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Content Based Image Retrieval (CBIR) is now a widely investigated issue that aims at allowing users of multimedia informa-
tion systems to automatically retrieve images coherent with a sample image. A way to achieve this goal is the computation
of image features such as the color, texture, shape, and position of objects within images, and the use of those features as
query terms. We propose to use Gabor filtration properties in order to find such appropriate features. The article presents
multichannel Gabor filtering and a hierarchical image representation. Then a salient (characteristic) point detection algo-
rithm is presented so that texture parameters are computed only in a neighborhood of salient points. We use Gabor texture
features as image content descriptors and efficiently emply them to retrieve images.
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1. Introduction

Gabor filters have gained much attention for different as-
pects of computer vision and pattern recognition. Some
successful applications include texture segmentation and
texture feature extraction (Fogel and Sagi, 1989; Jain
and Farrokhnia, 1991; Turner, 1990), fingerprints iden-
tification (Hammamoto, 1999), face (Liu and Wechsler,
2001; Wiskott et al., 1997) and iris recognition (Daug-
man, 1998), edge detection (Mehrotra et al., 1992; Su
and Wang, 2003), directional image enhancement, image
compression (Daugman, 1988), hierarchical image repre-
sentation and recognition (Jain et al., 1997; Lee, 1996).

The main motivation to use Gabor filters is that re-
ceptive fields of simple cells in the primary visual cortex
of mammals are oriented and have characteristic spatial
frequencies (Marcelja, 1980). These could be modeled as
complex 2-D Gabor filters (Spitzer and Hochstei, 1985).
Gabor filters are efficient in reducing image redundancy
and robust to noise. Such filters can be either convolved
with the whole image or applied to a limited range of po-
sitions. In such a case, a region around a pixel is described
by the responses of a set of Gabor filters of different fre-
quencies and orientations, all centered at that pixel posi-
tion.

Gabor proved that a signal’s specificity in time and
frequency is fundamentally limited by a lower bound on
the product of its bandwidth and duration, and from this
he derived the uncertainty principle for information (Ga-
bor, 1946). Gabor’s theory leads to the idea that a visual
system should analyze visual information most econom-
ically by using pairs of perceptive fields of symmetrical

and asymmetrical response profiles in order to achieve
minimum uncertainty in both spatial localization and spa-
tial frequency (Coggins and Jain, 1985; Daugman, 1985).

In the article we propose Gabor filters for extract-
ing texture features needed to characterize images in a
database. Then such features can be effectively used as
information in content based image retrieval (CBIR) ap-
plications. Images are retrieved based on the similarities
feature, where features of the query specification are com-
pared with features from the image database to determine
which images match similarly with given features. Typ-
ically, most CBIR systems use shape, color and texture
parameters and perform separate classification for those
features (Smeulders et al., 2000; Choraś, 2003). A typical
scheme of a CBIR system is presented in Fig. 1.

We propose to use Gabor filtration and Gabor tex-
ture features since texture usually distinctively describes
images of most classes (Conners and Harlow, 1980; Ma
and Manjunath, 1996). First, we perform image normal-
ization so that extracted salient points and texture features
will not change due to contrast and illumination changes.
Then multichannel Gabor filtering and the idea of hierar-
chical image representation are presented. A salient (char-
acteristic) point extraction algorithm is described next.

Furthermore, we compute texture features only in a
neighborhood of salient points. Features are also based
on Gabor filtration. The article is concluded with feature
representation, a similarity measure, conclusions and re-
marks on future work. A general diagram of our CBIR
solution based on Gabor filtration and Gabor texture fea-
tures is shown in Fig. 2.
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Fig. 1. Typical CBIR system scheme (Choraś, 2003).

2. Image Grayscale Normalization

Before filtering the image, we normalize all its regions to a
certain mean and variance. Normalization is performed to
remove the effects of sensor noise and gray level deforma-
tion. Moreover, the extraction of salient points, performed

Fig. 2. General scheme of our CBIR solution.

later in our method, depends on the illumination variance
in the image. Therefore, in order to achieve illumination
and contrast invariance, we normalize the image.

