian groups (resp. lefB-modules) of homology of the
complex

idy @ d: idy®@d
L NEB N @y B NN @4y

WEN N @, Fy — 0
do not depend on the choice of the free resolution\Hf
and they are calledor?* (N, M). We have

{

Proposition 1. (Rotman, 1979 0 — M’ — M —
M" — 0 is an exact sequence of left-modules and
a module N4 (resp. gN4), then we have the following
exact sequence of Abelian groups (resp. Bftodules):

tord! (N, M) = N ®4 M,
1’,01‘;4(]\77 M) = ker(ldN®dl)/1m(1dN®dZ+1), VZZl

- — tory (N, M"") —
torf (N, M") — tor{*(N, M) — tor{*(N, M") —
N ®@s M — N@aM — NuM'—0.

In particular, a module N4 is flat iff for any left A-
module M we havetor{!(N, M) =0, Vi > 1.

Proposition 2. Let M be a left A-module. Then
t(M) = tor{ (K /A, M).
Proof. Applying Proposition 1 to the exact sequence

00— A— K — K/A — 0, we obtain the fol-
lowing exact sequence:

tord! (K, M) — tor{ (K /A, M) — M
S K @4 M —s (KJA) ®4 M — 0.

Since K is a flat A-module, we havetor{ (K, M) =
0, and thus,kerix = torf'(K/A, M). Finally, using

(Quadrat, 2003; Smith, 1989) for counter-examples of the the exact sequence (3), we obtaitM) = kerix =

fact that minor left-primeness does not generally imply tor{ (K /A, M).

weak left-primeness. We thank both the anonymous ref-
eree and J. Wood for pointing out to us that the concept
of weak left-primeness is also equivalent to the general-
ized factor left-primeness in the case of a polynomial ring
A = k[x1,--.,Xxn] with coefficients in a fieldk (For-
nasini and Valcher, 1997; Woaat al.,, 1998).

To study the defect of exactness that the tensor prod-
uct by K /A introduces in exact sequences, we shall need
the definition of theorsion functor

d2
—

Definition 3. (Rotman, 1979) Let.-- F 4,
Fy, = M — 0 be a free resolution of the lefti-

module M and a moduleN, (resp.pN4). Then the

Example 3. Consider the ringD = R[d;, ds, d3] of the
differential operators inl; with coefficients inR and the
multidimensional system defined by means of the gradient
operator inR?:

d12:0,
ng:O, (9)
d32’=0.

We have the following free resolution of thB-module
M = D/D3(dy : dy: d3)T corresponding to (9):

0—p B psfapsfup ™ oy Lo,
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where
dq 0 —d3 do
Ri=|dy |, Re=| ds 0 —dy |, R3=RT.
ds —ds di O
We have the following complex:
(/AP ST (R ayp ST R4,

and tori!(K/A, M) = ker(idy/4 ® .R1)/im(idg/a ®
.Ry). Let y be the class of the vectdrl; ! 00) € K* in
(K/A)®. Herey belongs toker (idgx,4 ® .R1) because
we have

(d7':0:0)R =1€ A (10)
y € im (idg /4 ® .Ry) iff there exist (t1 : t : t3) € K?
and (s; : s2 : s3) € A3 which satisfy the system

(tl tto t3)R2 + (31 $ 89t 83) = (dl_l :0: 0) (11)

If (11) has a solution, then necessarily, by applyiRg
on the right of (11) and using (10), we must have

(81 I Sg 83) Ri =1<% s1d1+S2da+s3ds =1, s; € A.

We easily check that the last equality is never satisfied,
and thusR; is not weakly left-prime. ¢

3. Extension Functor and Behaviour

Definition 4. Let --- -2 F, -4, Fy = M — 0 be

a free resolution of the lefd-module M and 4.5 (resp.
4Sp) amodule. Then the Abelian groups (resp. the right
B-modules) of cohomology of the complex

8 homa(F, S) < homa(Fo, S) —— 0,

where d¥(f) = fod;, ¥Vf € homa(F;_1,5), do not
depend on the choice of the free resolutiomdf and they
are calledext’, (M, S). Thus we have

{

A module 45 is calledinjectiveif for every exact se-
guence of leftA-modules

ext (M, S) = hom (M, S),
ext’y (M, S) = kerd;,, /imdj, Vi>1.

