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1. Introduction

It is well known that the controllability of a linear multidi-
mensional control system depends on an algebraic prop-
erty (namely, thetorsion-freeness) of a certain module
M associated with the system (Oberst, 1990; Pillai and
Shankar, 1999; Pommaret and Quadrat, 1999a; 1999b).
The recent survey (Wood, 2000) gives different equiva-
lent formulations of controllability and, in particular, the
equivalence obtained in (Pillai and Shankar, 1999) be-
tween the torsion-freeness ofM and the definition of
controllability given by Willems (1991).

In this paper, we show how to use the powerful
tools of homological algebra in order to compute the tor-
sion submodulet(M) of an A-module M , i.e. the
non-controllable part of a control system (Pommaret and
Quadrat, 1999a; 1999b; Willems, 1991). The obtained
results show the link existing between the concept of
the weak primeness of a matrixR with entries in A
and the torsion partt(M) of the moduleM associated
with R. Finally, we prove the isomorphismst(M) ∼=
torA

1 (K/A,M) ∼= ext1A(N,A), where N is the trans-
posedA-moduleof M , A is any Ore Noetherian ring
and K = Q(A) stands for thefield of fractionsof A.
This result generalizes the previous results obtained in
(Pommaret and Quadrat, 1999a; 1999b) for the ringD
of differential operators.

2. Torsion Functor and Weak Primeness

In the remainder of the paper, we shall denote byA a
Noetherian integral domain which is supposed to be either
a commutative ring or aleft Ore domain, namely a domain
such that, for any couple(a, b) ∈ A2, there exists a non-
trivial couple (u, v) ∈ A2 such thatu a = v b. Moreover,
let K = Q(A) be the quotient field ofA. If A and B
are two integral domains, then we shall denote byBMA

a moduleM with the structure of a leftB-module and of
a right A-module (see (Kashiwara, 1970; Pommaret and
Quadrat, 1999a) for more details for the non-commutative
case).

In the literature on internal stabilization, the concept
of weak primenessis useful (Quadrat, 2003; Smith, 1989).

Definition 1. Let R be an l ×m matrix with entries in
A. R is said to beweakly left-primeif

KlR ∩Am = AlR,

where the vectors ofAl, Am and Kl are row vectors.

Remark 1. If R is a full row rank l×m matrix (l ≤ m)
with entries inA, then R is weakly left-prime iff

∀ z ∈ Kl : z R ∈ Am ⇒ z ∈ Al.
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Example 1. Let D = R(x1, x2)[d1, d2] be the ring of
differential operators indi with rational coefficients in
xi, and letR be the full row rank matrix defined by

R = (x3
2d

2
1− 2x2

2d1 + x2 : x2
2d1d2− x2d2− 1) ∈ D1×2.

R is not weakly left-prime because we have

d2R = (x2d1 − 1)R′, (1)

and thus
(x2d1 − 1)−1d2R = R′,

where (x2d1 − 1)−1 d2 ∈ K = Q(D) and

R′ = (x2
2d1d2+3x2d1−x2d2−1 : x2d

2
2+2d2) ∈ D1×2.

�

Let us interpret weak primeness in terms of modules. We
need several definitions (Rotman, 1979).

Definition 2. The A-module defined by

t(M)
{
m ∈M | ∃ 0 6= a ∈ A : am = 0

}
is called thetorsion submoduleof an A-module M . An
A-module M is torsion-freeif t(M) = 0 andtorsion if
t(M) = M . We have the following exact sequence:

0 −→ t(M) −→M −→M/t(M) −→ 0, (2)

where M/t(M) is a torsion-freeA-module. A module
MA (resp.BMA) is flat if for every short exact sequence
of left A-modules

0 −→ N ′ −→ N −→ N ′′ −→ 0,

we have the following exact sequence of Abelian groups
(resp. leftB-modules):

0 −→M ⊗A N ′ −→M ⊗A N −→M ⊗A N ′′ −→ 0.

K is a flat A-module, i.e. the tensor product byK
transforms exact sequences of leftA-modules into exact
sequences of leftK-vector spaces, and we have the exact
sequence of leftA-modules (Rotman, 1979):

0 −→ t(M) −→ M
iK−→ K ⊗A M

−→ (K/A)⊗A M −→ 0. (3)

Theorem 1. (Quadrat, 2003)Let R be an l ×m matrix
with entries inA and M = Am/Al R, where the vectors
of Al and Am are row vectors. The following assertions
are equivalent:

1. R is weakly left-prime, i.e.Kl R ∩Am = Al R,

2. t(M) = 0, i.e. M is a torsion-freeA-module.