Let I (x, y) denote the gray value at the pixel (x, y)
in the M ×M image matrix I , E and V be the es-
timated mean and illumination variance in the image I ,
respectively, and f(x, y) stand for the normalized gray-
level value at the pixel (x, y).

For all the pixels in the image I , the normalization
process is defined as follows:

f (x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E0+

√
V0 (I (x, y)−E)2

V
if I (x, y)>Th,

E0−
√
V0 (I (x, y)−E)2

V
otherwise,

(1)

where E0 and V0 are the desired mean and variance val-
ues, respectively, and E and V are the computed mean
and variance in the given image, described by

E =
1
M2

M−1∑
x=0

M−1∑
y=0

I (x, y), (2)

V =
1
M2

M−1∑
x=0

M−1∑
y=0

(I (x, y) − E)2, (3)

respectively. In our case, E0 = 100 and V0 = 100.
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3. Binarization and Coordinate
Normalization

In the next step, we perform binarization and coordinate
size normalization. The binary image is given by

b (x, y) =

⎧⎨
⎩

1 if I (x, y) > th,

0 otherwise,
(4)

where th is a threshold value, such as the intensity of the
first minimum that occurs after the maximum value of the
intensity histogram.

Moreover, in order to achieve the invariance of ge-
ometrical transformations (translation, rotation and scal-
ing), we change the [x, y] coordinate system into an in-
variant system of [x′, y′] coordinates such as

[x′, y′, 1]

= [x, y, 1]

⎡
⎢⎣ 1 0 0

0 1 0
−I −J 1

⎤
⎥⎦
⎡
⎢⎣ 1/σx 0 0

0 1/σy 0
0 0 1

⎤
⎥⎦

×

⎡
⎢⎣ cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎤
⎥⎦ , (5)

where

I =
m10

m00
, J =

m01

m00
, (6)

σx =
√
m20

m00
− I, σy =

√
m02

m00
− J, (7)

for moments of order p+ q defined as

mpq =
∫∫

xpyqb (x, y) dxdy. (8)

4. Hierarchical Image Representation

As a result of basic preprocessing operations described in
Sections 2 and 3, we obtain images that are resistant to
image transformations and illumination distortions. Such
normalized images become the input of multichannel Ga-
bor filtration and hierarchical image representation. This
approach enables us to practically implement the idea of
bottom-up processing and feature extraction (Jain et al.,
1997; Namuduri et al., 1994).

4.1. Gabor Filters

The two-dimensional Gabor filter family can be rep-
resented as a complex sinusoidal signal modulated by
a Gaussian function (window). Specifically, a two-
dimensional Gabor filter ψ (x, y;σ, λ, θk) can be formu-
lated as follows:

ψ (x, y;σ, λ, θk) = g (x, y;σ) exp
(

2πxθk

λ
i

)
, (9)

and

g (x, y;σ) = exp

(
−x

2
θk

+ γ2y2
θk

2σ2

)
(10)

is a Gaussian function, where

xθk
= x cos(θk) + y sin(θk), (11)

yθk
= −x sin(θk) + y cos(θk), (12)

and σ is the standard deviation of the Gaussian envelope
along the x- and y-dimensions, and λ and θk are the
wavelength and orientation, respectively. The parameter
γ is usually equal to 0.5. Since the spatial aspect ratio γ
is constant, we do not use it as a Gabor filter parameter.

The rotation of the x–y plane by an angle θk will
result in a Gabor filter at the orientation θk. The angle θk

is defined by

θk =
π

n
(k − 1) (13)

for k = 1, 2, . . . , n and n ∈ N, where n denotes the num-
ber of orientations.

The odd and even components of the above signal are
as follows:

ψe (x, y;σ, λ, θk) = g (x, y;σ) cos
(

2πxθk

λ

)
, (14)

ψo (x, y;σ, λ, θk) = g (x, y;σ) sin
(

2πxθk

λ

)
, (15)

where ψe and ψo are the even-symmetric and odd-
symmetric Gabor filters, respectively.