0— M LML M — 0,
we have the exact sequence
0 «— hom 4 (M’, S) LhomA(M, S)

& homu(M”, S) «— 0.

Example 4. If M is a finitely generated lefd-module,
then a free resolution o/ can be written in the form

N N =Ny LU )

where R; is anr; x r;_; matrix with entries inA and

.R; is the A-morphism defined by multiplying a row vec-
tor of lengthr; on the left of R; to obtain a row vector of
lengthr;_;. Hence the extension functor gives the defects
of exactness of the following sequence:

S S Bz ST B ST« Q,

where R;. is the A-morphism defined by multiplying
a column vector of lengthr;_; on the right of R;

to obtain a column vector of length;. In particular,
ext (M, S) = homa(M, S) represents the solution €

S7o of the systemR;y = 0, whereasext!, (M, S) is
the obstruction forz € S™ satisfying R,z = 0 to be

of the form z = Ry y with y € S™. If A is the ring

D of differential operators with constant coefficients and
Q2 is an open convex o™, then C>(Q),D’'(©2) and
S’(Q) are examples of injectivé)-modules (Malgrange,
1966; Oberst, 1990; Shankar, 2001; Wood, 2000). In par-
ticular, if R; is a matrix which defines a multidimen-
sional control system, theext’, (M, S) = hom4 (M, S)
corresponds to thieehaviourof the system with respect to
thesignal moduleS (Willems, 1991). ¢

Proposition 3. (Rotman, 1979)f 0 — M’ L M %
M" — 0 is an exact sequence of left-modules and
AS (resp. aSp) is a module, then we have the follow-
ing exact sequence of Abelian groups (resp. right
modules):

0 — hom4(M", S) o, homa (M, S) , homa (M, S)
—s exty (M, 8) — exth (M, S) — extly (M, S)
— exti(M”,8) — -+

In particular, a module 4.5 is injective iff, for any left
A-module M, we haveext, (M, S) =0, i > 1.

If M isaleft A-module defined by a finite-free pre-

sentationF;, - F, ™ M — 0, then we can define
the right A-module N by

0 Ne— il pre a0, (12
Two different free resolutions of\/ give two different
right A-modulesN and N’, and thus the righ#A-module
N is not uniquely defined byM. But in (Pommaret
and Quadrat, 2000; Quadrat, 1999) it is shown tNats
uniquely defined up to projective equivalencéRotman,
1979), a fact which impliesxty (NN, S) = ext?, (N, S)
and tor (N, S) = tor(N’,S) for i > 1 and any left
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A-module S. The moduleN plays a crucial role in the  whereas, by taking thed-morphisms of the exact se-
study of algebraic properties of the left-module M and quence (12) inX, we obtain the following exact se-
their correspondence to the different types of primenessquence:

(Oberst, 1990; Pommaret and Quadrat, 1999b; 2000). An

interesting application of this result is the following. Let  0— homa (N, X) — homa (F}, X) — homa (Fg, X).

us take a free resolution a¥ of the form I I

X®4Fi—X®akFy

00— N — A & gro Boo yra

Deleting N and taking the tensor product by a left- ~ Therefore, we have the exact sequence
module S, we obtain the following sequence: ‘
0—homa(N,X)—X ®a F1 XEAN ¥ @4 Fy

0— g fgro fo groa L MXEAT N @ M.

The defects of exactness are giventoy;* (N, S). Thus,

if S is a flat left A-module, we have parametrized the
solution y € S™ of the systemR; y = 0 by y = Ryz,
with z € S™-* and so on. For example, il is the ring

D of differential operators with constant coefficients and
Q2 is an open convex dR", thenS(2), D(©2) and £'(2)

are flat D-modules (Malgrange, 1966; Shankar, 2001).  becauser; is a free, and thus, a flat-module (Rotman,
1979) for i = 0,1. Then two chases in (13) prove the

theorem. [ ]

Finally, we obtain (13) if we notice that we have the fol-
lowing short exact sequence:

00— XQuEF, —YQRaF, — Z4F;, — 0,

4. Duality between Extension and Torsion 4
Functors Lemma 1. If M is a left A-module, thenext’, (M, A)

is a finitely generated torsion righti-module fori > 1.
Theorem 2. (Quadrat, 1999) et M be a left A-module
defined by the finite presentatidfi 2% Fy > M — Proof. The fact thatext’, (M, A) is a finitely generated
0 and an exact sequende— X — Y — Z — 0 right A-module for alli > 1 can be easily proved (Rot-
of right A-modules. Then we have the commutative exactMan, 1979). Now, leti” be a maximal freeA-module
diagram (13), where we denote By the right A-module  included in M. Then we have the exact sequence
defined by (12). There exist two connecting maps

00— F —M-—T—0,

{ §: homa(N,Z) — X @4 M,

K tori(Z, M) — ext! (N, X), whereT = M/F is a torsion left A-module. Then we
can apply Proposition 3 to the previous exact sequence to
such that the following two sequences are exact: obtain the following exact sequences:
0— homA(N,X) — homA(N, Y) — hOIll,q(]\/'7 Z) 0= homA(T7 A) . homA(M, A) N homA(F, A)
2 X@aM —Y @M — Z®4 M — 0, — exty (T, A) — exth (M, A) — ext} (F, A) =0,

— tord' (Z, M)
— tor{ (X, M) — tor{(Y,M) — tor{(Z, M)
Loexty (N, X) —  exth(N,Y) — exth(V,Z2)

—s exti (N, X) —

0 = ext’y '(F, A) — extly (T, A) — ext’y (M, A)
—s exty (F,A) =0, Vi>2.

From the second exact sequence, we deduce that

exty (M, A) = exty(T,A), Vi > 2. Now, using

Proof. First of all, let us notice that if" is a finitely gener- the fact that K is a flat A-module, we havevi > 1,

ated projective (free) lefid-module andX is a right A- K®g4 exti (T, A) 2 extt . (K®aT, K) = 0, becausel’

module, then we havliom 4 (F*, X)) =2 X ® F, where s atorsion leftA-module (Rotman, 1979). Therefore we

F* =homu(F, A) (Rotman, 1979). By taking the tensor have K ® ext’, (M, A) =0, Vi > 2, i.e. ext’ (M, A)

product of the finite presentation ff with respect toX, is a torsion rightA-module for alli > 2. Finally, if we

we obtain the following exact sequence: take the tensor product of the first exact sequence with re-
) , spect to K, then we obtainK ® 4 ext! (M, A) = 0, i.e.

X @ N X g, Ry X X 9, M —— 0, extl (M, A) is a torsion rightA-module. =
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!

tor{ (X, M)
!
tor (¥, M)
!
0 0 0 tor{!(Z, M)
! ! ! !
0—>h0mA(N,X)%X®AF1—>X®AF0—> X®aM —0
! ! ! !
0 —homs(NV,Y)—Y @4 F1—Y Q4 Fp— Y4 M —0 (13)
! ! ! !
0 —homp(N,Z2)—Z@s Fi—Z Q@4 Fp— Z@sM —0
! ! ! !
extl (N, X) 0 0 0
!
ext, (N,Y)
!
extl, (N, 2)
!
0
!
0 torf (K /A, M)
! ! ! !
0 —  homa(N,A) — F — Iy — M —0
! ! ! !
0— homy(N,K) — K®iF — K®4 Fy — KeiM —0 (24)
! ! ! !
0 — homu(N,K/A) — (K/A)®@aF, — (K/A)@aFy — (K/A)®@sM —0
! ! ! !
exty (N, A) 0 0 0

O —

Corollary 2. (Quadrat, 1999)Ve have the commutative we obtainext!, (N, K) = K ®4 ext} (N, 4) = 0 and

exact diagram (14) of leftA-modules and the following
exact sequence of leff-modules:

0 — homa(N,A) — homa (N, K) — homa (N, K/A)

MK @A M —s (KJA) @4 M — 0.
Moreover, we have the following isomorphisms:
t(M) = ext!y (N, A) = tor{ (K /A, M).  (15)

Proof. Using the fact thatK is a flat A-module and
extl (N, A) is a torsion left A-module (see Lemma 1),

tor{ (K, M) = 0. Now, applying Theorem 2 to the exact
sequencd) — A — K — K/A — 0 of both left
and right A-modules, we obtain the commutative exact
diagram (14). Finally, the snake lemma gives the isomor-
phisms (15). =