Proof. It is well known thatK is a flat A-module (Rot-
man, 1979). Thus, tensoring byK the exact sequence

Al .R−→ Am −→M −→ 0, (4)

we obtain the exact sequence

Kl idK⊗.R−→ Km −→ K ⊗A M −→ 0, (5)

where (idK ⊗ .R)(z) = z R, ∀ z ∈ Kl. Hence we have
the commutative exact diagram

0
↓

0 0 t(M)
↓ ↓ ↓
Al .R−→ Am π−→ M −→ 0
↓ ↓ ↓ iK

Kl idK⊗.R−→ Km iK⊗π−→ K ⊗A M −→ 0.

(6)

1 ⇒ 2. Let us takem ∈ t(M), i.e. iK(m) = 0.
Using the fact thatπ is a surjectiveA-morphism, there
exists λ ∈ Am such thatm = π(λ). Thus, we have
(iK ⊗ π)(λ) = iK(π(λ)) = 0, and, since (5) is an exact
sequence, there existsµ ∈ Kl such thatµR = λ. By
hypothesis,R is weakly left-prime, and thus there exists
ν ∈ Al such thatν R = λ ⇒ m = π(λ) = π(ν R) = 0,
i.e. t(M) = 0.

2⇒ 1. Let µ ∈ Kl such thatµR = λ ∈ Am. If we
write m = π(λ), then we have

iK(m) = iK
(
π(λ)

)
= (iK⊗π)(λ) = (iK⊗π)(µR) = 0,

and thusiK(m) = 0. By hypothesis, we havet(M) = 0,
i.e. m = π(λ) = 0. Since (4) is an exact sequence,
there existsν ∈ Al such thatν R = λ, and thus, we
have µR = ν R, i.e. Kl R ∩ Am ⊆ Al R. Finally,
using the trivial fact thatAl R ⊆ Kl R ∩ Am, we obtain
Kl R ∩Am = Al R.

Example 2. Let us reconsider the matrixR defined in
Example 1. We proved thatR is not weakly left-prime.
Therefore, by Theorem 1, we know that theD-module
M = D2/D R is not torsion-free. Let us denote byy
(resp. u) the class of the first vectore1 = (1 : 0) (resp.
e2 = (0 : 1)) of the canonical basis ofD2 in M . Hence,
with the notationdi dj y = yij , we find thatM is defined
by the following equation:

x3
2 y11 − 2 x2

2 y1 + x2 y + x2
2 u12 − x2 u2 − u = 0,

as well as all itsD-linear combinations. Using (1), we
find that the class of the vectorR′ is in M , i.e. the ele-
ment

z = x2
2 y12 + 3 x2 y1 − x2 y2 − y + x2 u22 + 2 u2 ∈M,
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satisfies the equation(x2 d1 − 1) z = x2 z1 − z = 0,
which means thatz is a torsion element of theD-
moduleM . �

Corollary 1. (Quadrat, 2003)Let R be an l×m matrix
with entries in A and the A-module M = Am/AlR.
Then we have t(M) = (Kl R ∩Am)/Al R,

M/t(M) = Am/(Kl R ∩Am).
(7)

Proof. We have the commutative exact diagram

0 0

↓ ↓
0 −→ AlR −→Am−→ M −→0

↓ ‖ ↓
0 −→ KlR ∩Am −→Am−→Am/(KlR ∩Am)−→0

↓ ↓ ↓
(KlR ∩Am)/AlR 0 0

↓
0,

(8)

from which we deduce the following exact sequence:

0→ (Kl R∩Am)/Al R→M → Am/(Kl R∩Am)→ 0.

We haveK ⊗A ((KlR ∩ Am)/AlR) = KlR/KlR =
0, i.e. the A-module (KlR ∩ Am)/AlR is a tor-
sion module. We haveK ⊗A (KlR ∩ Am) ∩ Am =
KlR∩Am, which shows that theA-moduleAm/(KlR∩
Am) is torsion-free. From the exact sequence (2), we
obtain (7).