The parameter λ is the wavelength and 1/λ the spa-
tial frequency of the harmonic factor cos (2πxθk

/λ) or
sin (2πxθk

/λ). The ratio σ/λ determines the spatial fre-
quency bandwidth of Gabor filters. The half-response spa-
tial frequency bandwidth (in octaves) and the ratio σ/λ
are related in accordance with

b = log2

⎛
⎝ σ

λπ +
√

ln(2)
2

σ
λπ −

√
ln(2)

2

⎞
⎠ , (16)

σ

λ
=

1
π

√
ln(2)

2
2b + 1
2b − 1

, (17)

where σ/λ is constant and equal to 0.56.
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4.2. Multichannel Gabor Filtration

In order to extract features of the retrieved objects, we
used multiresolution Gabor filtration tuned to four se-
lected filter orientations. The computations are made for
each of the filter orientations and for each filter resolution
(Andrysiak and Choraś, 2003; Namuduri et al., 1994).

The input image f(x, y) is convolved with a 2-D
Gabor filter ψo(x, y;σ, λ, θk) to obtain the Gabor image
response:

Φ (x, y;σ, λ, θk)

=
∫∫

f (η, ζ)ψo (x− η, y − ζ;σ, λ, θk) dη dζ. (18)

By utilizing the recursive filtering method, we can gener-
ate a set of hierarchical filters starting from the odd com-
ponent of the Gabor filter. The input image is filtered by
each of these filters to generate the responses of a fam-
ily of Gabor filters. The recursive filtering method, when
applied to a directional 2D odd Gabor filter, increases the
resolution of the filter, while maintaining its directional
selectivity (Young et al., 2002).

The algorithm for implementing a recursive fil-
tering method of computing multiresolution responses
starts with the odd component of the Gabor filter
ψo(x, y;σ, λ, θk) tuned to the following steps:

Step 1. Convolve the image with the filter ψo(x, y;σ, λ,
θk) for k = 1, . . . , 4 and obtain the set

{
Φ(j)

}
.

Step 2. Convolve the response
{
Φ(j)

}
with the Gaussian

g(x, y;σ) and obtain
{
Φ(j−1)

}
.

Step 3. Convolve the response
{
Φ(j−1)

}
with the Gaus-

sian g(x, y;
√

2σ) and obtain
{
Φ(j−2)

}
.

Step 4. Resample the response
{
Φ(j−2)

}
of the resolu-

tion level j − 2.

Step 5. Substitute j = j− 2 and go to Step 2. Terminate
the algorithm for the lowest resolution level.

The responses generated by this algorithm corre-
spond to multiple resolutions as shown below:

Φ(j) = f (x, y) ∗ ψ(j)
o (x, y;σ, λ, θk) , (19)

Φ(j−1) = f (x, y) ∗ ψ(j−1)
o

(
x, y;

√
2σ, 2λ, θk

)
, (20)

Φ(j−2) = f (x, y) ∗ ψ(j−2)
o (x, y; 2σ, 4λ, θk) , (21)

Φ(j−3) = f (x, y) ∗ ψ(j−3)
o

(
x, y; 2

√
2σ, 8λ, θk

)
. (22)

In order to simplify the filtration, the consecutive steps are
implemented as the convolution of filtration parameters
with the Gaussian function. A realization of this process
and the selection of parameters are presented in Appendix.

The results of Gabor hierarchical filtering using the
recursive method are shown in Figs. 3, 4 and 6. The re-
sponses of the Gabor filter at three different resolutions
λ for the hierarchical representation of the image “plate”
are shown in Fig. 3. The results and the idea of hierarchi-
cal feature extraction are presented in Fig. 4. The number
of extracted features increases as the resolution changes.
The number of extracted features is considerably higher in
the right image. The responses of the Gabor filter at three
different resolutions λ for the hierarchical representation
of the image “blocks" are shown in Fig. 6.

4.3. Gabor Filter Design

In our CBIR method, we use odd and even component
pairs of Gabor filters with the quadrature phase relation-
ship. Each pair of the Gabor filters is tuned to a specific
band of spatial frequency and orientation.