Remark 3. K is an injective module overd as it is
a torsion-free andlivisible A-module (Rotman, 1979).
Therefore, we could have obtained directly:

exty(N,K)=0, Vi>1.
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Example 5. Let us reconsider Example 3. THe-module Kashiwara M. (1970)Algebraic Study of Systems of Partial Dif-
N corresponding taV/ is defined by the following exact f_erential Equations— Mémoires de la Société Mathéma-
sequence:0 «— N «— D3 £ p 0. There- tiques de France, No. 63 (1995).

fore, dualizing this exact sequence, we have the sequencélalgrange B. (1966)ideals of Differential Functions— Ox-

0 — N* — D3 B p _. 0 and we obtain ford: Oxford University Press.

ext}j(N, D) = M. Finally, we havet(M) = M and Oberst U. (1990)Multidimensional constant linear systems

M is a torsionD-module. Acta Appl. Math.\ol. 20, pp. 1-175.
Pillai H.K. and Shankar S. (1999A behavioural approach to
If D= K[dy,ds,...,d,] is the ring of differential control of distributed systems— SIAM J. Contr. Optim.,
operators with entries in a differential fieltf, i.e. a field Vol. 37, No. 2, pp. 388—408.
K endowed withn derivationsd; which satisfy Pommaret J.F. (2001)Partial Differential Control Theory —

Dordrecht: Kluwer.
81(a+b) :81a+8lb,

0; (ab) = (0;a) b+ a(9;b),

Pommaret J.F. and Quadrat A. (1999a)ocalization and
parametrization of linear multidimensional control sys-
tems — Syst. Contr. Lett., Vol. 37, pp. 247-260.

Ya, b € K, then, using thedjoint functorwhich trans- Pommaret J.F. and Quadrat A. (1999®)gebraic analysis of

forms a right D-module N = D!/RD™ into a left linear multidimensional control systems- IMA J. Contr.
D-module defined byN = D!/D™ R, where R is Optim., Vol. 16, pp. 275-297.

the formal adjoint of ~R' we can effectively compute Pommaret J.F. and Quadrat A. (200@quivalences of linear
exth (N, D) = ext (N, D) using the algorithms devel- control systems— Proc. Int. SympMathematical The-

oped in (Pommaret, 2001; Pommaret and Quadrat, 1999a;  °w of Networks and Systems, MTNS 2000, Perpignan,
1999b). We refer the reader to (Pommaret and Quadrat,  Fance (on CD-ROM).

1999a; 1999b) for more information and examples. Quadrat A. (1999)Analyse algébrique des systemes de contréle
linéaires multidimensionnels— Ph. D. Thesis, Ecole des
Ponts et Chaussées, Marne-La-Vallée, France.

5. Conclusion Quadrat A. (2003):The fractional representation approach to

. . synthesis problems: An algebraic analysis viewpoint, I.
We hope to have convinced the reader that homological (weakly) doubly coprime factorizations, Il. internal stabi-
tools such as extension and torsion functors are very use-  |ization. — SIAM J. Contr. Optim., (to appear).

ful and powerful in the study of multidimensional con-
trol systems. They allowed us to show the link existing
between the concept of weak primeness and the concept _ .
of torsion-freeness in module theory. Moreover, we gave Shankar S. (2001)fhe lattice structure of behaviours- SIAM

. . ) . - J. Contr. Optim., Vol. 39, No. 6, pp. 1817-1832.
a purely algebraic proof of the isomorphism existing be-
tweent(M) and extk(N A), for any Noetherian left Ore Smith M.C. (1989): On stabilization and the existence of co-
integral domainA and any finitely generatedl-module 5”{";4&"\'“0326‘“01500_5 'EO%E Trans. Automat. Contr.,
M. This result generalizes those obtained in (Pommaret ol o4, No- 3, pp. B '

and Quadrat, 1999b) for rings of differential operators. ~ Willems J.C. (1991)Paradigms and puzzles in the theory of dy-
namical systems— IEEE Trans. Automat. Contr., Vol. 36,

No. 3, pp. 259-294.
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