Remark 2. Smith (1989) shows that ifA is a commu-
tative integral domain, then weak left-primeness implies
minor left-primeness and the two concepts are equiva-
lent if A is a greatest common divisor domain. See
(Quadrat, 2003; Smith, 1989) for counter-examples of the
fact that minor left-primeness does not generally imply
weak left-primeness. We thank both the anonymous ref-
eree and J. Wood for pointing out to us that the concept
of weak left-primeness is also equivalent to the general-
ized factor left-primeness in the case of a polynomial ring
A = k[χ1, . . . , χn] with coefficients in a fieldk (For-
nasini and Valcher, 1997; Woodet al., 1998).

To study the defect of exactness that the tensor prod-
uct by K/A introduces in exact sequences, we shall need
the definition of thetorsion functor.

Definition 3. (Rotman, 1979) Let· · · d2−→ F1
d1−→

F0
π−→ M −→ 0 be a free resolution of the leftA-

module M and a moduleNA (resp.BNA). Then the

Abelian groups (resp. leftB-modules) of homology of the
complex

· · · idN⊗d3−→ N ⊗A F2
idN⊗d2−→ N ⊗A F1

idN⊗d1−→ N ⊗A F0 −→ 0

do not depend on the choice of the free resolution ofM
and they are calledtorA

i (N,M). We have{
torA

0 (N,M) = N ⊗A M,

torA
i (N,M) = ker(idN⊗di)/im(idN⊗di+1), ∀ i≥1.

Proposition 1. (Rotman, 1979)If 0 −→M ′ −→M −→
M ′′ −→ 0 is an exact sequence of leftA-modules and
a moduleNA (resp. BNA), then we have the following
exact sequence of Abelian groups (resp. leftB-modules):

· · · −→ torA
2 (N,M ′′) −→

torA
1 (N,M ′)−→ torA

1 (N,M)−→ torA
1 (N,M ′′) −→

N ⊗A M ′ −→ N ⊗A M −→ N ⊗A M ′′ −→ 0.

In particular, a moduleNA is flat iff for any left A-
moduleM we havetorA

i (N,M) = 0, ∀ i ≥ 1.

Proposition 2. Let M be a leftA-module. Then

t(M) ∼= torA
1 (K/A,M).

Proof. Applying Proposition 1 to the exact sequence
0 −→ A −→ K −→ K/A −→ 0, we obtain the fol-
lowing exact sequence:

torA
1 (K, M) −→ torA

1 (K/A,M) −→M

iK−→K ⊗A M −→ (K/A)⊗A M −→ 0.

Since K is a flat A-module, we havetorA
1 (K, M) =

0, and thus,ker iK = torA
1 (K/A,M). Finally, using

the exact sequence (3), we obtaint(M) = ker iK =
torA

1 (K/A,M).

Example 3. Consider the ringD = R[d1, d2, d3] of the
differential operators indi with coefficients inR and the
multidimensional system defined by means of the gradient
operator inR3: 

d1 z = 0,

d2 z = 0,

d3 z = 0.

(9)

We have the following free resolution of theD-module
M = D/D3 (d1 : d2 : d3)T corresponding to (9):

0 −→ D
.R3−→ D3 .R2−→ D3 .R1−→ D

π−→M −→ 0,
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where

R1 =


d1

d2

d3

 , R2 =


0 −d3 d2

d3 0 −d1

−d2 d1 0

 , R3 = RT
1 .

We have the following complex:

(K/A)3
idK/A⊗.R2−→ (K/A)3

idK/A⊗.R1−→ K/A,

and torA
1 (K/A,M) = ker(idK/A ⊗ .R1)/im(idK/A ⊗

.R2). Let y be the class of the vector(d−1
1 0 0) ∈ K3 in

(K/A)3. Here y belongs toker (idK/A ⊗ .R1) because
we have

(d−1
1 : 0 : 0)R1 = 1 ∈ A. (10)

y ∈ im (idK/A ⊗ .R2) iff there exist (t1 : t2 : t3) ∈ K3

and (s1 : s2 : s3) ∈ A3 which satisfy the system

(t1 : t2 : t3)R2 + (s1 : s2 : s3) = (d−1
1 : 0 : 0). (11)

If (11) has a solution, then necessarily, by applyingR1

on the right of (11) and using (10), we must have

(s1 : s2 : s3) R1 = 1⇔ s1d1+s2d2+s3d3 = 1, si∈A.