There are some important points to note in select-
ing the channel parameters σ, λ and θk. Four values of
orientation are used: 0, π/4, π/2, 3π/4. In our experi-
ments for each orientation we select three spatial frequen-
cies. This gives a total of 12 Gabor channels (4 orienta-
tions combined with 3 frequencies).

5. Extraction of Salient Points

Our algorithm for the extraction of salient (characteristic)
points is based on the hierarchical representation of im-
ages resulting from consecutive filtration according to the
algorithm presented in Section 3.2.

The process starts from the lowest level of hierarchi-
cal image representation. Those are images that contain
only general features. Such an image is presented in Fig. 4
(left).

The consecutive steps of the algorithm are as follows:

Step 1. We divide the image
{
Φ(j−3)

}
into non-over-

lapping blocks b(k, l) of the size n× n.

Step 2. For each of those blocks we compute the variance
V (k, l).

Step 3. We look for p points of the maximum vari-
ance that characterize p blocks bmax(k, l) of{
Φ(j−3)

}
of the image, where p corresponds to

the number of the desired salient points. Blocks
of maximum variance contain considerable illu-
mination changes which usually correspond to
the contours of objects within the image.

Step 4. For each block bmax(k, l) from the
{
Φ(j−3)

}
level we look for the corresponding block b(r, s)
of the size 2n × 2n in the next resolution level
image

{
Φ(j−2)

}
.
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Fig. 3. Results of recursive filtering tuned to different resolutions.

Fig. 4. Selected images of different resolutions. The increasing number of
extracted features is presented (from left to right).

Step 5. We divide each block b(r, s) from the
{
Φ(j−2)

}
level into 5 parts according to Fig. 5. Then we
compute the variances {Vi}, i = 1, 2, . . . , 5, for
newly created blocks.

Fig. 5. Salient point extraction algorithm—Step 5.

Step 6. We look for the maximum variance

Vmax = max
i

{Vi} , (23)

which unambiguously characterizes the appropri-
ate block bmax(k, l).

Step 7. Substitute j = j + 1 and go to Step 4. Termi-
nate the algorithm if the highest resolution level
is achieved. Then in each block bmax(k, l) of the
maximum variance we look for a point with the
maximum value of the filter response. The found
point becomes the extracted salient point.

The results of the consecutive steps of this algo-
rithm for different resolutions are presented in Fig. 7. Fi-
nally, the result for the sample image “blocks” is shown in
Fig. 8.

6. Texture Feature Extraction Based on
Gabor Filters

Each texture in the image is characterized by a given lo-
calized spatial frequency or a narrow range of dominant
localized spatial frequencies that differ significantly from
dominant frequencies of other textures. Gabor filters en-
code the textured images into multiple narrow frequency
and orientation channels (Petkov, 1995).
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Fig. 6. Results of recursive filtering tuned to different resolutions.

Fig. 7. Consecutive steps of hierarchical salient point extraction.

Fig. 8. Result of the salient point extraction algorithm.
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The filter responses that result from the application of
a filter bank of Gabor filters can be used directly as texture
features. Three different preferred spatial frequencies and
four different preferred orientations were used, resulting
in a bank of 12 Gabor filters. Moreover, other features
such as Gabor Energy and complex moments covered in
the next subsections are computed.

6.1. Thresholded Gabor Features

The simplest idea to obtain other features than just filter
responses is to apply a threshold to the Gabor filter results.
The motivation for such an approach is the analogy to the
function of simple cells which can be modeled by a lin-
ear weighted spatial summation, characterized by Gabor
weighting functions and followed by a half-wave rectifi-
cation (Petkov and Kruizinga, 1997).

The thresholded Gabor features are computed as fol-
lows:

To (x, y;σ, λ, θk) = χ (Φo (x, y;σ, λ, θk)) , (24)

Te (x, y;σ, λ, θk) = χ (Φe (x, y;σ, λ, θk)) , (25)

where

χ (z) =

{
0 for z < 0,
z for z ≥ 0,

(26)

and Φo (x, y;σ, λ, θk) and Φe (x, y;σ, λ, θk) are the odd
and even components of Gabor filter responses, respec-
tively.

6.2. Gabor Energy Features

The Gabor Energy feature is a combination of symmet-
ric and asymmetric Gabor filter results. Gabor Energy is
related to the model of a specific type of selective neuron
orientation in the primary visual cortex called the complex
cell (Field, 1987).

Gabor Energy is given by

E (x, y;σ, λ, θk)

=
√

T2
o (x, y;σ, λ, θk) + T2

e (x, y;σ, λ, θk), (27)

where To (x, y;σ, λ, θk) and Te (x, y;σ, λ, θk) are the
threshold responses of the linear symmetric and asymmet-
ric Gabor filters, respectively.

The Gabor Energy feature is also closely related to
the local power spectrum. Local power spectrum features
are obtained using the same filter bank as in the computa-
tions of Gabor Energy features:

P (x, y;σ, λ, θk) = E2 (x, y;σ, λ, θk) . (28)

6.3. Complex Moment Features

Several authors proposed to use the real and imaginary
parts of complex moments of the local power spectrum as
features (Bigun and Buf, 1994; 1995). Such parameters
are interesting since they tell us if there are any dominant
orientations in the texture (Kruizinga and Petkov, 1999a).

Complex moments of the local power spectrum are
defined by

Cm,n (x, y)

=
∫∫

(u− iv)m (u− iv)n P̂ (x, y;u, v) du dv, (29)

m,n ∈ N, where

u =
1
λ

cos(Θ), u =
1
λ

sin(Θ), (30)

P̂ (x, y;u, v) = P (x, y;λ, θk) (31)

for σ = const, and where m+n (m,n ∈ N) is the order
of the complex moment, which is related to the number of
dominant orientations in the texture.

It can be proven that the complex moments Cm,n

of odd orders are zero and that all complex moments for
which m = n are real. Furthermore,

Cm,n = C∗
n,m, (32)

so that it is sufficient to consider only the Cm,ns with
m ≤ n (Kruizinga and Petkov, 1999b).

In our experiments we use filters with both symmet-
ric and asymmetric Gabor functions. Two banks, each
containing 12 filters (with 4 orientations and 3 spatial fre-
quencies), are used, one comprising the symmetric and the
other the asymmetric filters. From this set we select only
the nonzero real and imaginary parts.

7. Similarity Measure

After calculating Gabor texture features, we obtain several
feature vectors:

• the vector of symmetric and assymetric Gabor filter
responses R(x, y;σ, λ, θk):

R =
[
Φo(x, y;σ, λ, θk),Φe(x, y;σ, λ, θk)

]
, (33)

• the vector of thresholded and energy Gabor features
T (x, y;σ, λ, θk) given by

T =
[
To(x, y;σ, λ, θk), Te(x, y;σ, λ, θk),

E(x, y;σ, λ, θk), P (x, y;σ, λ, θk)
]
, (34)
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• the vector of the complex moments C, cf. Eqn. (29).

Finally, we construct the final feature vector
FV (x, y;σ, λ, θk), which will be later used in the
image retrieval similarity measure.

The final feature vector is given by

FV (x, y;σ, λ, θk)

=
[
R(x, y;σ, λ, θk), T (x, y;σ, λ, θk), C

]
. (35)

After the normalization of each component in the vector
FV (x, y;σ, λ, θk), we calculate the similarity of a query
image Q and an image D from the database, defined as

d(Q)(D)(R, T,C) =
∑

p

d(Q)(D)
p , (36)

where

d(Q)(D)
p =

∣∣R(Q)
p −R(D)

p

∣∣ +
∣∣T (Q)

p − T (D)
p

∣∣
+
∣∣C(Q)

p − C(D)
p

∣∣, (37)

and p is the number of the extracted salient points.

8. Conclusions and Future Work

Gabor filters are efficiently used in many applications
of computer science. In the article we have proposed a
multichannel Gabor filtration scheme used for the detec-
tion of salient points and the extraction of texture fea-
tures for image retrieval applications. In the neighborhood
of salient points we calculate texture features which are
also Gabor based and we store them in the feature vector
FV (x, y;σ, λ, θk).