We easily check that the last equality is never satisfied,
and thusR1 is not weakly left-prime. �

3. Extension Functor and Behaviour

Definition 4. Let · · · d2−→ F1
d1−→ F0

π−→ M −→ 0 be
a free resolution of the leftA-moduleM and AS (resp.
ASB) a module. Then the Abelian groups (resp. the right
B-modules) of cohomology of the complex

· · · d?
2←− homA(F1, S)

d?
1←− homA(F0, S)←− 0,

where d?
i (f) = f ◦ di, ∀ f ∈ homA(Fi−1, S), do not

depend on the choice of the free resolution ofM and they
are calledexti

A(M,S). Thus we have{
ext0A(M,S) = homA(M,S),

exti
A(M,S) = ker d?

i+1/im d?
i , ∀ i ≥ 1.

A module AS is called injective if for every exact se-
quence of leftA-modules

0 −→M ′ f−→M
g−→M ′′ −→ 0,

we have the exact sequence

0←− homA(M ′, S)
f?

←−homA(M,S)

g?

←−homA(M ′′, S)←− 0.

Example 4. If M is a finitely generated leftA-module,
then a free resolution ofM can be written in the form

· · · −→Ar2 .R2−→ Ar1 .R1−→ Ar0 π−→M −→ 0,

where Ri is an ri × ri−1 matrix with entries inA and
.Ri is the A-morphism defined by multiplying a row vec-
tor of lengthri on the left ofRi to obtain a row vector of
length ri−1. Hence the extension functor gives the defects
of exactness of the following sequence:

· · ·←−Sr2 R2.←− Sr1 R1.←− Sr0 ←− 0,

where Ri. is the A-morphism defined by multiplying
a column vector of lengthri−1 on the right of Ri

to obtain a column vector of lengthri. In particular,
ext0A(M,S) = homA(M,S) represents the solutiony ∈
Sr0 of the systemR1 y = 0, whereasext1A(M,S) is
the obstruction forz ∈ Sr1 satisfying R2 z = 0 to be
of the form z = R1 y with y ∈ Sr0 . If A is the ring
D of differential operators with constant coefficients and
Ω is an open convex ofRn, then C∞(Ω),D′(Ω) and
S ′(Ω) are examples of injectiveD-modules (Malgrange,
1966; Oberst, 1990; Shankar, 2001; Wood, 2000). In par-
ticular, if R1 is a matrix which defines a multidimen-
sional control system, thenext0A(M,S) = homA(M,S)
corresponds to thebehaviourof the system with respect to
thesignal moduleS (Willems, 1991). �

Proposition 3. (Rotman, 1979)If 0 −→M ′ f−→M
g−→

M ′′ −→ 0 is an exact sequence of leftA-modules and
AS (resp. ASB) is a module, then we have the follow-
ing exact sequence of Abelian groups (resp. rightB-
modules):

0 −→ homA(M ′′, S)
g?

−→ homA(M, S)
f?

−→ homA(M ′, S)

−→ ext1A(M ′′, S) −→ ext1A(M, S) −→ ext1A(M ′, S)

−→ ext2A(M ′′, S) −→ · · ·

In particular, a moduleAS is injective iff, for any left
A-moduleM , we haveexti

A(M,S) = 0, i ≥ 1.

If M is a left A-module defined by a finite-free pre-

sentationF1
d1−→ F0

π−→ M −→ 0, then we can define
the right A-moduleN by

0←− N ←− F ?
1

d?
1←− F ?

0 ←−M? ←− 0. (12)

Two different free resolutions ofM give two different
right A-modulesN andN ′, and thus the rightA-module
N is not uniquely defined byM . But in (Pommaret
and Quadrat, 2000; Quadrat, 1999) it is shown thatN is
uniquely defined up to aprojective equivalence(Rotman,
1979), a fact which impliesexti

A(N,S) ∼= exti
A(N ′, S)

and torA
i (N,S) ∼= torA

i (N ′, S) for i ≥ 1 and any left
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A-module S. The moduleN plays a crucial role in the
study of algebraic properties of the leftA-moduleM and
their correspondence to the different types of primeness
(Oberst, 1990; Pommaret and Quadrat, 1999b; 2000). An
interesting application of this result is the following. Let
us take a free resolution ofN of the form

0←− N ←− Ar1 R1.←− Ar0 R0.←− Ar−1 ←− · · · .

Deleting N and taking the tensor product by a leftA-
moduleS, we obtain the following sequence:

0←− Sr1 R1.←− Sr0 R0.←− Sr−1 ←− · · · .