Our CBIR solution is based on Gabor filtration and
therefore we also calculated texture features related to Ga-
bor filters. Those features are straightforward to com-
pute, and together with Gabor filter responses ensure a
sufficient image representation. For an image database
of small post-stamps we achieved results comparable to
the known CBIR systems such as Blobworld , since the
texture distinctively describes most post-stamp classes.

However, other features are needed in order to ef-
fectively retrieve images from large databases containing
images of various types. Such features may contain color
and shape features as shown in Fig. 1. Therefore, we work
on adding global and local color histograms and parame-
ters connected with the shapes of objects within images.

In the extracted salient points we create Regions of
Interest (ROIs) in which we calculate color histograms
and Zernike moments (Choraś et al., 2005). Then all the
extracted features can be efficiently used as queries in the
automatic content based image retrieval (CBIR) system
based on multichannel Gabor filtration and hierarchical
image representation.
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Appendix

Let Ψo (x, y;σ, λ) represent 2D odd Gabor filter with the
parameters σ, λ, and let g (x, y;σ) represent a 2D sym-
metric Gaussian function with the parameter σ. The con-
volution is given by

Ψo (x, y;σ, λ) ∗ g (x, y;σ)

=

+∞∫
−∞

+∞∫
−∞

Ψo (x− δ, y − ρ;σ, λ)g (x, y;σ) dδ dρ,

where ‘*’ denotes the convolution operation and σ and ρ
are dummy variables for integration.

Computing the convolution on the right-hand side of
the above equation, we get

Ψo (x, y;σ, λ) ∗ g (x, y;σ)

=

+∞∫
−∞

+∞∫
−∞

exp

[
−

(
(x− δ)2 + γ2 (y − ρ)2

2σ2

)]

× sin
(

2π
λ

(x− δ + y − ρ)
)

× exp
[
−

(
δ2 + γ2ρ2

2σ2

)]
dδ dρ
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=

+∞∫
−∞

+∞∫
−∞

exp

[
−
(
x2−2xδ+2δ2+γ2

(
y2−2yρ+2ρ2

)
2σ2

)]

× sin
(π
λ

(2x− 2δ + 2y − 2ρ)
)

dδ dρ

= exp
[
−x

2 + γ2y2

4σ2

]

×
+∞∫

−∞

+∞∫
−∞

exp

[
−
(
x2−24xδ+4δ2+γ2

(
y2−4yρ+4ρ2

)
4σ2

)]

× sin
(π
λ

(x+ y) + (x− 2δ + y − 2ρ)
)

dδ dρ

= exp
[
−x

2 + γ2y2

4σ2

]

×
+∞∫

−∞

+∞∫
−∞

exp

[
−

(
(x− 2δ)2 + γ2 (y − 2ρ)2

4σ2

)]

×
[
sin

(π
λ

(x+ y)
)

cos
(π
λ

(x− 2δ + y − 2ρ)
)

+ cos
(π
λ

(x+ y)
)

× sin
(π
λ

(x− 2δ + y − 2ρ)
)]

dδ dρ

= exp
[
−x

2 + γ2y2

4σ2

]
sin

(π
λ

(x+ y)
)

×
+∞∫

−∞

+∞∫
−∞

exp

[
−

(
(x− 2δ)2 + γ2 (y − 2ρ)2

4σ2

)]

× cos
(π
λ

(x− 2δ + y − 2ρ)
)

+ exp
[
−x

2 + γ2y2

4σ2

]
cos

(π
λ

(x+ y)
)

×
+∞∫

−∞

+∞∫
−∞

exp

[
−

(
(x− 2δ)2 + γ2 (y − 2ρ)2

4σ2

)]

× sin
(π
λ

(x− 2δ + y − 2ρ)
)

dδ dρ.

The first integral involving the Gabor even filter in
the above equation is constant, while the second integral
involving the Gabor odd filter is equal to zero. Hence the
above convolution is reduced to

Ψo (x, y;σ, λ) ∗ g (x, y;σ)

= A exp
(
−x

2 + γ2y2

4σ2

)
sin

(π
λ

(x+ y)
)
,

where A is a constant.
Finally, the convolution of these two filters results in

a Gabor odd filter Ψo

(
x, y;

√
2σ, 2λ

)
.