The defects of exactness are given bytorA
i (N,S). Thus,

if S is a flat left A-module, we have parametrized the
solution y ∈ Sr0 of the systemR1 y = 0 by y = R0z,
with z ∈ Sr−1 and so on. For example, ifA is the ring
D of differential operators with constant coefficients and
Ω is an open convex ofRn, thenS(Ω),D(Ω) andE ′(Ω)
are flatD-modules (Malgrange, 1966; Shankar, 2001).

4. Duality between Extension and Torsion
Functors

Theorem 2. (Quadrat, 1999)Let M be a left A-module

defined by the finite presentationF1
d1−→ F0

π−→ M −→
0 and an exact sequence0 −→ X −→ Y −→ Z −→ 0
of right A-modules. Then we have the commutative exact
diagram (13), where we denote byN the right A-module
defined by (12). There exist two connecting maps{

δ : homA(N,Z) −→ X ⊗A M,

κ : torA
1 (Z,M) −→ ext1A(N,X),

such that the following two sequences are exact:

0 −→ homA(N, X) −→ homA(N, Y ) −→ homA(N, Z)
δ−→ X ⊗A M −→ Y ⊗A M −→ Z ⊗A M −→ 0,

· · · −→ torA
2 (Z, M)

−→ torA
1 (X, M) −→ torA

1 (Y, M) −→ torA
1 (Z, M)

κ−→ ext1A(N, X) −→ ext1A(N, Y ) −→ ext1A(N, Z)

−→ ext2A(N, X) −→ · · · .

Proof. First of all, let us notice that ifF is a finitely gener-
ated projective (free) leftA-module andX is a right A-
module, then we havehomA(F ?, X) ∼= X ⊗A F , where
F ? = homA(F,A) (Rotman, 1979). By taking the tensor
product of the finite presentation ofM with respect toX,
we obtain the following exact sequence:

X ⊗A F1
idX⊗Ad1−→ X ⊗A F0

idX⊗Aπ−→ X ⊗A M −→ 0,

whereas, by taking theA-morphisms of the exact se-
quence (12) inX, we obtain the following exact se-
quence:

0−→homA(N, X)−→homA(F ?
1 , X)−→homA(F ?

0 , X).

‖ ‖
X ⊗A F1−→X ⊗A F0

Therefore, we have the exact sequence

0−→homA(N, X)−→X ⊗A F1
idX⊗Ad1−→ X ⊗A F0

idX⊗Aπ−→ X ⊗A M−→0.

Finally, we obtain (13) if we notice that we have the fol-
lowing short exact sequence:

0 −→ X ⊗A Fi −→ Y ⊗A Fi −→ Z ⊗A Fi −→ 0,

becauseFi is a free, and thus, a flatA-module (Rotman,
1979) for i = 0, 1. Then two chases in (13) prove the
theorem.

Lemma 1. If M is a left A-module, thenexti
A(M,A)

is a finitely generated torsion rightA-module fori ≥ 1.

Proof. The fact thatexti
A(M,A) is a finitely generated

right A-module for all i ≥ 1 can be easily proved (Rot-
man, 1979). Now, letF be a maximal freeA-module
included inM . Then we have the exact sequence

0 −→ F −→M −→ T −→ 0,

where T = M/F is a torsion leftA-module. Then we
can apply Proposition 3 to the previous exact sequence to
obtain the following exact sequences:

0 = homA(T, A) −→ homA(M, A) −→ homA(F, A)

−→ ext1A(T, A) −→ ext1A(M, A) −→ ext1A(F, A) = 0,

0 = exti−1
A (F, A) −→ exti

A(T, A) −→ exti
A(M, A)

−→ exti
A(F, A) = 0, ∀ i ≥ 2.

From the second exact sequence, we deduce that
exti

A(M,A) ∼= exti
A(T,A), ∀ i ≥ 2. Now, using

the fact thatK is a flat A-module, we have∀ i ≥ 1,
K⊗A exti

A(T,A) ∼= exti
K(K⊗AT,K) = 0, becauseT

is a torsion leftA-module (Rotman, 1979). Therefore we
haveK ⊗A exti

A(M,A) = 0, ∀ i ≥ 2, i.e. exti
A(M,A)

is a torsion rightA-module for all i ≥ 2. Finally, if we
take the tensor product of the first exact sequence with re-
spect toK, then we obtainK ⊗A ext1A(M,A) = 0, i.e.
ext1A(M,A) is a torsion rightA-module.
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.

.

↓
torA

1 (X, M)
↓

torA
1 (Y,M)
↓

0 0 0 torA
1 (Z,M)

↓ ↓ ↓ ↓
0 −→homA(N,X)−→X ⊗A F1−→X ⊗A F0−→ X ⊗A M −→ 0

↓ ↓ ↓ ↓
0 −→homA(N,Y )−→Y ⊗A F1−→Y ⊗A F0−→ Y ⊗A M −→ 0

↓ ↓ ↓ ↓
0 −→homA(N,Z)−→Z ⊗A F1−→Z ⊗A F0−→ Z ⊗A M −→ 0

↓ ↓ ↓ ↓
ext1A(N,X) 0 0 0

↓
ext1A(N,Y )

↓
ext1A(N,Z)

↓
.

.

(13)

0
↓

0 0 0 torA
1 (K/A,M)

↓ ↓ ↓ ↓
0 −→ homA(N,A) −→ F1 −→ F0 −→ M −→ 0

↓ ↓ ↓ ↓
0 −→ homA(N,K) −→ K ⊗A F1 −→ K ⊗A F0 −→ K ⊗A M −→ 0

↓ ↓ ↓ ↓
0 −→ homA(N,K/A) −→ (K/A)⊗A F1 −→ (K/A)⊗A F0 −→ (K/A)⊗A M −→ 0.

↓ ↓ ↓ ↓
ext1A(N,A) 0 0 0

↓
0

(14)

Corollary 2. (Quadrat, 1999)We have the commutative
exact diagram (14) of leftA-modules and the following
exact sequence of leftA-modules:

0 −→ homA(N, A) −→ homA(N, K) −→ homA(N, K/A)
δ−→ M

iK−→ K ⊗A M −→ (K/A)⊗A M −→ 0.

Moreover, we have the following isomorphisms:

t(M) ∼= ext1A(N,A) ∼= torA
1 (K/A,M). (15)

Proof. Using the fact thatK is a flat A-module and
ext1A(N,A) is a torsion leftA-module (see Lemma 1),

we obtain ext1A(N,K) ∼= K ⊗A ext1A(N,A) = 0 and
torA

1 (K, M) = 0. Now, applying Theorem 2 to the exact
sequence0 −→ A −→ K −→ K/A −→ 0 of both left
and right A-modules, we obtain the commutative exact
diagram (14). Finally, the snake lemma gives the isomor-
phisms (15).

Remark 3. K is an injective module overA as it is
a torsion-free anddivisible A-module (Rotman, 1979).
Therefore, we could have obtained directly:

exti
A(N,K) = 0, ∀ i ≥ 1.
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Example 5. Let us reconsider Example 3. TheD-module
N corresponding toM is defined by the following exact

sequence:0 ←− N ←− D3 R1.←− D ←− 0. There-
fore, dualizing this exact sequence, we have the sequence

0 −→ N? −→ D3 .R1−→ D −→ 0 and we obtain
ext1D(N,D) = M . Finally, we havet(M) = M and
M is a torsionD-module.

If D = K[d1, d2, . . . , dn] is the ring of differential
operators with entries in a differential fieldK, i.e. a field
K endowed withn derivations∂i which satisfy ∂i(a + b) = ∂i a + ∂i b,

∂i (a b) = (∂i a) b + a (∂i b),

∀ a, b ∈ K, then, using theadjoint functorwhich trans-
forms a right D-module N = Dl/R Dm into a left
D-module defined byÑ = Dl/Dm R̃, where R̃ is
the formal adjoint of R, we can effectively compute
ext1D(N,D) ∼= ext1D(Ñ , D) using the algorithms devel-
oped in (Pommaret, 2001; Pommaret and Quadrat, 1999a;
1999b). We refer the reader to (Pommaret and Quadrat,
1999a; 1999b) for more information and examples.

5. Conclusion

We hope to have convinced the reader that homological
tools such as extension and torsion functors are very use-
ful and powerful in the study of multidimensional con-
trol systems. They allowed us to show the link existing
between the concept of weak primeness and the concept
of torsion-freeness in module theory. Moreover, we gave
a purely algebraic proof of the isomorphism existing be-
tweent(M) andext1A(N,A), for any Noetherian left Ore
integral domainA and any finitely generatedA-module
M . This result generalizes those obtained in (Pommaret
and Quadrat, 1999b) for rings of differential operators.
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